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The Oersted field about a nanocontact on a thin film can nucleate vortex formation in the film, 

and spin torque will drive the vortex in large-amplitude gyrotropic motion about the nanocontact. 

In a system where the nanocontact is a center of symmetry, the Oersted field provides the 

restoring force toward the nanocontact center and spin torque balances the dissipation force from 

damping to give a linear dependence of the gyrotropic frequency on nanocontact current. For the 

lower symmetry case when the nanocontact is placed close to the edge of a film there is a 

significant magnetostatic force repelling the vortex from the edge as well as a deformation of the 

vortex structure. Both effects combine to produce an anisotropic restoring force, which in turn 

result in the existence of a lower critical current for gyrotropic motion and a nonlinear 

dependence of the gyrotropic frequency on the nanocontact current.  
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 Introduction 

The magnetic vortex is a domain structure that has attracted much theoretical and 

experimental interest during the past twenty years owing to the fact that it can be the ground state 

[1,2] in a ferromagnetic nanodisk. This is the result of competition between exchange and the 

dipole-dipole interaction giving in-plane curling of the magnetization which minimizes 

magnetostatic poles at the disk edge. There is, however, a small-radius (5-10 nm for permalloy) 

out-of-plane vortex core at the vortex center which eliminates the exchange singularity. The 

small size of submicron disks make them excellent candidates for devices operating in the 

microwave region of the spectrum. Indeed, the lowest frequency dynamic excitation corresponds 

to a high amplitude sub-GHz gyrotropic precession [3-5] of the vortex core about the disk center 

where the gyro-force is opposed by a magnetostatic force directed toward the disk center. For 

this type of motion in the disk the precession frequency is proportional [6, 7] to 
D
RL  where L 

and 
D
R  are the disk thickness and radius, respectively. More recently it has been shown that 

steady state gyrotropic motion can be established [8, 9] in a nanopillar through a spin-polarized 

current, where oscillation sets in above a critical current [10] and the power added to the system 

by spin torque balances the energy lost to dissipation. 

 One disadvantage of the nanopillar oscillator is the lack of a simple external frequency 

control since the frequency depends on the disk dimensions. This can be overcome by use of a 

nanocontact oscillator consisting of a nanocontact on a fixed and free layer where steady state 

gyrotropic motion [11] was first observed, but not recognized as such. Later experimental and 

theoretical work showed that the Oersted field from the nanocontact current results in formation 

of a vortex [12] and it also provides the restoring force necessary to give gyrotropic motion in an 

elliptical orbit about the nanocontact. Experimentally [11] it is noticed that after the vortex is 
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formed a current decrease will result in a linear frequency decrease until a lower current is 

reached where gyrotropic motion is no longer sustained. However, theoretical work [12] does not 

indicate the existence of a lower critical current in contrast to the spin torque driven nanopillar.  

Additionally, the fact that the frequency is proportional to the nanocontact current provides an 

effective external control of the oscillator frequency. 

  Since vortex formation and gyrotropic motion driven by spin torque are possible in both 

nanopillars and nanocontacts, it is instructive to compare these two systems and notice 

similarities and differences. Both require a gyroforce and a restoring force where the gyroforce is 

independent of the system parameters and only dependent on the vortex structure. However, the 

form of the restoring force has a different functional form depending on the confining potential: 

For the case of the circular disk the magnetostatic energy minimum is located at the disk center 

with the usual harmonic oscillator displacement dependence. The vortex formed at a nanocontact 

is confined by the Oersted field with the minimum energy at the nanocontact center, but the 

dependence on vortex displacement is linear. This difference in the confining potential leads to 

the differences in the calculated orbit parameters in these systems, namely the existence of a 

critical current with a current-dependent orbit radius [10] in the nanopillar, and in the 

nanocontact an orbit radius independent of the current without a critical current [12]. The fact 

that the orbit radius is independent of nanocontact current implies that the vortex-based 

nanocontact oscillator has infinite agility [13], or an abrupt current change can result in an abrupt 

frequency change. For all previous theoretical models the magnetostatic energy has not been 

considered in nanocontact systems on ferromagnetic thin films owing to the assumption that the 

vortex is not confined by edges. 
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In this article the effect of  magnetostatic energy from a film edge on nanocontact vortex 

dynamics is investigated theoretically. The source of magnetostatic energy is an edge of a semi-

infinite thin film with the nanocontact placed near the film edge, and the effect of the edge on the 

current-dependent frequency is investigated. It is also shown that an edge will result in the 

existence of a lower critical current below which gyrotropic motion about the nanocontact will 

no longer be sustained. In previous work for the case of the disk, the magnetostatic energy is 

minimized through elimination of magnetostatic surface charge at the disk edge, which is 

accomplished by requiring zero magnetization normal to the edge. For motion of a vortex off the 

disk center the image charge ansatz [6] is used to ensure zero edge charge at the expense of 

volume magnetostatic charge resulting in a quadratic restoring potential, 22
YXW

MS
+!  where 

X and Y  are the coordinates representing vortex core displacement from the disk center. A 

similar method is used here for the nanocontact on a film with the nanocontact close (1000-3000 

nm) to the film edge. Complex variable methods [14] are used to obtain a magnetization ansatz 

having zero edge charge, which is used to numerically calculate both the magnetostatic and 

Oersted energies for the vortex as a function of its position in the film. Next a Thiele equation 

containing damping and spin-polarized current forces is solved to obtain vortex core gyrotropic 

orbits and frequencies about the nanocontact in the free-layer. It is noticed that edge 

magnetostatic effects will repel the vortex from the edge, which combines with the Oersted field 

tending to attract the vortex to the nanocontact. The net effects on vortex dynamics are shown to 

be an acceleration of the vortex core and distortion of the orbit shape corresponding to an 

increase in eccentricity of the orbit. These effects lower the orbital frequency and provide the 

mechanism for the existence of a lower critical current where the vortex will become fixed at an 

equilibrium position not necessarily at the nanocontact center. 
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Dynamics Equation 

 It is convenient to use a collective variable approach to describe the motion of a vortex 

driven by spin torque, where   

! 

r 
X 

v
= (X(t),Y (t))  is the time-dependent location of the vortex core 

in the upper half xy plane of the free layer. The normalized magnetization in the free layer is 

given by ( )
zyxs mmmMM ,,=

r
 where 

s
M  is the saturation magnetization. Assuming that the 

time dependence of the magnetization is a result of vortex motion, the normalized components 

can be expressed as ( ) ( )( )ztYytXxmm xx ,, !!=  with a similar expression for the y-component. 

Also it is assumed that the film thickness is very small compared to other dimensions so motion 

will be confined to the xy plane and the magnetization is uniform in the  z-direction. Then the 

Landau-Lifshitz-Gilbert equation with spin torque can be expressed as a Thiele [15, 16] equation 

 ( )
STv

v

v

v
FXD

X

XW
XG

r&r
r

r

&rr
+!=

"

"
+# ,     (1) 

where !"µ zLMG
s
ˆ2

0
=

r
 is the gyrovector containing the free layer thickness, L and the 

gyromagnetic ratio, ! . The energy W contains conservative contributions such as the 

magnetostatic energy and the Oersted energy of the vortex in the magnetic field from the 

nanocontact current. Nonconservative forces are on the right hand side, which include the 

damping and spin torque forces. 

 The key point of this article is the calculation of the Oersted and magnetostatic energies 

by selection of an appropriate magnetization ansatz to take into account the edge effects. 

Recently Metlov [14] has developed a technique to obtain a magnetization structure that will 

minimize various energies sorted by order of decreasing importance. This technique begins with 

the normalized magnetization expressed as a stereographic projection, 
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where iyxz +=  and the bar indicates complex conjugation and the complex function, ( )zzw ,  is 

chosen to minimize the energy. In nanoscale systems exchange is typically the most important 

term and isotropic exchange is minimized by the choice of any analytic function. In particular, 

here we are interested in vortices having a meron [17] structure further restricting the function to 

the form, ( ) ( ) ( ) ( )zfzfzfzzw =, , where ( )zf  is an arbitrary analytic function. Notice that 

0=
z

m  everywhere, so the meron ansatz will be a very good representation of the actual vortex 

outside of the vortex core, which is very small (the order of 5-10 nm for permalloy) compared to 

all other length parameters. Indeed, the expression for the gyrovector in Eq. (1) is obtained 

through the assumption that the vortex core is a delta-function. Since the exchange energy is 

minimized by this arbitrary function, any variation of the exchange energy resulting from a small 

change in the vortex core position is negligible compared to other contributions considered in the 

following. Next in order of importance is the magnetostatic energy, which can originate from 

both edge and volume magnetostatic charge. It has been shown [6] that elimination of the edge 

magnetostatic charge at the expense of volume magnetostatic charge agrees very well with 

micromagnetic calculations applied to the circular disk. In principle, magnetostatic edge charge 

can be zeroed [14] for a general shape nanoparticle through a series of conformal mappings to 

the desired final shape. However, for the particular case of the single vortex in the semi-infinite 

plane, the function resulting in zero edge charge on the x-axis ( 0=y ) has the simple form 

 

! 

f z,z ( ) = Z " z( ) Z " z( ),     (3) 

where 

! 

Z = X + iY  is the complex position of the vortex core. This ansatz results in a deformed 

vortex with a corresponding increase in volume magnetostatic charge (  

! 

r 
" #

r 
m ) so it is necessary to 
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calculate this contribution to the magnetostatic energy as well as the Oersted energy from the 

nanocontact current using this magnetization ansatz.  

All terms in the Thiele equation are obtained using Eqs. (2, 3) with the form of the vortex 

and the coordinate system illustrated in Fig. 1, showing the vortex structure with its center on the 

y-axis and zero normal magnetization on the x-axis. In Fig. 1 the edge of the film is defined by 

the x-axis and later when the  nanocontact is included, it will be on the y-axis at coordinate   

! 

Y
0
. 

Notice here the definite distortion of the vortex structure due to elimination of the magnetostatic 

edge charge. The energy and additional coefficients in Eq. (1) are evaluated by integration over 

the upper half plane, and since Eq. (3) does not contain the core structure. Therefore, all integrals 

used to calculate terms of Eq. (1) are evaluated with the small vortex core region neglected, 

which simplifies the numerical integration with a negligible effect on the integral value for the 

length parameters considered here.    

 First the parameters in the nonconservative forces are determined. The simplest form for 

the Gilbert damping coefficient [18] is  

 
  

! 

D ="
µ
0
Ms

#
L

r 
$ %( )

2

dxdy&& ,       (4) 

where 01.0!" , ( ) ( )
xy

mmyx
1

tan,
!="  is the azimuthal angle of the magnetization from Eqs. 

(2, 3), and the integral is over the rectangular region, 

! 

"R # x # R  and 

! 

0 " y " R with fixed 

boundary  conditions on the x-axis and free boundary conditions at 

! 

y = R  and 

! 

x = ±R .  For the 

single vortex in a circular disk this term has a ( )
0

ln lR
D

 dependence with the 
0
l  cut-off which is 

typically the vortex core radius. Using the magnetization ansatz the integral in Eq. (4) cannot be 

done analytically, but numerical evaluation of the integral in Eq. (4) indicates that it can be 

approximated by the function ( )YRln08.328+ , agreeing with the numerical integration to 
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within a few percent for parameters considered here. This results in a simple Y-dependent 

expression for D to be used in the solution of the Thiele equation.  

 To obtain the force on the vortex from spin torque, a detailed picture of the electron 

transport is required.  In earlier analytic work [12] it was assumed that the nanocontact current 

was perpendicular to the fixed and free layers. However, more recent [19] numerical current 

density calculations have shown that the electron flow is mainly perpendicular to the nanocontact 

plane (CPP) in the nanocontact itself, and mostly in-plane (CIP) in the layers. To proceed with 

analytical calculations it is necessary to assume an idealized model representing the current, 

which is illustrated in Fig. 2 where the arrows represent a simplified electron flow. Within the 

nanocontact probe, the current, 
CPP
I , is perpendicular to the plane in a cylinder of radius, 

0
r . 

Where the nanocontact probe connects to the film it is assumed that the electron flow goes from 

CPP to CIP in the fixed and free layers. 

The presence of the edge lowers the symmetry of this system, which will also have an 

effect on the currents as well as the Oersted field about the nanocontact and the magnitude of the 

spin torque force. Recent simulations [20] have shown that both CIP and CPP distributions 

depend on the structure of the nanocontact layers as well as the nanocontact-edge separation, 
0
Y . 

For the CPP case it was found that this component of the current is confined mainly to the inside 

of the nanocontact and it decreases very rapidly outside of the nanocontact edge. On the other 

hand, the  CIP is more strongly modified from cylindrical symmetry owing to the edge, and it 

was shown [20] that the  current density has the form, jjj cyl !+=  where cylj  is the symmetric 

current density, j!  is the maximum deviation from cylindrical symmetry given by 
0
Yrj !" ,  

valid for the case when the vortex center is between the nanocontact position and the edge, and 

r  is the vortex center distance from the nanocontact center. Later it will be shown that the small 
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deviation condition will be well-satisfied so it will be appropriate to use the cylindrical 

approximation.  

It has recently been shown [21] that the dominant contribution to spin torque is the in-

plane current. For this case, the spin-torque term [22] in the Landau-Lifshitz equation is 

  

! 

"
ST

=
r 
u #

r 
$ ( )

r 
m , where ur  is the in-plane spin current density. When this is converted to the spin 

torque force in the Thiele equation one has the following integral to evaluate 

 ( )! "#"#$= rdu
M

F
s

ST

30
sin

rrrr
%&%

'

µ ,    (5) 

where the integral is over the system volume. For the case of the vortex structure of Fig. 1 this 

can be integrated by assuming that the vortex core is a  ! -function core  and changes in ur  

across the core can be neglected. This gives the simple expression for the spin torque force 

 ( )
vST
RuGF
rrrr

!= ,       (6) 

depending on the separation between the nanocontact center and the vortex core, 

( )2
0

2
YYXR

v
!+= . When the cylindrical symmetry approximation is valid the spin current 

density in the free layer is 

 ( )rrj
Me

Pu
s

ˆ
2

0
µ

!hr
= ,       (7) 

in the radial ( r̂ ) direction relative to the nanocontact center, where ( )2
0

2
Yyxr !+= , e is the 

electron charge, !  is the gyromagnetic constant of the free layer and P is a polarization 

efficiency. Referring to Fig. 2 the current density is assumed to have the radial form, 

 ( )
!
"
#

>

<
=

00

00

0
2

ˆ

rrrr

rrrr

Lr

rI
rj CIP

$

r
.      (8)   
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This current density gives the spin torque force 

 
( )

!" ˆ
2

0

2
YYX

I
GF

CIP

ST

#+
=

r
      (9) 

in the azimuthal direction ( !̂ ) relative to the nanocontact center, where LMe
s0

4 µ!"# h= . 

Notice that the force in Eq. (9) only depends on the coordinates of the vortex center, so if the 

vortex center remains far from the film edge, the radial symmetry approximation will be valid. 

According to the simulations in Ref. [20] the deviation from cylindrical symmetry will approach 

about 10% closer to the edge. Later when vortex orbits are calculated it will be noticed that there 

is a current range where the vortex core remains far from the edge so the cylindrical symmetry of 

the current density will remain a good approximation. In the following the coordinates (x, y) and 

(X, Y) are defined according to the axes of Fig. 1. 

 Energy Calculation 

 Next the conservative contributions to the Oersted and magnetostatic energies are 

calculated, where anisotropy from the effect of the edge on the vortex structure is important. The 

Oersted energy is obtained for the nanocontact at 
0
Y  on the y-axis as in Fig. 1, which involves 

the calculation of the Zeeman energy for the vortex in the Oersted field. For the simplified 

nanocontact structure of Fig. 2 it is assumed that the Oersted field in the free layer is obtained 

from the Biot-Savart  law applied to a semi-infinite straight wire, rIB
CPP

!µ 4
0

= outside of the 

nanocontact and 2

00
rrIB

CPP
µ=  inside the nanocontact, where r  is the distance from the 

nanocontact center. For the simplest case when asymmetric edge effects are not taken into 

account [12] this energy is a linear function ( ( )2
0

2
YYXW

Oe
!+=" ) of the vortex core-

nanocontact separation and it has azimuthal symmetry about the nanocontact. Even for this 
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simplest case the value of !  must be obtained by numerical integration. For the geometry of Fig. 

1 (the electron flow is in the   

! 

" ˆ z  direction) the Oersted energy is 

 
( )

( )! "+

+"
= dxdy

Yyx

xmyYmLIM
W

yxCPPs

Oe 2

0

2

00

4#

µ
,   (10) 

where the integration is over the free layer in the upper half plane. Evaluation of these types of 

integrals for a vortex magnetization distribution is typically done neglecting the small out-of-

plane core. As long as the core is much smaller than the vortex size (
0
Y  or R) the core 

contribution will be negligible. Numerical integration of Eq. (10) over the region 

! 

"R # x # R  and 

! 

0 " y " R also exhibits an approximate linear dependence relative to the vortex core-nanocontact 

displacement, ( )2
0

2
YYXR

V
!+= , with a quadratic correction. To better illustrate the 

difference between the vortex positions, 
0
YY <  and 

0
YY > , the Oersted energy density, 

! 

u
Oe

=W
Oe
V is calculated,  where 2

2LRV =  is the volume of the free layer. It can be seen that 

the Oersted energy density is proportional to 22

0
RRM

Bs
µ , where 

! 

µ
0
M

s

2  has units of energy 

density, and the result is linearly proportional to 
BsCPP
RMI !  which is the length scale over 

which the Oersted field is significant, measured from the nanocontact center. For the vortex 

center confined to the y-axis, Fig. 3a clearly illustrates the approximate linear dependence of  

Oe
u  for 

0
YY >  and the more pronounced quadratic dependence for 

0
YY < .  The integrations 

over 

! 

x  and 

! 

y  out to the size parameter 

! 

R cause 

! 

u
Oe

 to scale with 

! 

1 R . As a result, the Oersted 

energy density is proportional to RMI
sCPP

. To show results valid for any current value, the 

Oersted energy density divided by Oersted length 

! 

R
B
 and multiplied by R  is shown in Fig. 3b. 

These two figures indicate that 
Oe
u  is proportional to RR

B
.  However, as noticed in Fig. 3a,b 

there is asymmetry in the azimuthal direction relative to the nanocontact center. Numerical 
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evaluation of the integral in Eq. (10) with the vortex core off of the y-axis indicates that a very 

good approximation for the Oersted energy is 

 ( ) ( )[ ]20
sin1sin

4
VVVV

CPPs

Oe
RR

LIM
W !"!##

$

µ
%%&+= ,  (11) 

where  ( )[ ]
VV
RYY

0

1
sin != !"  is the azimuthal coordinate of the vortex core relative to the 

nanocontact. Parameter values obtained numerically are shown in Fig. 4 where it is noticed that 

the linear parameters are weak functions of 
0
Y . 

The magnetostatic energy is obtained from the magnetostatic field expressed as a partial 

derivative of the magnetostatic potential, 

 

  

! 

" =
#Ms

4$

r 
% &

r 
m d ' x d ' y d ' z 

x # ' x ( )
2

+ y # ' y ( )
2

+ z # ' z ( )
2

( .     (12) 

First the integration over z !  can be done assuming that 0!z  for the free layer, and next the 

partial derivative gives the magnetostatic field in the x-direction, 

 

  

! 

Hx = "#x$ = "
MsL

4%

x " & x ( )
r 
' (

r 
m & x , & y ( )d & x d & y 

r 
r " & 

r 
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2 r 
r " & 

r 
r ( )

2
+ L

2
4

) ,    (13) 

where   

! 

(
r 
r "

r 
# r )
2

= (x " # x )
2

+ (y " # y )
2, with a similar expression for 

! 

Hy = "#y$. Using this 

magnetostatic field and the normalized magnetization   

! 

r 
m , the integral giving the magnetostatic 

energy becomes another two-dimensional integral, and in general the magnetostatic energy is 

 
  

! 

WMS =
"µ

0
MSL

2
mxHx + myHy( )d2

r 
r # ,    (14) 

 
containing an additional factor of L from the integration over z.  Notice that Eq. (14) leads to a 

four-dimensional integral when combined with Eq. (13) and it is seen that 

! 

W
MS

 should scale with 

! 

M
s

2
L
2. For the much simpler case of a vortex in a circular disk, three of these integrations can be 
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done analytically in terms of elliptic integrals with a single numerical integration remaining. 

Owing to this simplification in the disk structure it is possible to obtain the magnetostatic energy 

in the harmonic oscillator [6] form, 

! 

W
MS

= k(X
2

+Y
2
) 2 where 

D
RLk

2
15.0=  for a disk of 

radius, 
D
R  with the vortex position measured relative to the disk center. However, for the lower 

symmetry magnetization of Eqs. (2, 3), the four-dimensional integral must be done numerically 

and the results do not have a simple dependence on the system geometry. Integration at fixed 

system size 5
10=R nm indicates that the magnetostatic energy is indeed proportional to 2

L  and 

integration for a fixed 2=L  nm for various values of R  indicates that the magnetostatic energy 

is proportional to the system size, R . The magnetostatic energy density, 

! 

u
MS

=W
MS

V , can also 

be presented as a curve independent of the system size for the free layer thickness, 2=L  nm as 

shown in Fig. 5. Moreover, it is remarked that this graph is well-approximated by the equation 

having a simple RY  dependence, and since the energy density is proportional to R1 , the 

magnetostatic energy is approximately, 

 
( ) !

!
"

#
$
$
%

&

+
+'=

2

22

0

1

04.1
339.

RY
RLMW

sMS
µ     (15)  

as a function of the vortex coordinate, Y . In the following 2=L  nm and 5
10=R  nm, so this 

large value of R  will ensure that the vortex center will be far from the free boundary and 
MS

W  

will also be independent of X . Notice that the fixed edge at 0=y  tends to repel the vortex 

owing to the increased volume magnetostatic charge as the vortex approaches the edge. 

 Finally, the Oersted and magnetostatic energies are combined to give 
  

! 

W

r 
X 

v( )  and the 

conservative forces in Eq. (1). Notice that the Oersted force will tend to attract the vortex center 

to the nanocontact and the magnetostatic force will repel the vortex from the edge, so the vortex 
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equilibrium position in the absence of spin torque will tend to be on the y-axis with 
0
YY > . For a 

large enough current it is expected that the vortex will remain confined to an orbit about the 

nanocontact when the energy added by spin torque compensates energy loss from damping. 

However, in contrast to the theoretical results applied to the symmetric nanocontact film, there 

will be a critical current below which the vortex will remain fixed at the equilibrium position 

outside of the nanocontact. This is considered in the next section regarding vortex dynamics 

forced by spin torque. 

Solution of the Thiele Equation 

 Next Eq. (1) is solved numerically using the approximate functional forms for  damping 

and energy to obtain critical currents for vortex orbital motion as well as the current-dependent 

frequencies and orbits. Since 2

0
1 r!" it is noticed that the spin torque term is independent of the 

nanocontact radius, but there is a small effect from 
0
r  resulting from the integration to obtain the 

Oersted energy. In the following the parameters applicable to permalloy are used, 1
0

=
s

Mµ T, 

302 =!
s

M GHz, 2.0=P  and 01.0=!  for a free layer thickness, 2=L  nm. Referring to Fig. 2, 

the nanocontact 
CPP
I  splits into in-plane components in both the fixed and free layers and the 

actual magnitudes of these components depend on the nanocontact structure, which is not 

possible to calculate analytically. However, when 
CIP
I  represents only the current in the free 

layer it is obvious that 
CIPCPP
II >  with the actual difference dependent on the nanocontact as 

well as the structure of the various layers. For the following calculations it is assumed that 

2
CPPCIP
II = , corresponding to equal free and fixed layer thickness.  

 Recall that for the disk-shaped nanopillar there is a critical current below which the 

vortex core will remains at the disk center. A similar critical current, 
c
I  is shown to exist by 
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numerical solution of Eq. (1) using Mathematica. Initially the vortex center is on the y-axis about 

20 nm outside of the nanocontact and after a time of 1000 ns the vortex center either goes to a 

fixed point outside of the nanocontact or defines a stable elliptical orbit about the nanocontact. 

First, a static solution with 0=X&  and 0=Y&  at low current values is obtained, where the x and y-

components of the conservative and spin torque forces balance. These results are presented in 

Fig. 6 for the nanocontact at 300
0
=Y  nm, with the solid curve representing the y component of 

the vortex center (

! 

Y ) and the dashed curve representing the x component of the vortex center 

(

! 

X ) as functions of  
CPP
I . The x components of the Oersted and spin torque force are both linear 

in current so the x component of the static position is only weakly dependent on current as seen 

on the right hand axis of Fig. 6. However, the y component of these forces contains an additional 

magnetostatic term so owing to the lower symmetry. The static position of the vortex exhibits a 

much stronger dependence on the nanocontact current owing to the fact that the Oersted force 

and the magnetostatic force are in opposite directions for 
0
YY > . 

Above the critical current the vortex core will move in an elliptical orbit about the 

nanocontact and numerical solution gives the orbits and frequencies. These data are obtained for 

nanocontact positions, 
0
Y  at 300, 3000, and 10,000 nm and the frequency versus current data are 

illustrated in Fig. 7. It is remarked that these frequencies are lower than the frequencies observed 

[11, 12] at similar current ranges. This is due to the decreased restoring force because of the 

opposite directions of the Oersted and magnetostatic forces as noted previously.  Notice that for 

each curve the frequency drops to zero as the current decreases to a minimum where the vortex 

becomes fixed, defining the critical current, 
c
I  as a function of 

0
Y  shown in the inset graph of 

Fig. 7. It is also remarked there is a definite frequency nonlinearity immediately above 
c
I  and 
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the slope in the linear region at higher current values exhibits a slight dependence on current with 

a slope of 1.10 MHz/mA for 300
0
=Y  nm and a slope of 1.62 MHz/mA for 000,10

0
=Y  nm.  

The origin of this nonlinearity can be better understood by referring to Fig. 8, showing a 

typical orbit for 3000
0
=Y  nm with 8=

CPP
I  mA, a value slightly above the critical current. 

Notice that the closest approach of the vortex center to the nanocontact is at a value of 
0min
YY <  

and the furthest distance satisfies 
0max
YY > , also because of damping the orbit is tilted relative to 

the y axis. Next let us consider the actual distance of the vortex center from the nanocontact, 
V
R , 

where the maximum and minimum values versus current are plotted in Fig. 9 for 300
0
=Y nm. 

The solid curves representing these values indicate that the vortex center approximately follows 

an elliptic orbit with the nanocontact at one focal point with the eccentricity increasing as the 

current approaches 
c
I . Using the Kepler’s second law analogy it is expected that the vortex 

velocity will decrease as 
V
R  decreases and the dashed curves show that this is indeed the case. 

Owing to the high eccentricity of the orbit and the corresponding decrease of vortex velocity 

there is a nonlinearity in the frequency versus current graph as seen in Fig. 7. Finally, Fig. 9 

indicates that there is a slight eccentricity increase for higher currents; this is probably the result 

of increased edge effects as 
V
R  increases with current. Revisiting the cylindrical symmetry 

current approximation, Fig. 9 shows that the vortex center will always be far from the edge, or 

( ) 1
00
<<! YYY  so there will always be a current range above 

c
I  where j!  is small. For the 

smallest value of 300
0
=Y nm this approximation is no longer valid as the current approaches 

c
I ; however, in the range 000,10300

0
<< Y nm the cylindrical symmetry approximation is valid 

for all current values. 

Conclusion 
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In summary, the effect of an edge on the dynamics of a vortex formed at a nanocontact on 

a thin film is investigated with magnetostatic effects taken into account. The existence of the 

edge and a corresponding elimination of edge magnetostatic charge results in an anisotropy of 

the vortex structure relative to the nanocontact. This effect gives a significant anisotropy to the 

Oersted energy, which is the source of the restoring force on the vortex in a typical nanocontact 

system. Since the edge has an effect on the vortex structure, there is also a nonzero volume 

magnetostatic charge, which results in a repelling magnetostatic force on the vortex from the 

edge. The force from spin torque in the azimuthal direction relative to the nanocontact drives the 

vortex core in its orbit. As is also the case for the nanopillar, there is a critical current above 

which the vortex core will remain in a stable orbit about the nanopillar, but below the critical 

current the spin torque, Oersted, and magnetostatic forces combine to move the vortex to an 

equilibrium position off of the nanocontact center. Above the critical current the orbit has an 

approximate elliptical shape of high eccentricity immediately above the critical current and an 

almost circular shape at higher current values.  

In general, it is remarked that the presence of an edge close to the nanocontact will 

significantly modify the orbit shape from an approximate circle to a high eccentricity ellipse for 

nanocontact current values approaching the critical current. Also if the edge is at a sufficient 

distance from the nanocontact, resulting in a low enough critical current, then a slowing of the 

vortex core in its orbit will result in a nonlinear dependence of orbital frequency on nanocontact 

current. 
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Fig.1. Vortex structure specified by Eqs. (2, 3) with the vortex core on the y-axis. The x-axis is 
the film edge and the nanocontact will be confined to the y-axis in the following. 
 
 

x 

y 
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Fig. 2. Simplified nanocontact structure where green indicates a conductor, white indicates a 
ferromagnetic material such as permalloy and blue indicates a spacer. 

CPP
I  is the current 

indicated by the arrow above the layers and 
CIP
I  is the free layer current.

Fixed Layer   

Free Layer  ICIP 

ICPP 
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a) 
 

  
b) 
 
Fig. 3. Oersted energy density for a vortex at   

! 

r 
X 

v
= (0,Y )  near a nanocontact on the y-axis at 

! 

(0,Y
0
) .  In a) the Oersted energy density divided by Oersted length 

! 

R
B

= I M
s
 is shown for a 

nanocontact at 

! 

Y
0

= 3.0µm . In b) results on different sized systems scaled by system size 

! 

R all 
fall on the same curve, showing that the Oersted energy density is proportional to 

! 

R
B
R. 
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Fig. 4. Parameter values in Eq. (11) versus 

0
Y . Solid curves represent !  and !" , and the 

dashed curve represents ! . The !  parameters are dimensionless. 
 

 
Fig. 5. Magnetostatic energy density 

! 

u
MS

=W
MS

V  for a vortex at position   

! 

r 
X 

v
= (0,Y ) , in systems 

of the same thickness 

! 

L  but different lateral size parameters 

! 

R. The independence of the results 
on 

! 

R shows that 

! 

u
MS
"1 R  and leads to 

! 

W
MS

 having the form given in Eq. (15).  
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Fig. 6. Static vortex core position versus nanocontact current for 

c
II <  with the nanocontact at 

3000
0
=Y  nm. Solid curve, Y; dashed curve, X. 

 
 
 
 

 
Fig. 7. Gyrotropic frequency versus nanocontact current for three nanocontact positions. Solid 
0
Y =10,000 nm, dashed 

0
Y =3000 nm, and short dashed 

0
Y =300 nm. Inset shows the critical 

current versus 
0
Y . 
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Fig. 8. Vortex orbit with 3000

0
=Y  nm and 8=

CPP
I  mA. The scales on the axes are in units of 

nm and the circle indicates the nanocontact position. 
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Fig. 9. Solid curves, 

min
R  and 

max
R . Dashed curves, maximum and minimum velocities at 

closest and furthest distances from the nanocontact, respectively. 
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