Dispersion Compensation in Mode-locked Thulium/Holmium Doped Fiber Laser

Kelley Daenzer
KSU Physics REU 2016
Mid-infrared Ultra-short Pulse Lasers

…can measure ultra-short timescales!
 • Chemical reactions
 • Biological processes
 • etc.

…can measure absorption over a wide wavelength range!
Mode-locking
Group Velocity and Third-order Dispersion

\(\beta_2 \) - Group velocity dispersion parameter
- Related to 2nd derivative of Sellmeier equation

\(\beta_3 \) - Third-order dispersion parameter
- Derivative of \(\beta_2 \) with respect to frequency
Dispersion Management
(Dispersion Management, cont.)

Net Cavity GVD (with no compensation fiber)

\[
\beta_{2,\text{TM}} L_{\text{TM}} + \beta_{2,\text{SMF}} L_{\text{SMF}} = (0.01 \text{ ps}^2 / \text{m}) (1.24 \text{ m}) + (-0.085 \text{ ps}^2 / \text{m}) (4.46 \text{ m}) = -0.366 \text{ ps}^2
\]

Net Cavity TOD (with compensation fiber)

\[
\beta_{3,\text{TM}} L_{\text{TM}} + \beta_{3,\text{SMF}} L_{\text{SMF}} + \beta_{3,\text{UHNA7}} L_{\text{UHNA7}} = 0
\]
Ultra-high Numerical Aperture Fiber

Required UHNA-7 Length

\[L_{UHNA7} = \frac{NCD - \beta_{2, TM} L_{TM} - \beta_{2, SMF} L_{SMF}}{\beta_{2, UHNA7}} \]
Laser Setup
Spectrum: No UHNA-7

Spectrum 1 for Tm/Ho laser (1983nm)

Spectrum 2 for Tm/Ho laser (2028.5nm)
Spectrum: with UHNA-7

Length of Tm/Ho fiber: 1.24m
Length of UHNA-7: 2.889m
Length of SMF: 3.628m
TOTAL cavity length:
\[L = 7.757 \text{m} \]

Total cavity length from repetition rate:
\[\gamma = \frac{c}{n} = \frac{L}{T} \]
\[L = 7.85 \text{m} \]
Single Peak
What’s Next?

- Temporal pulse measurements
- Cut back UHNA-7 and see how the pulse changes
Acknowledgements

I would like to thank Drs. Kristan Corwin and Bret Flanders, Ms. Kim Coy, and Kansas State University for preparing and hosting the physics REU program during the summer of 2016.

This work is partially funded by the National Science Foundation (NSF) and the Air Force Office of Scientific Research (AFOSR) through NSF grant number PHYS-1461251. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF or AFOSR.
References
