LA-UR-88-3930

Los Alamas Natonal Laboralory 13 operated by wihe Unwersity of Califormaa for (he United States Departmant ol Ensrgy under antract W.7405.ENG.I5

TITLE VORTICES IN THE CLASSICAL TWO-DIMENSIONAL ANISOTROPIC
HEISENBERG MODEL

AUTHOR(S): M. E. Gouvea
G, M. Wysin
A. R. Bishop
F. G. Mertens

-~ _ - :‘.
SUBMITTED TO Physical Review B .'j_c} || Bdo \ l.ff;‘i‘_ 9’

e

By acceprance of 1fs article. the pubbsher recognizes that 1he U 5 Government relaing a nonesclusive royaity-'ree icensa (o publish of reproduce
1he publisnea ‘orm ol RS conlhbubon, of 19 allow clmers ta do so, far US. Goveramenl purposes

Trhe Los Alarmos Natonsl Laboraidiy requests [nal the pubhaner genhly 1hid arbicle as work perfosmed undor the Buspices ol the U S Depriiment of Energy

o L@S A am@ Los Alamos National Laboratory
Los Alamos,New Mexico 87545



VORTICES IN THE CLASSICAL TWO-DIMENSIONAL ANISOTROPIC
HEISENBERG MODEL

M.E.Gouvéa* ,G.M.Wysin** A R.Bishop
Los Alammos National Laboratory,

Los Alamos, NM 87545 USA
and

F.G.Mertens
Physics Institute, Unsversity of Bayreuth
D-8580 Bayreuth,Fed.Rep. of Germany

ABSTRACT

The structure and dynamics of vortex spin configurations is considered for a two-
dimensional classical Heisenberg model with easy-plane anisotropy. Using both ap-
proximate analytic methods based on a continuum description and direct numerical
simulations on a discrete lattice, two types of static vortices (planar and out-of-plane
) are identified . Planar ( out-of-plane ) vortices are stable below ( above ) a critical
anisotropy. The structure of moving vortices is calculated approximately in a contin-
uum limit. Vortex-vortex interactions are investigated numerically. A phenomenoclogy
for dynamie structure factors is developed based on a dilute gas of mobile vortices above
the Kosterlitz-Thouless transition. This yields a central peak scattering whose form is

compared with the results of a large-scale Monte Carlo-Molecular Dynamics simulation,
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INTRODUCTION

Two-dimensional magnetism has attracted heightened interest in the last few years
because of: (i) the availability of much improved quasi-two-dimensional ferromagnetic
and antiferromagnetic materials, including layered structures, magnetically-intercalated
graphite and, most recently, Cu-based high-temperature superconductors ; (ii) rapidly
increasing information on spin dynamics from inelastic neutron scattering, particularly
at low frequencies and long wavelength ; and (iii) advances in numerical simulation
capability on large lattices which can guide and test modeling of nonlinear structures
and their dynamics.

Classical, anisotropic Heisenberg models are important for a large class of mag-
netic systems. Easy-plane (XY) symmetry is especially interesting because it admits
vortex-like spin configurations and the possibility of a topological vortex-antivortex un-
binding transition, as proposed by Kosterlitz and Thouless. The advances outlined
above now allow us to seriously probe the dynamics associated with such a transition
in real magnetic matenals.

In this paper we consider the classical Heisenberg ferromagnet in two spatial di-
mensions and with easy-plane exchange anisotropy,

H=-J ) (S55:+8%5%+ASL8%), (1.1)
{mn)
where J is a coupling constant and the summation is taken over the nearest neighbour
square lattice sites. Our principal concern is to understand in detail the structure and
dynamics of vortex spin configurations and their signatures in dynamie structure factors,
5(¢,w), as measured by inelastic neutron scattering.
In section (IT) we review existing literature and show that continuum theory vields

I
two types of static vortices: viz. "planar” (in which spin components are confined to
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the XY plane) and "out-of-plane” (in which there is a pulse-shaped S, distribution ac-
companying the vortex shape in S; and S, ). In section III we study these vortices via
a direct numerical simulation of the discrete system (I.1), using Landau dynamics and
Landau-Giibert damping. We find a critical A (A.): for A > A, (< A.) the out-of-plane
(planar) vortex is stable, By studying square, triangular and hexagonal lattices, we con-
jecture that A, increases with lattice coordination number. The exact numerical studies
also support the qualitative vortex energy dependence on A obtained in a perturbative
continuum calculation.

Turning to vortex dynamics, an approximate analytic calculation in the continuum
limit (section IV) suggests that asymmetric out-of-plane spin components develop for
both vortex types, with the asymmetry occuring about the direction of vortex motion.
This is confirmed by numerical studies on the lattice. Preliminary numerical studies
of vortex-vortex interactions (Section V) reveal that the anisotropy parameter A is also
important for the competition between the attractive/repulsive force existing between
a vortex-(anti)vortex pair and the pinning forces due to the discreteness of the lattice.
For A > A, the forces between the pair easily dominate the pinning forces of the lattice
but, for A < A, unless the pair separation is rather small, or A is very near A, the
pinning forces of the lattice are predominant.

Finally, in section (VI) we consider a phenomenology based on a dilute gas of mobile
vortices to calculate S(§,w) above the Kosterlitz-Thouless transition temperature. This
suggests an intrinsic "central peak” component (i.e. spectral weight at w ~ 0). In
particular we note that the correlation of 5 spin components (5, .(q,w)) is very sensitive
to the vortex shape. Thus the velocity-dependence of the shape noted above has a direct
influence. We compare our predictions with numerical simulations on a 100 x 100 square

lattice using a combined Monte Carlo-molecular dynamics technique, and discuss the
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relevance of dynamic vortices to the observed central peak structure.

Section VII contains a summary and concluding remarks.
II. Equations of motion and static solutions

The Hamiltonian given by (I.1) reduces to the well known isotropic Heisenberg and
XY models for A = 1 and 0, respectively. The classical spin vector, 5, = {§Z,5¥, 57} ,

can be specified by two angles of rotation 4, and &,
Sn = S|[cos by cos Py, cos b, sin ®,,,sinb,]. (I1.1)

In a continuum approximation, Hamiltonian (1.1) can be written as

”2/&“ [1—-.51-m }][IE il +(1—=m 3}(?@}’+45m?] (I1.2)

m?)

whers

b=1-2A (I1.3)

and m = sinf. The variables m and ® constitute a pair of canonically conjugate

variables, which means that

(11.4)

where H is the Hamiltonian density in (11.2).

The equations of motion obeyed by m and @ can be obtained by using (11.4)

1 9m

S5 = (1-m?)A® —2mVm. Ve (I1.5a)
1 0% Am 2 m 2
TS B = (T T OAm + midh = (V)] — e (Vm). (11.5b)

These equations agree with the ones obtained by Takeno and Homma! after an appro-

priate change of variables is performed. Those authors presented a general theory to
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derive a classical spin system from the original quantum Hamiltonian for generalised
Heisenberg models. However, only the one dimensional case was studied in detail.

We are mainly interested in studying nonlinear excitations in this two-dimensional
system and we will start our discussion by considering static solutions to eqs.(IL5).
Later in this pn.pe::, we will study the small distortions suffered by these objects due to
their motion.

It can readily be seen that the set of expressions
my =10 (I11.6a)

&, =qtan™! (%) g=41,42,... (I1.6b)

corresponds to a particular solution to egs. (IL5). The condition expressed by (I1.6a)
requires 5% = 0, in which case Hamiltonian (I.1) reduces to the planar model and (I1.6b)
describes the usual vortex of the Kosterlitz-Thouless theory, Hereafter, we will refer to

this solution as a planar vortex. The energy of a single planar vortex,
E, = xJS%1n(R,/ra) , (11.7)

has the well known logarithmic dependence on R, , the size of the system. r, is a
constant of the order of a lattice spacing and corresponds to a cut-off for the radial
integration.

Another particular static solution of eqs.(IL.5) (for the two-dimensional case) has
been obtained by other authors®* by noticing that taking (I1.6b) for @ one can obtain a
static solution of (II.5a) by requiring m to be a function of the radial polar coordinate,
i.e.,,m = m(r). The explicit expression for m(r) should be obtained from the remaining

1
equation (I1.5b). Analytical (instantons) solutions for the isotropic Heisenberg model
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(A = 1) have been obtained by Belavin and Polyakov* and also by Trimper®, Un-

fortunately, eq. (IL.5b) cannot be solved analytically for general A, However, for the

conditions
+5, forr =0,
m(r) = {ﬂ, fc: :: o (I1.8)
asymptotic solutions can be given:
azrz
PS(i— Erz)- for r— 0 (11.9a)
Moue = 1/2 %
c.‘j’(ﬁ) exp(r/ry), forr — co (11.9b)
T

where p = +1 depending on the sign of m,,, at the origin, and r, is defined by

o (I1.10)

e

Y
and is interpreted as being the "radius” of the vortex core. a and ¢ are constants that
can be fitted by matching the asymptotic solutions (I1.9). [ If we match at r = r, we
obtain a = 7e/3 and ¢ = 37/10]. Eqs.(11.9) were obtained for g = %1 since this is the
case of main interest. We will refer to this solution as the "out-of-plane” vortex.

The asymptotic solutions obtained by Takeno and Homma® are of similar form
although there are some differences between their expressions and ours, partially because
they included an external field applied along the z-axis. Hikami and Tsuneto? arrjved
at slightly different vortex-like solutions because they neglected the contribution of a
term &sinf cosfV8 in their continuum Hamiltonian, Expressions identical to those in
eqs.(I1.9) were obtained by Nikiforov and Sonin® for the Hamiltonian

H=-J]) [SESI+ 5%SY + S5 57] —8J ) (S5)%, (I1.11)

m,n m
i.e., with local instead of exchange anisotropy. For this model, the vortex radius is

7, = 1/V/26. Hamiltonians (1) and (I1.11) become equivalent for A — 1, § — 0 and, in
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this limit,r, and 7, diverge. The difference between these two models becomes greater
in the opposite limit, A — 0 and § = 1. In particular, we have r, =0 and 7, = lfv"i
for A =0 and § = 1, respectively.

If we insert A = 0 into (11.5), we do not obtain a decaying solution as in eq.(I1.9b).
Thus the only me;niﬂgful static vortex solution is the planar one — which is in agree-
ment with our vortex radius definition [r,(A = 0) = 0]. It should be stressed that r, is
less than one lattice spacing for an appreciable range of A (ry, < 1 for A < 0.8). This
leads us to consider whether the discrete nature of the lattice introduces effects that
invalidate a continuum approach. Numerncal simulation studies on a discrete lattice
have been performed (section I11) in order to obtain information about the behavior of
vortex solutions as functions of A. In particular, we have determined the ranges of A for
which the static planar and out-of-plane vortex solutions are stable.

The energy of a single out-of-plane vortex,E,,, is calculated in the Appendix. We
find that, for A € 0.8, E,,; is higher than ¥, and increases with A. This A dependence

of Egy¢ is in agreement with our simulation results, presented in section IIL.

III. Single-Vortex Simulations

In order to clarify the behavior of the two static vortex solutions identified in section
IT as functions of the anisotropy A and the location of the vortex center on the lattice,
simulation studies were performed on a 40 x 40 square lattice. The discrete equations

of motion used in the numerical simulations are

Si =8 x F; — e§; x (§; x F), (III.1)
Fi=J0) (Siz+SVg+A5:2). (I11.2)
i
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The sum on j only runs over the nearest neighbors of i. The parameter ¢ is the strength
of a Landau-Gilbert damping, which was included for testing vortex stability and for
damping out spin waves generated from non-ideal initial conditions. Neumann or free
boundary conditions were used for simulating single vortices. The equations for the xyz
spin components were integrated using a fourth order Runge-Kutta scheme with a time

step of 0.04 (in time unit %/JS). Conservation of energy and spin length (to about 1

part in 10°) served as checks of numerical accuracy.

The first set of simulations used a single planar vortex in a unit cell of the lattice
as the initial condition. ' The equations of motion were integrated for several hundred
time units, using a damping strength ¢ = 0.1, for 0 €< X < 1. We observe that for all
A < (0.72 £ 0.01) the planar vortex remains as the stable configuration; a bell-shaped
out-of-plane spin component centered at the vortex center is seen to develop only for
A > 0.72. Figures [1(a,b})] show the stationary long-time configuration obtained for
A = 0.80,0.90. They agree rather well with the asymptotic expressions given by (11.9).
The radius of the area where m differs appreciably from zero —~ 3 lattice sites for
A = 0.80 [ru(X = 0.80) = 1] and ~ 4.5 for 0.90 [r,(A = 0.90) = 1.5] — increases with A
in the same way that r, does. Fitting eqs.(IL.9) to the resulting out-of-plane structure
we obtain @ = 0.397 and ¢ = 0,657 which are close to the values we find when matching

the asymptotic solutions at r = r, (section II).

The stability of the planar vortex for small A (A < 0.80) can hel established analyt-
ically by considering small perturbations, ($;,m;), to the static vortex (®,,m,). We

use the ansatz

'§=‘§P+‘i.‘;m=mp+mi (II1.3)
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in the Hamiltonian (I1.2) obtaining
R,
SH = H(®,m) = B(®,my) = =IS? [ rdr(\(@ma)? 4 md (46 - 5 ) +
+(V2;)*). (II1.4)

The first and I:h.in.'l terms in the integrand of (II1.4) are always positive but the second
term is positive only if 7 > rp, where rg = 1/v/28. For 0 < A < 3/4,r, is inside the
vortex core and integration from r = r, to R, always yields §H > 0, i.e., the planar
vortex 1s stable here.

Another set of single-vortex simulations was performed using a static out-of-plane
vortex as initial condition. The initial configuration was specified by eq.(11.6b) for &
and (A-3) for m ( only the first two coefficients,or; and a; were taken). We find that
the initial out-of-plane vortex relaxes to a planar one for A < 0.72, Again, only for
A > 0.72, does the out-of-plane vortex stay as a stable confizuration.

Complementary simulations were performed using triangular and hexagonal lat-
tices. Similar behaviors were found: viz., there is a "critical” value A, above which the
static out-of-plane vortex solution is the stable configuration; for A < A, the stable
configuration is the planar vortex. The static limit of the equations of motion derived
for these non-square lattices leads to asymptotic solutions identical to the ones given by
eqgs. (I1.6) and (I1.9) — this result could be expected since these equations are obtained
in a continuum theory. Our numerical simulations give A. = 0.62 for the triangular
lattice and A. & 0.86 for the hexagonal lattice. This suggests that the static planar
vortex stability decreases with increasing coordination number.

A fourth set of single-vortex simulations using an out-of plane vortex as initial
condition but considering different positions of the vortex-center was performed to give

insight into how the energy of this vortex depends on the location of its center—relevant
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for vortex dynamics. Three positions in a square lattice were considered: (a) at the
center of a square formed by four neighbors; (b) at the center of a line joining two
nearest neighbors; and (c) at one of the lattice sites. For small A, the total energy is
different for each of the cases, being lowest for case (a) and highest for (¢). As A increases
the differences hetIchn these energies decrease , and for A = 0.7 all these energies are
close to each other. The A-dependence of the energy can also be extracted from these
simulations and agrees qualitatively with the behavior predicted by the calculations

given in the Appendix.
IV. Single Moving Vortices

Above the Kosterlitz-Thouless transition temperature the system is in a disordered
phase characterized by unbound vortices interacting with each other. Equations of
motion for single moving vortices were derived by Huber” and Nikiforov and Sonin®. In
this section we will study the distortion suffered by the static vortex solutions given in
Section III due to their motion. The procedure chosen is the one adopted in ref.[d} for
Hamiltonian (I1.11). We will also be interested in obtaining the energy of these moving
vortices as a function of their velocity v.

We use an ansatz similar to the one given by eqs.(II1.2) writing
P=F; +P;,, m=mp+my, (I'V.1)

where (®q,mg) denote the static solutions given by eqgs.(I1.6) and (11.9) and (®,,rn,)
are the distortions (assumed small) due to the vortex motion. Inserting (IV.1) into

(IL.5) , we obtain

7.V, _ Amy 2mpAmy 2y , 4m3(Vmg)?
TE e (ol o [(1 —mgye ~ = (VBT s
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(Vm,)? 2mg
+ (1_—-;55 my + 2myV@, - VI, + mvﬂiu - Vmy, (Ivzﬂ}
—2 ';m“ = (1 =m2)A®; — 2myVmg - Vmy — 2meVm, - V&, (IV.2b)

after linearizing in m;,®; and also in v. In eqs.(IV.2) we have used

*

8
%:—i?@,%:-—ﬁ'-?m (Iv.3)

for a steady state vortex motion with velocity .

It is clear from eqs.(IL.5) that a moving vortex cannot be confined to the XY-plane,
The moving structure must develop some out-of-plane spin component. Using eqs. (I1.7)
into (IV.2) we have .

OBy
JSr

= —AAmyp+mp [45 = i] (IV.4a)

1
0=A%p, (I'V.45)

where €4 is the unit vector for the ®#-coordinate. A particular solution of eq. (IV.4b) is

given by @,p = 0 and the asymptotic behavior of m; p can be obtained from eq. (IV 4a)

et u};"r:—;—srsin(é-u), r—0 (IV.5a)
i F-ésl v sin(¢—a) ]
et — r— 0o {IV.5b)

T48JSr 4678 r :

where « is the angle between the direction of the velocity ¥ and the x-axis. We notice
that the moving vortex does not possess the circular symmetry exhibited by the static
vortex since it depends on the polar coordinate ® and is symmetric about the v-direction.
This symmetry could be expected if we want the profile to define a distinct direction
for the velocity and is confirmed by our vortex-antivortex pair simulation (section V).

We note that eq. (IV.4a) can be solved exactly in the A = 0 limit leading to

v rsin(¢ — a)

JS 45rz—1 ° ' {1V.6)

mp =
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which has the asymptotic behavior predicted by eqs. (IV.5). The above equation is an
exact solution to (IV.4a) only for § = 1 but we can expect that it is a good approximation
for § & 1. Eq. (IV.6) has a singularity (and changes sign) at r* = (1/46)"/? which for
6 & 1 is less than a lattice constant away from the vortex center. It is reasonable to
assume that keepi;lg the neglected nonlinear terms would suppress the divergence and
force myp to cross zero near r* to justify the assumption of small spatial derivatives.
The reliability of our asymptotic r — 0 solution is questionable but this will not affect
our calculations because this solution will be used only in a negligible regime [0 < r < ry,
and ry < 1 for A < 0.8]. Also, we will be interested in correlation functions for small
q only (section VI) , where the asymptotic r — oo solution is sufficient, Nevertheless,
this question will be properly handled using a numerical simulation (section V).
Asymptotic expressions for the small corrections to the out-of-plane vortex due to

its motion can be determined by substituting eqs. (IL.6b) and (11.9) into eqs. (IV.2).

We obtain
b
miop = —;Jusrasin{é—&) (I'V.7a)
u
= p—s - VIT
Piop PJST'CDSM ) (VI.75)
for r — 0 and
y_Sin(d=2) (IV.7¢)

THOP=sTe: v ‘

cvry!? e=riruy cos(¢ — a)
JS rif?

$i10p = (IV.7d)

for r — co. As before, the out-of-plane component m is asymmetric about the direction
of motion but now this asymmetry is a small correction to be added to the core shape
given by eq. (I1.9a), while in the previous case, eq. (IV.5) corresponds to the predicted

I
shape for the out-of-plane component of a vortex moving with small velocities. The
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