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The resonant optical modes of a high permittivity dielectric prism with an equilateral triangular
cross section are discussed. Eigenmode solutions of the scalar Helmholtz equation with Dirichlet
boundary conditions, appropriate to a conducting boundary, are applied for this purpose. The par-
ticular plane wave components present in these modes are analyzed for their total internal reflection
behavior and implied mode confinement when the conducting boundary is replaced by a sharp di-
electric mismatch. Improvement in TIR confinement by adjusting the longitudinal wavevector kz

is also discussed. For two-dimensional electromagnetic solutions (kz = 0), TE polarization leads to
longer lifetime than TM polarization, assuming that escape of evanescent boundary waves at the
corners is the primary decay process.
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I. INTRODUCTION

Micro-sized dielectric cavities are becoming increas-
ingly important, due to their applications especially
in microlasers and resonators with various geometries,
including disks,[1] triangles,[2] squares,[3, 4, 5] and
hexagons.[6, 7] Materials where the two-dimensional
cross-section controls the properties include, for exam-
ple, various cleaved semiconductor structures[2] as well
as zeolite ALPO4-5 crystals.[6] Even more interesting
are lasing semiconductor pyramids that grow by natu-
ral processes.[8, 9, 10]

An understanding of the geometry dependence of the
total internal reflection (TIR) that produces resonant
modes can lead to improvements in designs of optical
devices. For the reduced two-dimensional electrodynam-
ics (fields independent of a z-coordinate along an axis
of symmetry), the boundary element method[11] is very
powerful for determining the scattering fields in TM or
TE polarizations. Alternatively, here we present a sim-
pler analysis of the resonant modes based only on an
analysis of the conditions needed for TIR within a dielec-
tric cavity. The calculation is approximate but simple,
especially for a geometry where the related Helmholtz
equation has an exact analytic solution.

Here we consider the modes in equilateral triangular-
based prisms and their two-dimensional (2D) analogs; the
triangular system is chosen here for its interesting sym-
metries and known analytic Helmholtz solution.[12, 13,
14, 15, 16, 17] As a first approximation, a 2D dielectric
system with Dirichlet boundary conditions (DBC) is con-
sidered, taking the fields equal to zero at the boundary,
equivalent to a metallic or conducting boundary. The
exact analytic solutions for this 2D triangular system are
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reviewed; each mode is a superposition of only six plane-
wave components. We describe how the mode informa-
tion is useful for determining which modes will be con-
fined if the dielectric is surrounded by a lower index di-
electric (or vacuum), rather than a perfect conductor, us-
ing the conditions for TIR. A careful analysis shows that
when a mode is strongly confined in the cavity by TIR,
Dirichlet boundary conditions apply (approximately) to
the relevant Helmholtz equation for both the TM and
TE polarizations. The simple plane wave components of
each mode can be analyzed in terms of Maxwell’s equa-
tions and the related Fresnel amplitude ratios, which are
slightly different for TM and TE polarizations.[18] These
differences are shown to imply longer estimated lifetimes
for the TE modes, enhanced by a factor of the order of
the squared index ratio (n/n′)2, when compared to the
lifetime of the corresponding TM mode.

Obviously some error is made compared to employing
a more technically complete solution of Maxwell’s equa-
tions such as boundary element methods;[11] the fields
discussed here for the dielectric mismatch boundary are
not close to the true fields unless the mismatch is very
large. This approach, however, should approximately de-
termine the symmetries of the confined modes and give
reasonable estimates for the dielectric mismatch needed
for their confinements. The improvement of confinement
for finite–height prisms with the same cross sections, al-
lowing for nonzero longitudinal wavevector kz , is also dis-
cussed.

II. SIMPLIFIED QUASI-TWO-DIMENSIONAL

HELMHOLTZ PROBLEMS

Within a cavity with electric permittivity ε and mag-
netic permeability µ, we consider the solutions of a scalar
wave equation for any component ψ of the electric or
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magnetic field,

∇2ψ − εµ

c2
∂2

∂t2
ψ = 0, (1)

where c is the speed of light in vacuum and t is time.
The cavity shape being considered is a prism with an
equilateral triangular cross-section of edge a in the xy-
plane; the height is h along the z axis. Ultimately, we
want to discuss which modes will be confined in the cavity
of index of refraction n =

√
εµ when it is surrounded by

a uniform medium of lower index of refraction n
′ =

√
ε′µ′

(for example, vacuum).
We first analyze the modes, assuming the fields go to

zero at the cavity walls, using Dirichlet boundary condi-
tions (DBC), which corresponds to perfectly conducting
walls, or a mirrored cavity. The range of applicability of
these boundary conditions for a mode that is confined by
TIR caused by an index mismatch, rather than reflect-
ing boundaries, is discussed subsequently. A solution at
frequency Ω is sought, with e−iΩt time dependence, cor-
responding to three-dimensional (3D) wavevectors with
magnitude

K =
Ω

c∗
, c∗ =

c√
εµ

; (2)

the speed of light in the cavity medium is denoted as c∗.
Then we are solving an eigenvalue problem (Helmholtz
equation) within the given geometry,

∇2ψ = −K2ψ. (3)

In the general case, we can consider that we are look-
ing for a superposition of plane waves in the form

ei( ~K·~r−Ωt), all of which satisfy (3), and with the cor-
rect linear combination to satisfy the required boundary
conditions. These different components have the same
squared wavevector, although they can possess different
directions of propagation and different amplitudes. The
symmetry of the situation, however, requires only some
reduced set of possible wavevectors for triangular-based
prisms.

A wavevector is composed from a z-component, kz,
along the vertical or longitudinal axis, and the remaining
2D components in the xy plane, k2 ≡ k2

x +k2
y, so that we

decompose the squared magnitude as

K2 = k2
z + k2. (4)

Then the frequency is partitioned accordingly,

Ω2 = ω2
z + ω2, (5)

where the xy frequency ω and wavevector k are related
by an equation analogous to (2), as k = ω/c∗. The re-
maining part, ωz, is determined for a prism of height h,
assuming some ψ ∝ sin(kzz) longitudinal dependence,
by

kz =
lπ

h
, l = 1, 2, 3... (6)

which automatically enforces DBC at the ends of the
prism. As a result, for the prism geometry, we only solve
the separated Helmholtz equation for two dimensions,

∇2
xyψ = −k2ψ. (7)

A. 2D Electromagnetics at a boundary between

media

For 2D E&M problems, which are defined by no depen-
dence of the fields along the prism axis, one takes kz = 0,
ignoring any boundary conditions at the prism ends
(which can be considered at infinity). Then Maxwell’s
equations and their associated physical boundary condi-
tions show that one need only consider transverse mag-
netic (TM) and transverse electric (TE) polarizations of
the fields. (Presence of nonzero kz for a dielectric waveg-
uide surrounded by a different dielectric medium, in gen-
eral, does not lead to separated TM and TE modes, see
Ref. 18.) It is well-known that in a conducting waveguide
or resonator, at the boundaries of the 2D cross-section,
the field ψ = Ez for TM modes satisfies DBC, and the
field ψ = Bz for TE modes satisfies Neumann bound-
ary conditions (NBC). Alternatively, if the medium is
surrounded simply by a different (nonconducting) dielec-
tric medium, there still are TM or TE polarizations, but,
strictly speaking, these would satisfy the more involved
boundary conditions of Maxwell’s equations, rather than
the oversimplified DBC or NBC. If the fields are strongly
undergoing TIR (incident angle well beyond the critical
angle), however, both polarizations are shown here to
satisfy DBC, to a certain limited extent. This can be
seen by examining the actual vector fields present under
the reflection and refraction at a boundary between two
media, for the two possible polarizations.

Consider a planar boundary between two media, where
the boundary defines the xz-plane. The region y < 0 is
occupied by a medium of index n =

√
εµ, while the re-

gion y > 0 is occupied by a medium of index n
′ =

√
ε′µ′,

with n > n
′. Primes refer to quantities on the refracted

wave side (ultimately, outside the system we are study-
ing). The wavevector magnitudes are k = ω

c

√
εµ and

k′ = ω
c

√
ε′µ′ in the two media. All the waves in this

discussion are assumed to have e−iωt time dependence.

A 2D plane wave ∼ ei(kxx+kyy) with fields ~Ei, ~Bi, propa-

gating in medium n with ~ki = (kx, ky) = k(sin θi, cos θi)
and incident on the boundary, can be polarized in two
ways, which correspond exactly to the TM and TE po-
larizations.

Diagrams of the two possible situations are given, for

example, in Chap. 7 of Ref. 18. For ~Ei perpendicular

to the plane of incidence (xy-plane), ~Ei = Eiẑ, and the
magnetic field will have no z-component anywhere, which
is the same as the TM polarization. On the other hand,

for ~Ei lying within the plane of incidence, ~Bi = Biẑ, and
the electric field has no z-component anywhere, corre-
sponding to the TE polarization. Thus, we can use the
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Fresnel reflection and refraction amplitudes for these two
cases, that result from the actual boundary conditions for
Maxwell’s equations, to investigate the appropriateness
of applying DBC for fields undergoing TIR. Furthermore,
this analysis will be used for determining the properties
of the evanescent refracted wave under TIR; the power
lost in this boundary wave can be expected to play a role
in the lifetime of a resonant mode.

TM polarization: For incident ~Ei = E0
i ẑe

i(kxx+kyy)

perpendicular to the plane of incidence, there is also a

reflected wave ~Er = E0
r ẑe

i(kxx−kyy) with the same polar-
ization, but a different magnitude and phase, depending
on the angle of incidence θi. One can express the reflected
wave amplitude E0

r by the Fresnel formula:

E0
r = E0

i e
−iα, (8a)

e−iα =

√

ε
µ cos θi −

√

ε′

µ′ cos θ′

√

ε
µ cos θi +

√

ε′

µ′ cos θ′
(8b)

Here θ′ is the angle of the refracted wave, obtained from
Snell’s Law, n sin θi = n′ sin θ′, which implies TIR when
θi surpasses the critical angle θc, defined by

sin θc =
n
′

n
. (9)

Under TIR, E0
r has the same magnitude as E0

i , but
is phase shifted by angle α, because the cosine of the
refracted wave becomes pure imaginary:

cos θ′ = iγ, γ =
√

(sin θi/ sin θc)2 − 1. (10)

Then it is useful to express the phase difference between
the incident and reflected waves as

tan
α

2
=

µ

µ′

√

cos2 θc

cos2 θi
− 1 (11)

The linear combination of incident and reflected waves
in medium n is ~E = ~Ei + ~Er = Ez ẑ, having the spatial
variation approaching the boundary (region y < 0),

Ez = Ei + Er = 2E0
i e

−i α
2 eikxx cos

(

kyy +
α

2

)

(12)

Corresponding to this is the associated evanescent wave
in medium n

′ (region y > 0),

E′
z = 2E0

i e
−i α

2 eikxxe−k′γy, (13)

where kx = k′x due to Snell’s Law. Inspection of Eq.
(12) shows that the Ez field on the incident side acquires
a node at the boundary y = 0 and satisfies Dirichlet
BC only when the phase shift attains the value α = π.
According to (11), this occurs only in the limit θi →
90◦, i.e., extreme grazing incidence. Alternatively, at the

threshold for TIR (θ = θc), (11) gives α = 0, whereby
(12) indicates that the Ez field now will peak at y = 0
and satisfies a Neumann BC.

Seeing that the BC on Ez ranges between the two ex-
tremes of DBC and NBC, clearly neither boundary con-
dition is fully applicable to the TIR regime. However,
it suggests that one should use NBC for finding the TIR
threshold conditions, and DBC to determine the field dis-
tributions at large enough index mismatch. One can get
some indication of the crossover to DBC-like behavior by
locating the incident angle θi = θ̃ where the phase shift
passes π

2 , i.e., when tan α
2 = 1. From (11) one finds

cos θ̃ =
cos θc

√

1 +
(

µ′

µ

)2
. (14)

In the usual practical situation, with µ = µ′ ≈ 1, we have
cos θ̃ = 1√

2
cos θc. For usual optical media with very weak

magnetic properties, one sees that a large index ratio
n/n′ ≈

√

ε/ε′ does not increase the range of applicability
of Dirichlet BC for TM polarization. To give a numerical
example, for a weak index mismatch with sin θc = 1/2,

giving θc = 30◦, the crossover angle is θ̃ = 52.2◦; in
order to reach phase angle α = 0.9π, quite close to DBC,
requires an incident angle θi = 82.2◦. Even for a larger
mismatch sin θc = 1/4, with θc = 14.5◦, one gets only a

slight improvement to θ̃ = 46.8◦, and to get to α = 0.9π
still requires θi = 81.3◦.

The conclusion is that it makes some reasonable sense
to apply NBC to find the limiting conditions for TIR,
but, in general, provided the incident angle is sufficiently
larger than the crossover angle θ̃, an approximate descrip-
tion of the fields on the incident side should be possible
using DBC. The application of DBC to this problem im-
proves with higher index mismatch, but not as strongly
as one would hope, because the phase angle does not de-
pend on the dielectric permittivities for this polarization.

TE polarization: The discussion is similar, but now

the magnetic field ~B is polarized in the ẑ direction ev-
erywhere, and controls the other fields, according to re-

lations ~B =
√
εµ k̂ × ~E for each plane wave, and am-

plitude relations B =
√
εµ E. Taking incident wave

~Bi = B0
i ẑe

i(kxx+kyy), with electric field amplitude E0
i =

B0
i /
√
εµ, there is a reflected wave ~Br = B0

r ẑe
i(kxx−kyy),

with electric field amplitude E0
r = B0

r/
√
εµ. Now the am-

plitude ratio E0
r/E

0
i = e−iα is described by the different

Fresnel formula:

e−iα =

√

ε′

µ′ cos θi −
√

ε
µ cos θ′

√

ε′

µ′ cos θi +
√

ε
µ cos θ′

(15)

Clearly, the same amplitude ratio also applies to B0
r/B

0
i .

The phase difference between the incident and reflected
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waves can be expressed as

tan
α

2
=

ε

ε′

√

cos2 θc

cos2 θi
− 1. (16)

The linear combination of incident and reflected magnetic

waves in medium n is ~B = ~Bi + ~Br = Bz ẑ, and mirrors

the behavior of ~E for the TM problem, having the spatial
variation approaching the boundary,

Bz = Bi +Br = 2B0
i e

−i α
2 eikxx cos

(

kyy +
α

2

)

(17)

The associated evanescent wave in medium n
′ is

B′
z = 2B0

i e
−i α

2 eikxxe−k′γy. (18)

Clearly, the behavior of Bz near the boundary for TE po-
larization is the same as that for Ez near the boundary
for TM polarization. It means that provided the incident
angle is far enough beyond the critical angle, one should
also apply DBC for TE fields; NBC would only be rea-
sonable just beyond the TIR threshold. However, due
to the presence of the permittivity ratio in (16), a large
index mismatch does enhance the applicability of DBC
for TE polarization. The crossover incident angle θ̃ at
which tan α

2 = 1 is now

cos θ̃ =
cos θc

√

1 +
(

ε′

ε

)2
≈ cos θc
√

1 +
(

n
′

n

)4
, (19)

where the latter expression applies when µ ≈ µ′. For
some numerical examples, now the modest index mis-
match with sin θc = 1/2 and θc = 30◦ leads to a very

nearby crossover angle θ̃ = 32.8◦, meaning that the
strong TIR regime and region of adequate applicability
of DBC is very wide. For larger mismatch sin θc = 1/4
with θc = 14.5◦, the DBC regime is even closer to θc, be-
ginning around θ̃ = 14.9◦. Thus, application of Dirichlet
BC to finding the 2D resonant modes for a cavity with
TE field polarization should be very acceptable, even
more so than for TM polarization, except when the mode
has plane wave components extremely close to their TIR
threshold.

Within the limitations indicated in the above analysis,
we continue by discussing the modes in a 2D equilateral
triangle, under the assumption of DBC for either the TM
or TE polarizations.

B. Exact modes for an equilateral triangle with

DBC

The triangular cross section offers an opportunity for
exact solutions to the 2D Helmholtz equation. This
problem has been solved analytically[12, 13, 14, 15] for
both DBC and NBC in several contexts, including quan-
tum billiards problems,[17, 19, 20, 21] quantum dots,[16]

b0

b1b2

x

y

X

Y

L

C

β2π/3−ββ

FIG. 1: Description of the coordinates for a 2D triangular
cavity of edge a. The geometrical center at C, the origin of
the xy-coordinates, is a distance a

2
√

3
above the lower (b0)

edge. The lower left corner at L is the origin of the skew XY -
coordinates. The dashed line demonstrates the reflections of
a ray originating at angle β = 70◦ to the lower edge, requiring
two complete circuits to return to the same angle.

and lasing modes in resonators and mirrored dielectric
cavities.[2, 22] In particular, it is interesting to note that
only the triangles with angle sets π(1

3 ,
1
3 ,

1
3 ), π(1

2 ,
1
4 ,

1
4 ),

and π(1
2 ,

1
3 ,

1
6 ) are classically integrable[20] and have sim-

ple closed form wavefunction solutions derived in various
ways,[13, 14, 21] following the first solution for trian-
gular elastic membranes by Lamé.[12] Here we use the
equilateral triangle of edge length a for its interesting
symmetries and resulting simplifications.

Coordinates are used where the origin is placed at the
geometrical center of the triangle, and the lower edge is
parallel to the x-axis, as shown in Fig. 1. The notation
b0, b1, and b2 is used to denote the lower, upper right,
and upper left boundaries, respectively. This discussion
concerns DBC.

Following Chang et al.,[2] some comments can be made
on the sequence of reflections a plane wave trapped in the
cavity makes, but with a slightly different physical inter-
pretation. A plane wave leaving the lower face (b0) at
angle β to the x-axis sequentially undergoes reflections
at the other two faces, generating plane waves at angles
240◦ − β, β − 120◦, relative to the x-axis. Finally, when
reflected again off the lower face, it comes out at 120◦−β,
which does not match the original wave unless β = 60◦.
However, when allowed to propagate again around the
triangle, the sequence of angles is 120◦ + β, −β, which
then comes out at +β after the reflection off the lower
face. So the wave closes on itself after two full revolu-
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2D Triangular Cavity

Lowest Modes

FIG. 2: Scaled frequencies of some of the lowest possible
modes in a 2D triangular system, as a function of quantum
index m, for indicated n > m. Indices n and m must be
integers of equal parity. c∗ is the light speed in the medium.

tions, no matter what the initial angle. As an example,
the sequence of reflections starting with β = 70◦ from
boundary b0 are shown in Fig. 1. In general, any origi-
nal wave simply generates a set of six symmetry related
waves rotated by ±120◦ and inversions through the y-
axis.

These considerations show that the general solution is
a superposition of six plane waves, which can be obtained
by 120-degree rotations of one partially standing wave.
Consider initially a wavevector with xy Cartesian com-

ponents, ~k = (k1, k2), and defined basic vectors ~k1 = k1x̂,
~k2 = k2ŷ, producing a wavefunction written as

ψ0 = ei~k1·~r sin

[

~k2 · ~r +
k2a

2
√

3

]

(20)

This is a combination of plane waves at two angles β
and −β to the x-axis, where tanβ = k2/k1, and the
combination goes to zero on boundary b0, where y =
− a

2
√

3
; thus it is like a standing wave. By assumption,

we need k2 6= 0 to have a nonzero wavefunction. As
discussed above, when reflected off the triangle faces b1
and b2, this simply produces rotations of ±120◦. If R
is an operator that rotates vectors through +120◦, the
additional waves being generated are

ψ1 = ei(R~k1)·~r sin

[

(R~k2) · ~r +
k2a

2
√

3

]

(21)

ψ2 = ei(R2~k1)·~r sin

[

(R2~k2) · ~r +
k2a

2
√

3

]

(22)

where the rotated vectors are

R~k1 = k1

(

−1

2
x̂+

√
3

2
ŷ

)

R2~k1 = k1

(

−1

2
x̂−

√
3

2
ŷ

)

(23)

R~k2 = k2

(

−
√

3

2
x̂− 1

2
ŷ

)

R2~k2 = k2

(√
3

2
x̂− 1

2
ŷ

)

(24)

By design, these rotated waves satisfy the boundary con-
ditions, ψ1(b1) = 0 and ψ2(b2) = 0.

In order to determine the allowed (k1, k2), one needs
to impose DBC on all three boundaries, for a linear com-
bination with unknown coefficients A0,A1,A2,

ψ = A0ψ0 + A1ψ1 + A2ψ2. (25)

Imposing DBC on all boundaries determines the allowed
wavevector components as

k1 =
2π

3a
m, m = 0, 1, 2... (26)

k2 =
2π

3a

√
3 n, n = 1, 2, 3... (27)

Furthermore, the parity constraint eiπm = eiπn appears;
that is, n and m are either both odd or both even.

The resulting xy frequencies are given by

ω = c∗
√

k2
1 + k2

2 =
c√
εµ

2π

3a

√

m2 + 3n2 (28)

The mode wavefunctions are described completely using
the amplitude relationships that result:

A1 = A0e
i 2π

3
m, A2 = A0e

−i 2π
3

m. (29)

Therefore, solutions are specified by a choice of integers
m and n and the phase of the complex constant A0. In
Fig. 2 the frequencies of the lowest modes are presented,
scaled with the speed of light in the medium, c∗, and ar-
ranged as families for each value of the quantum number
n. This solution is represented in the physically moti-
vated form described by Chang et al.,[2] and is entirely
equivalent to the first solution given by Lame’[12] and
revisited by various authors.[15]

The solutions obtained have obvious symmetry prop-
erties. We can get all the possible eigenfrequencies by
applying the restrictions, 0 ≤ m < n. Choices with
m ≥ n or m < 0 also give allowed frequencies, how-

ever, these only correspond to other ~k rotated by ±120◦
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(a) mode 1

ground state m=0, n=2
ωa/c*=7.2552

(b) mode 4

2nd excited state
(nondegenerate)

m=0, n=4
ωa/c*=14.5104

FIG. 3: Wavefunctions of the two lowest modes with m = 0
in a 2D triangular system: the ground state (a), with n = 2,
and the third excited state (b), with n = 4, at double the fre-
quency of the ground state. Solid/partial shadings represent
positive/negative wavefunction values, whose magnitudes cor-
respond to the radii of the symbols. A grid with N = 40 was
only used to present the diagrams. Grid sites without symbols
have |ψ| < 0.02|ψmax|.

from some original ~k defined with 0 ≤ m < n. For in-

stance, having found ~k = (k1, k2) = 2π
3a (m,

√
3n), values

of ~k′ = (k′1, k
′
2) = 2π

3a (m′,
√

3n′) corresponding to ±120◦

rotations result from

k′1 = k1 cos 120◦ ∓ k2 sin 120◦

k′2 = ±k1 sin 120◦ + k2 cos 120◦ (30)

(a) mode 2

1st excited state
1st wavefunction

m=1, n=3
ωa/c*=11.0825

(b) mode 3

1st excited state
2nd wavefunction

m=1, n=3
ωa/c*=11.0825

FIG. 4: Wavefunctions of the doubly degenerate first excited
state in a 2D triangular system. Two orthogonal sub-states
corresponding to different choices of the phase of ψ are pre-
sented in (a) and (b).

which implies transformation to the new mode indexes,

m′ = −1

2
m∓ 3

2
n

n′ = ±1

2
m− 1

2
n. (31)

As specific examples, the choice (m,n) = (1, 3) gives one
mode, which after rotations by ±120◦ could also be de-
scribed by the integers (m,n) = (4, 2) or by (m,n) =
(5, 1). Note, however, this represents only one mode,
with different choices of the reference edge or triangle
base. We should also note, any mode with m 6= 0 is
doubly degenerate; the change m → −m gives an inde-
pendent mode with the same frequency, which rotates in
the opposite sense around the triangle. A real represen-
tation of the degenerate pairs comes from taking the real
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(a) mode 5

3rd excited state
1st wavefunction

m=2, n=4
ωa/c*=15.1029

(b) mode 6

3rd excited state
2nd wavefunction

m=2, n=4
ωa/c*=15.1029

FIG. 5: Wavefunctions of the doubly degenerate third excited
state in a 2D triangular system. Two orthogonal sub-states
corresponding to different choices of the phase of ψ are pre-
sented in (a) and (b).

and imaginary parts of ψ to form two independent wave-
functions. Different values of the complex constant A0

will produce other choices of the two independent wave-
functions. For m = 0, the wavefunction ψ can be made
pure real; the modes are non-degenerate and n must be
even, since m and n must be of equal parity.

The ground state (Fig. 3a) has (m,n) = (0, 2) and cor-
responding xy frequency, ω = c√

εµ
4π√
3a

. This corresponds

to a wavelength of λ = 2π
k =

√
3a
2 , which is equal to the

height of the triangle. Naively, one might have expected
that a half-wavelength of the lowest mode could have fit
across the triangle, as would occur in simple rectangular
or one-dimensional geometry. Apparently, that choice
would not have the ability to fully satisfy DBC on all
three surfaces.

The wavefunctions of the lowest modes with m = 0
are displayed in Fig. 3. All the modes with m = 0 have
this typical triangular shape, periodically patterned over
the entire system. Wavefunctions of the first two ex-
cited states are presented in Figs. 4 and 5. Each of these
states, having nonzerom, is doubly degenerate, therefore,
there is some arbitrariness in the wavefunction pictures.
Two degenerate wavefunctions were obtained from the
real and imaginary parts of ψ in Eq. (25); an equivalent
degenerate pair can be obtained by changing the complex
constant A0. The degenerate pairs can be shown to be
orthogonal in the usual sense. Wavefunctions for the se-
quence of many of the other lowest modes are displayed at
www.phys.ksu.edu/~wysin/. The modes described here
are the complete set of allowed modes for the triangular
geometry.

C. Equilateral triangle with NBC

Although we do not apply these in this work, it is inter-
esting to note the minor differences in the solutions when
the triangle is solved with Neumann BC.[15] As far as the
changes in the wavefunctions, NBC simply requires the
sine functions in the expressions for ψ0, ψ1, and ψ2, Eqs.
(20), (21), (22), to be replaced by cosine functions. The
expressions (26) and (27) for the allowed wavevectors are
still valid, except that the restriction m < n should be
changed to m ≤ n. So the spectrum is expanded slightly,
there is an entire set of nondegenerate lower modes with
m = n (alternatively with rotated indexes (m, 0)); the
NBC ground state is lower than the DBC ground state.

D. 3D prisms

For a 3D triangular-based prism of height h, and base
edge a, the solutions to the wave equation can be written
as products of an xy-dependent part ψxy and a part ψz

depending only on the vertical coordinate z. The cor-
responding k and kz have already been discussed above.
Solutions can be found combining k and ψxy from the
2D solutions with the kz and ψz discussed above. This
approach would assume DBC over the all surfaces of the
cavity. While the physical situation would not exactly
satisfy the requirements for classification of modes in TM
and TE polarizations, the error in this assumption should
be least at small kz. Thus, it could give some rough idea
about the modification of the confined modes due to the
finite vertical height of the cavity.

III. TIR CONFINEMENT AND THE

RESONANT MODE SPECTRUM

Knowing the eigenmodes of the cavity, various ques-
tions can be addressed and answered based on the struc-
ture of the wavefunctions. The primary question is:
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which modes are confined by TIR (or resonant) when the
previously assumed Dirichlet boundary conditions are re-
placed by an index mismatch at the boundary? As seen
below, some states can never be TIR confined. States
which have the possibility for confinement will be refered
to as TIR states. Related to this is to estimate a decay
time for any of the TIR modes.

As suggested in the Introduction, the mode confine-
ment can be determined approximately by identifying
those modes which completely satisfy the elementary re-
quirements for total internal reflection. We assume that
outside the system boundary a different refractive ma-
terial with relative permeability µ′ and permittivity ε′

(which could be vacuum for greatest simplicity) and in-
dex n

′ =
√
ε′µ′, rather than a conducting boundary. The

wavefunction analysis above describes a mode as a su-
perposition of plane waves with the specified (full 3D)

wavevectors ~K. Each plane wave component can be an-
alyzed to see whether it undergoes TIR at all system
boundaries on which it is incident. If all the plane wave
components of a mode satisfy the TIR requirements, then
the mode is confined; it should correspond to a resonance
of the optical cavity. If any of the plane wave components
do not satisfy TIR, the fields of the mode will quickly leak
out of the cavity and there should be no resonance at that
mode’s frequency (also, without TIR, the assumption of
DBC is completely invalidated). These results clearly de-
pend on the index ratio from inside to outside the cavity,
denoted as

N =
n

n′
=

√
εµ√
ε′µ′ (32)

A plane wave within the cavity with (3D) wavevector
~Ki has an incident angle on one of the boundaries ex-
pressed as

sin θi =
Ki ||
Ki

, (33)

where || indicates the component parallel to the bound-
ary. TIR will take place for this wave provided

sin θi > sin θc =
1

N
. (34)

For 2D geometry, Eqs. (34) is applied directly to 2D

wavevectors, ~Ki = ~ki: one just needs to identify the

parallel component of ~ki relative to a boundary, for each
for each plane wave present in ψ, Eq. (25). The main
difficulty is to satisfy TIR on all boundaries on which
that component is incident.

For 3D prismatic geometry, the wavevector ~Ki includes
a z-component. The net parallel component needed in
(34) can include planar (xy) and vertical (z) contribu-
tions. The addition of a z-component will have the
tendency to raise the energy of any mode, and the net
wavevector magnitude, thereby improving the possibility
for mode confinement.

A. Confinement in 2D triangular systems

For both the TM and TE 2D modes of an equilateral
triangle, we can use the exact solutions in Sec. II B to
investigate whether these can be confined by TIR. Due
to the threefold rotational symmetry through angles of
0◦, 120◦ and −120◦, the TIR condition need only be ap-
plied on one of the boundaries, say, the lower boundary
b0, parallel to the x-axis. The first wave ψ0 is com-
posed of two traveling waves, one incident on b0 and
one reflected from b0; both have wavevectors whose x-
component is k1 = 2π

3am, where m = 0, 1, 2, .... The other
rotated waves ψ1 and ψ2 are composed from traveling
waves whose wavevectors have x-components of magni-
tudes 1

2 (
√

3k2±k1), where k2 = 2π
3a

√
3n with n = 1, 2, 3....

For the allowed modes, m < n, or k1 < k2, which shows
that

k1 <
1

2
(
√

3k2 − k1) ≤
1

2
(
√

3k2 + k1). (35)

The x-component of the ψ0 wave is always the smallest;
this wave has the smallest angle of incidence on b0, so if
it undergoes TIR then so do ψ1 and ψ2, and the mode is
confined. As k1 is the component parallel to boundary
b0 (i.e., ki ||), the condition for TIR confinement of the
mode is

sin θi =
k1

√

k2
1 + k2

2

> sin θc =
1

N
, (36)

or equivalently in terms of quantum numbers m and n,

m

n
>

√

3

N2 − 1
. (37)

This relation contains some interesting features. First,
since all modes have m < n, the LHS is always less than
1, and confinement of modes can only occur for ade-
quately large refractive index ratio, N > 2. For N < 2 all
modes will leak out of the cavity; they cannot be stably
maintained by TIR. Secondly, for any particular value
N > 2, relation (37) determines a critical m/n ratio;
modes whose m/n ratio is below the critical value will
not be stable. As m/n relates to the geometrical struc-
ture of the mode wavefunction, there is a strong relation
between the confined mode structures and the refractive
index. An alternative way to look at this, is that each
particular mode will be confined only if N is greater than
a specific critical value determined by the m/n ratio for
that mode:

N > Nc =

√

3
n2

m2
+ 1. (38)

The relation shows that generally speaking, modes with
smaller n/m are most easily confined; stated otherwise,
the modes where m is closest to n are the ones most
readily confined. On the other hand, all modes with m =
0 leak out, because these have wave components with a
vanishing angle of incidence on the boundaries.
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FIG. 6: TIR mode confinement limits (index ratio N =
p

εµ/ε′µ′) for 2D triangular cavities. Modes are confined
where the m/n ratios (as indicated) lie above the solid curve,
corresponding to TIR on all boundaries [relation (37)]. Inter-
sections on the N-axis give the critical index ratios for each
mode.

Fig. 6 is a kind of phase diagram for mode confinement
by TIR. Some of the modes’ m/n ratios are plotted vs.
refractive index ratio N, together with relation (37). A
particular mode is confined only if its m/n value falls
above the critical curve. In this way one can easily see the
critical refractive indexes for each mode. As mentioned
above, modes where m is close to n require the smallest
refractive index values for confinement.

One more application of these results is shown in
Fig. 7, where the frequency of the lowest confined mode
is plotted versus

√
εµ, with vacuum outside the cavity

(ε′µ′ = 1). The quantum numbers (m,n) for the lowest
confined mode are indicated in each curve segment. The
two different curves correspond to plotting ωa/c (dashed)
and frequency scaled with refractive index, (ωa/c)

√
εµ

(solid). Of course, as
√
εµ approaches the value 2, the

lowest frequency becomes large and the minimizing mode
has m very close to n, with both large. At the opposite
limit of large values of

√
εµ, the lowest frequency becomes

small, and the mode (1, 3) is always the lowest frequency
mode that is confined for any

√
εµ > 5.29 . The graph

only shows the minimum confined frequency at the inter-
mediate values of refractive index

√
εµ.

B. Confinement in triangular based prisms

We consider a vertical prism of height h with a triangu-
lar base of edge a. With perfectly reflecting end mirrors
at z = 0 and z = h the allowed longitudinal wavevec-
tors would be kz = lπ/h, where l is an integer. For a

plane wave component with 2D wavevector ~ki, the net
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FIG. 7: Frequency of the lowest confined mode for a 2D
triangular system surrounded by vacuum, as a function of
the refractive index. Pairs (m,n) indicate some of the modes’
quantum numbers. No modes are confined for

√
εµ ≤ 2.

3D wavevector magnitude within the cavity is

Ki =
√

k2
i + k2

z . (39)

This increases the incident angles on the walls of the
cavity: the presence of nonzero kz should enhance the
possibility for confinement, compared to the purely 2D
system.

At the lower and upper ends of the prism, the parallel
wavevector component of any of the plane waves present

is the full 2D ~ki, which can be expressed as

K
(ends)

i || = |~ki| =
√

k2
1 + k2

2 =
2π

3a

√

m2 + 3n2. (40)

Finding the incident angle by (33) and Snell’s Law (34),
this implies a critical index ratio needed for TIR confine-
ment by the cavity ends,

N
(ends)

c =
1

sin θi
=

√

1 +

(

3

2π

)2
(kza)2

m2 + 3n2
. (41)

On the vertical walls of the prism, the parallel wavevec-
tor component is a combination of kz and the 2D ki ||.
If TIR occurs on on one wall then by symmetry it will
take place on all the walls. Considering the b0 wall, the
ψ0 wave has the largest incident angle as in the 2D prob-
lem, and both k1 and kz determine its parallel wavevector
component,

K
(walls)

i || =
√

k2
1 + k2

z =

√

(

2π

3a

)2

m2 + k2
z . (42)

Then this determines the critical index ratio needed for
TIR by the cavity walls,

N
(walls)

c =
1

sin θi
=

√

1 +
3n2

m2 + ( 3
2π )2(kza)2

. (43)
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FIG. 8: Triangular prism critical index ratios for TIR from
the walls (open symbols) and ends (solid symbols) of the cav-
ity, for the modes with 2D quantum indexes m = 1, n = 3,
and longitudinal wavevector kz. The symbols show the al-
lowed kza values lπa/h when h = a.

For TIR mode confinement, the actual index ratio N must

be greater than both N
(ends)

c and N
(walls)

c .
Some results are shown in Fig. 8 for the m = 1, n = 3

modes as a function of kz. The symbols indicate the
allowed kz values for the prism height equal to the base
edge, h = a. The limiting 2D critical ratio is seen at
the point kza = 0. The critical index ratio is lowered
from the 2D value Nc ≈ 5.29, down to values as low as
Nc ≈ 1.40 for kza ≈ 11. A more significant reduction in
Nc occurs for the ground state, m = 0, n = 2, Fig. 9.
It is not possible to confine this mode in 2D; whereas, it
has Nc ≈ 1.41 for kza ≈ 7.25. Similar significant critical
index ratio reductions occur for all the modes tested.

One sees that N
(walls)

c and N
(ends)

c always cross at some
intermediate kz, where they produce the smallest index

ratio N
(min)

c needed for TIR. Setting them equal, we find

N
(min)

c =

√

1 +

(

1 +
m2

3n2

)−1

, (44)

which occurs at

k∗z =

(

2π

3a

)√
3n = k2. (45)

It is a rather intriguing result; choosing h/a such that a
mode will occur at this kz will be the optimum choice for
having the mode confined most easily by TIR. This could
be useful for control over selection of desired modes in a
cavity.

Cautionary comments are in order. The above dis-
cussion applies exactly only to a scalar wave. For elec-
tromagnetic waves, it applies to either the TM or TE

N
c

kza

Triangular prism

m=0, n=2 modes

(ends)

(walls)
1 

2 

3 

4 

5 

6 

 0  5 10 15 20 25 30

FIG. 9: Triangular prism critical index ratios as explained in
Fig. 8 for the modes with 2D quantum indexes m = 0, n = 2
(2D ground state).

polarizations in an approximate sense for quasi-2D EM
modes, requiring small longitudinal wavevector kza < 1.
The greatest enhancements in TIR were found to occur at
values kza > 1, primarily because a reasonably large kz

is needed in order to satisfy the TIR requirements at the
ends. The presence of significant kz values, however, will
lead to a mixing of the TM and TE polarizations, making
this calculation invalid. Then, for practical purposes, the
calculation is mostly interesting for how it indicates the
improvement in TIR confinement expected mainly on the
2D walls of the cavity, at small kz.

IV. TIR MODE LIFETIMES

For the 2D solutions (kz = 0), it is interesting to esti-
mate the lifetimes of the TIR-confined modes, contrast-
ing the results for TM and TE polarizations. When all
of the plane wave components in ψ satisfy the TIR con-
ditions, there is still the possibility for the cavity fields
to decay in time. Clearly, we have only an approximate
solution, since DBC is not exactly the correct boundary
condition. The effect this causes is difficult to estimate.
Another source of decay are diffractive effects: the finite
length of the triangle edge and the presence of sharp cor-
ners is likely to have special influence on the TIR that is
difficult to predict. One feature, however, which can be
considered as due to diffraction, is the leakage of bound-

ary waves at the corners of the triangle.[23] Under condi-
tions of TIR, an evanescent wave exists within the exte-
rior medium, decaying exponentially into that medium,
and moving parallel to the cavity surface. When it en-
counters the corner of that edge, a sharp discontinuity in
the surface, it can be expected to constitute power radi-
ated from the cavity. Here we consider the mode lifetime
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estimates based solely on the losses due to these bound-
ary waves.

Based on the ratio of the total energy U stored in the
cavity fields, compared to the total power P emitted by
the boundary waves from all the corners, an upper limit
of the mode lifetime can be estimated as

τ =
U

P
. (46)

The calculations of U and P have slight differences for
TM versus TE polarization. Therefore, there is no reason
to expect these lifetimes to be the same.

Cavity energy: For both polarizations, we use the
wavefunction ψ reviewed in Sec. II B, which can be ex-
pressed more succinctly as

ψ = A0

{

eik1x sin
[

k2

(

y +
a

2
√

3

)

]

(47)

+ eik1(− 1

2
x+

√
3

2
y+a) sin

[

k2

(

−
√

3

2
x− 1

2
y +

a

2
√

3

)

]

+ eik1(− 1

2
x−

√
3

2
y−a) sin

[

k2

(

√
3

2
x− 1

2
y +

a

2
√

3

)

]

}

The total energy of the fields within the cavity of height
h can be written as

U =

∫

h dxdy
ε| ~E|2
8π

=

∫

h dxdy
| ~B|2
8πµ

; (48)

the first form is convenient for TM modes (| ~E|2 = |ψ|2),
the second is convenient for TE modes (| ~B|2 = |ψ|2). So
both calculations require the normalization integral of ψ.
This integral can be simplified by a transformation to
a skew coordinate system whose axes are aligned to two
edges of the triangle as shown in Fig. 1. Placing the origin
of the new coordinates (X,Y ) at the lower left corner of
the triangle, with X increasing from 0 to a along edge b0,
and Y increasing from 0 to a along edge b2, the definition
of the new coordinates results from

X + Y cos 60◦ = x+
a

2
,

Y sin 60◦ = y +
a

2
√

3
. (49)

The numbers (a
2 ,

a
2
√

3
) are simply the displacement of the

origin (vector from triangle corner L to center C). The
wavefunction is now expressed as

ψ = A0

{

eik1

(

X+ 1

2
Y − a

2

)

sin
[

√
3

2
k2Y

]

+ eik1

(

− 1

2
X+ 1

2
Y +a

)

sin
[

√
3

2
k2

(

−X − Y + a)
]

+ eik1

(

− 1

2
X−Y − a

2

)

sin
[

√
3

2
k2X

]

}

. (50)

In this form, it is more obvious that each term goes to
zero on one of the boundaries, X = 0 (b2), Y = 0 (b0),

or X + Y = a (b1). Using the periodicity of ψ, the inte-
gration over the triangular area is effected by

∫

dx dy =
1

2

∫ a

0

dX

∫ a

0

dY |J | (51)

where the Jacobian is |J | =
√

3
2 and the factor of 1

2 cancels
integrating over two triangles. The absolute square of ψ
involves three direct terms (squared sines involving only
k2) and six cross terms from Eq. (50). It is possible to
show that the cross terms integrated over the triangular
area all are zero, due to the special choices of allowed k1

and k2 given by (26) and (27). The remaining nonzero
parts result in

∫

dx dy |ψ|2 =
3
√

3

8
a2|A0|2. (52)

Boundary wave power: The symmetry of the wave-
function causes the boundary wave power out of each
edge to be the same, therefore, we calculate that occur-
ring in edge b0 (at y = 0) and multiply by three for the
total power. This calculation follows that presented by
Wiersig[23] for resonant fields in a regular polygon.

Looking at the wavefunction (47), one can see that
there are three distinct plane waves incident on b0. First
is the wave with the smallest angle of incidence, resulting
from the first term in (47),

ψ−
0 =

−A0

2i
e

−ik2a

2
√

3 ei(k1x−k2y). (53)

Using the allowed values for k1 and k2, the angle of inci-
dence is seen to be

sin θ−0 =
m√

m2 + 3n2
. (54)

Next, there is a wave with the largest magnitude incident
angle, due to the second term in (47),

ψ+
1 =

A0

2i
e

i(k1+
k2

2
√

3
)a
ei[(− 1

2
k1−

√
3

2
k2)x+(

√
3

2
k1− 1

2
k2)y], (55)

whose incident angle is

sin θ+1 =
1

2

−m− 3n√
m2 + 3n2

. (56)

A negative value of θ1+ means the wave is propagating
contrary to the x − axis. Finally, the last term in (47)
leads to a wave with an intermediate incident angle,

ψ+
2 =

A0

2i
e

i(−k1+
k2

2
√

3
)a
ei[(− 1

2
k1+

√
3

2
k2)x+(−

√
3

2
k1− 1

2
k2)y],

(57)
whose incident angle is

sin θ+2 =
1

2

−m+ 3n√
m2 + 3n2

. (58)

The plus/minus superscripts on these waves refer to the
positive/negative exponents in the sine functions of Eq.
(47).
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Now, for each of these incident waves, there is a corre-
sponding evanescent wave propagating along the edge of
the cavity; these are assumed to produce emitted power
when encountering the triangle corners. The Poynting

vector ~S′ associated with a single plane evanescent wave
along the b0 boundary is

~S′ =
c

8π
<( ~E′ × ~H ′∗) =

c

8π

√

ε′

µ′ | ~E
′|2 sin θ′ x̂ (59)

On the other hand, the linear superposition of the three
waves ψ−

0 , ψ
+
1 , ψ

+
2 leads to an interference pattern both

within the cavity, and in the evanescent waves and exte-
rior power flow. Careful consideration of a linear com-
bination of two waves shows that, although interference

leads to a spatially varying ~S′ with components both par-
allel and perpendicular to the boundary, an integral num-
ber of wavelengths of that pattern fits along the edge.
Thus, it is clear that the interference effects can be ig-
nored in the calculation of the emitted boundary power.
For the total emitted power due to boundary waves, it
is sufficient to sum the individual powers for the three
independent incident waves.

For TM polarization, with ψ = Ez, the exterior
electric field of a single evanescent wave has only a z-
component like that in Eq. (II A). Applying Snell’s law,
and integrating the Poynting vector from y = 0 to y = ∞,
the power flow along x̂ in one boundary wave, on one
edge, is

Px =
ch

4πµ′
|E0

i |2
ω/c

n sin θi
√

(n sin θi)2 − (n′)2
cos2

α

2
(60)

where α is the phase shift given by (11) in Sec. II A.
One can see that the boundary wave power has a depen-
dence on (sin θi−sin θc)

−1/2. Although each of the waves
ψ−

0 , ψ
+
1 , ψ

+
2 will produce a boundary wave emission, the

wave ψ−
0 has the smallest angle of incidence, and pro-

duces by far the largest boundary wave power. This can
be seen by examining the expressions for incident angles
θ−0 , θ

+
1 and θ+2 , and using the facts that m < n and m,n

have the same parity. Therefore a good lifetime estimate
can be made using only the power due to ψ−

0 . From the
expression (53) for ψ−

0 , the squared magnitude of its elec-
tric field is |E0

i |2 = 1
4 |A0|2. From expressions (52) and

(48), the total TM cavity energy is

UTM =
εh

8π

3
√

3

8
a2|A0|2. (61)

The estimate of the lifetime due to boundary wave emis-
sion only, from all three edges combined, is τTM ≈
UTM/3Px. It is convenient to express the reult in di-
mensionless form, scaling with the mode frequency,

ωτTM ≈
√

3

4

(ωa

c∗

)2

√

1 − (sin θc/ sin θ−0 )2

cos2 θ−0

× µ

µ′

[

sin2 θ−0 − sin2 θc +

(

µ′

µ

)2

cos2 θ−0

]

,(62)

where θ−0 depends on the mode quantum numbers ac-
cording to Eq. (54). In the usual case where µ ≈ µ′, the
second line of the formula simplifies to just cos2 θc.

Obviously, when θ−0 approaches θc, which would oc-
cur at weak enough index mismatch, the estimated life-
time τTM → 0, which is the limit of a non-bound state.
At the opposite extreme of large index mismatch where
n/n′ � 1, this estimate varies as 1/ cos2 θ−0 , and since
ωa/c∗ is a number of order unity, the order of magnitude
is determined by

τTM ∼ a

c

√
εµ. (63)

The result is interesting because it shows a lifetime that
increases with the triangle size, as well as being propor-
tional to the refractive index in the cavity.

For TE polarization, with ψ = Bz, the exterior
magnetic field of a single evanescent wave has only a z-
component like that in Eq. (II A). The calculation follows
the same reasoning as used for the TM modes, but the
specific details lead to a slightly different result. Defini-
tion of the Poynting vector as in (59) is the same. The

substitution | ~E′| = |B′
z|/

√
ε′µ′ together with Eq. (II A)

for B′
z, followed by |E0

i | = |B0
i |/

√
εµ within the cavity,

leads to the boundary wave power with extra factors,

Px =
ch

4πµ′
µ′ε

ε′µ

|E0
i |2

ω/c

n sin θi
√

(n sin θi)2 − (n′)2
cos2

α

2
(64)

where now the phase shift α given by (16) in Sec. II A
depends on the ratio ε/ε′ � 1 rather than µ/µ′ ≈ 1.
Furthermore, using (52) and (48), the energy stored in
the cavity fields is now

UTE =
h

8πµ

3
√

3

8
a2|A0|2. (65)

With cavity magnetic field strength |B0
i |2 = 1

4 |A0|2, and

again estimating the lifetime using only the ψ−
0 boundary

wave from all three edges, the lifetime is τTE ≈ UTE/3Px.
One finds

ωτTE ≈
√

3

4

(ωa

c∗

)2

√

1 − (sin θc/ sin θ−0 )2

cos2 θ−0

× ε

ε′

[

sin2 θ−0 − sin2 θc +

(

ε′

ε

)2

cos2 θ−0

]

.(66)

The second line of this formula highlights the difference
for TE polarization compared to TM. The factor in the
brackets is some number less than 1; it contrasts the
bracket which reduces to cos2 θc in formula (62) for the
TM polarization lifetime when µ = µ′. The crucial dif-
ference is the factor ε/ε′ � 1 present here, compared
to a similar factor µ′/µ ≈ 1 for the TM lifetime for-
mula. This is the more dominant factor, and it suggests
that roughly speaking, the ratio of the lifetimes for the



13

2D TM modes

τ T
M

c*
/

a

N

 0 

 3 

 6 

 9 

12 

15 

2 3 4 5 6 7 8

1,3

2,4

2,6

2,8

3,5

3,7

4,6
5,7

5,9

FIG. 10: Estimated lifetimes for some low TM modes indi-
cated by (m,n) pairs, versus the index ratio N. The lifetime
is scaled by the speed of light c∗ in the cavity medium and
the cavity edge size a.

two polarizations, which have the same (approximately
DBC) boundary conditions and frequencies, is

τTE

τTM
≈ ε

ε′
=
(

n

n′

)2

. (67)

The result holds as long as the index mismatch is ad-
equately large compared to the cutoff value needed to
stabilize that mode by TIR. Otherwise, at smaller index
mismatch, the TM lifetime can be longer than the TE
lifetime.

Some results for τTM are presented in Fig. 10, showing
lifetimes as functions of the index mismatch for some of
the lowest modes. When scaled by the triangle size and
light speed in the cavity, the lifetimes increase abruptly
above the TIR confinement limits, eventually increasing
at a slower rate. For the modes shown, dimensionless
frequencies ωa/c∗ are typically numbers greater than 10
(see Fig. 2), with the values of τc∗/a also of the order of
10. Combining these rough results, the mode lifetimes in
units of the mode periods T are similar to

τ

T
=
ωτ

2π
∼ 10 × 10

2π
≈ 16. (68)

Assuming that the lifetime estimates have included the
dominant loss mechanism in the cavity, this large result
for τ/T indicates that the original assumption of a res-
onance mode weakly confined by TIR should be a valid
concept. Obviously, this holds far enough above the TIR
confinement limits only, keeping in mind the approxi-
mate nature of the Dirichlet boundary conditions that
were applied.

Comparitive results for τTE for the same mode indexes
are shown in Fig. 11. Due to the presence of the extra
factor of ε/ε′ ≈ N

2, these lifetimes increase much more

2D TE modes
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FIG. 11: Estimated lifetimes for low TE modes indicated
by (m,n) pairs, versus the index ratio N. These lifetimes are
larger than the corresponding TM lifetimes (Fig. 10) when N

is sufficiently larger than the cutoff value for that mode.

rapidly than the TM lifetimes. As an example, for mode
(3, 5), the TE lifetime is about 6 times longer than the
TM lifetime at N = 8. On the other hand, for the mode
(1, 3), which has a much larger TIR confinement limit,
the TE lifetime is only about 1/3 longer than the TM
lifetime at N = 8. Clearly, modes with (m,n) indexes
nearly the same, as in the form (m,m + 2) with large
m, require smaller index mismatch for TIR confinement,
and will more closely follow the lifetime ratio determined
strongly by the index mismatch, Eq. (67).

In recent experiments[2] triangular semiconductor cav-
ities with edges ranging from 75 to 350 µm were used.
Assuming an effective index of refraction around n ≈ 4,
with vacuum on the exterior, and using a ≈ 100µm, Eqs.
(63) and (67) give rough lower estimates τTM ∼ 1.3 ps,
and τTE ∼ 20 ps. Of course, for practical purposes of
maintaining a resonating mode, a large value of τ/T is
much more relevant, as discussed above. Based on these
calculations, smaller cavities will have reduced lifetimes,
but also shorter oscillation periods in the same ratio. For
large index ratio, where sin θc � 1, cos θc ≈ 1, and us-
ing the fact that m < n, lifetime expression (62) and
frequency expression (28) produce the quality factor es-
timate,

Q = 2π
τTM

T
≈ π2n2

√
3
. (69)

This ratio is independent of the cavity size or dielectric
properties, increasing only with the squared mode quan-
tum number n. The TE mode lifetime under these as-
sumptions should be even larger, by the squared refrac-
tive index ratio (n/n′)2.
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V. CONCLUSIONS

The resonant modes of an optical cavity with an equi-
lateral 2D cross-section have been examined in an ap-
proximate manner, starting from the exact analytic so-
lutions for Dirichlet boundary conditions. The six plane
waves that make up each mode have been analyzed for
the conditions necessary such that all are confined in the
cavity by TIR. For 2D electromagnetics (kz = 0), modes
with larger ratios of quantum indexes m/n are most eas-
ily confined; conversely, modes with m = 0 never undergo
TIR confinement. The presence of a nonzero longitudinal
wavevector kz can be expected to improve the possibili-
ties for TIR confinement.

The critical index ratios for TIR confinement are the
same for TM and TE polarizations. The different Fres-
nel factors, however, produce different rates of energy lost
from the cavity by the evanescent boundary waves. For
the 2D problem, this was shown to lead to considerably
longer lifetimes of the TE polarization, enhanced approx-
imately by a factor of the squared index ratio (n/n′)2

conpared to the TM lifetime. The differences in these
lifetimes would be expected to imply stronger coupling
of EM fields from outside to inside the cavity in the TM
polarization; it suggests that stimulation and generation
of the modes by an external light source should be more
efficient for TM polarization.
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