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Abstract. Lifetimes are estimated for the two-dimensional resonant optical modes of

a dielectric cavity with an equilateral triangular cross section, that are approximately

confined by total internal reflection. Exact solutions of a two-dimensional scalar

wave equation for triangular geometry with Dirichlet boundary conditions are used

to describe approximately the vector fields of the possible transverse electric (TE) and

transverse magnetic (TM) modes. Only two-dimensional electromagnetic solutions are

considered here, where there is no propagation vector perpendicular to the plane of

the triangle (kz = 0). The field properties just inside and outside the cavity boundary

are shown to be significantly different for TE and TM field polarizations, the two cases

having different dependences on the index mismatch with the exterior. For a given

mode specified by particular quantum numbers, TE polarization leads to longer lifetime

than TM polarization at high index mismatch, assuming that escape of evanescent

boundary waves at the corners is the primary decay process.
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1. Introduction

Interest continues in micro-lasers and micro-resonators with various geometries,

including disks [1], triangles [2, 3], squares [4, 5, 6] and hexagons [7, 8, 9]. Materials

with potential device application include various cleaved semiconductor structures [2, 3]

and zeolite ALPO4-5 crystals [7]. Understanding how geometry controls internal field

distributions and hence mode frequencies, lifetimes and associated quality factors (Q)

is essential to device development.

Here we consider mode lifetimes in equilateral triangular-based resonator (ETR)

cavities confined by total internal reflection (TIR). Triangular geometry mode

wavefunctions were reviewed and experimentally measured by Chang et al. [2], but
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only under the assumptions of TM polarization together with 100% reflectivity of the

cavity faces. In a high-index cavity surrounded by a lower index environment, however,

the confinement of modes is provided by TIR. Huang et al.[10, 11, 12] considered

both TE and TM polarizations for dielectric ETRs surrounded by air, using analytic

approximations and matching of the interior fields to nonzero exterior fields to estimate

mode frequencies. Also, by modeling the response of a cavity to a finite input pulse using

a numerical finite difference time domain technique[11, 12], very large Q-factors (1000 –

20000) were estimated for some of the lowest modes, with the highest Q’s associated with

TM polarization. Considerably lower Q-factors (20 – 150) were measured in GaInAs-

InP ETRs with edges from 5 – 20 µm, using the photoluminescence spectrum[3]. Due

to the complexity of correctly matching interior oscillatory fields to decaying evanescent

exterior fields, simple approximations which may lead to estimates of the mode lifetimes

or equivalently, the Q-factors, are considered here.

The evanescent fields in TIR on the outside of the cavity boundary eventually

propagate to the cavity corners, where they can escape and give real power loss [9].

Thus, a finite cavity does not provide 100% reflectivity even for TIR states. Here this

situation is analyzed further, to obtain lifetime estimates for the modes that can be

approximately TIR-confined, assuming a large dielectric mismatch across the cavity

boundary.

We assume two-dimensional electromagnetics (2D E&M), that is, fields that have

no dependence on a longitudinal coordinate z that lies along the axis of symmetry of

a prism. Analysis of the electromagnetic field boundary conditions shows that when a

mode is strongly confined in the cavity by TIR, Dirichlet boundary conditions (DBC)

apply approximately for both the TM and TE polarizations. This field analysis also is

needed later for the boundary wave power calculations. Each mode of a triangular cavity

is composed from a set of six plane waves; as such, we use a simplified analysis rather

than a full solution to Maxwell’s equations, such as the boundary element method [13] or

finite difference time domain numerics[14]. The plane wave components of each mode

are analyzed here in terms of Maxwell’s equations and the related Fresnel amplitude

ratios, which are slightly different for TM and TE polarizations [15]. Following Wiersig

[9], it is assumed that the power radiated from a mode in the TIR regime is primarily due

to the leakage of the evanescent boundary waves at the three corners of the triangle. At

large index mismatch, this analysis predicts longer estimated lifetimes for the TE modes,

enhanced by a factor of the order of the squared index ratio (n/n′)2, when compared to

the lifetime of the corresponding TM mode.

2. 2D Electromagnetics at the cavity boundary

Presence of nonzero kz for a dielectric waveguide surrounded by a different dielectric

medium, in general, does not lead to separated TM and TE modes, see Ref. [15]. For

2D E&M problems (longitudinal wavevector kz = 0), however, Maxwell’s equations and

associated boundary conditions imply independent TM and TE polarizations of the
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fields. It is well-known that in a waveguide or resonator with conducting boundaries,

the field ψ = Ez for TM modes satisfies DBC, and the field ψ = Bz for TE

modes satisfies Neumann boundary conditions (NBC). Alternatively, if the medium

is surrounded simply by a different (nonconducting) dielectric, there still are TM or

TE polarizations, but, strictly speaking, these would satisfy more involved boundary

conditions of Maxwell’s equations, rather than the oversimplified DBC or NBC. If

the fields are strongly undergoing TIR (incident angle well beyond the critical angle),

however, both polarizations are shown here to satisfy DBC, in an approximate sense.

Consider a planar boundary between two media, where the boundary defines the

xz-plane. The region y < 0, within our cavity, is occupied by a medium of index

n =
√
εµ, while the region y > 0, outside the cavity, is occupied by a medium of index

n
′ =

√
ε′µ′, with n > n

′. Primes refer to quantities on the refracted wave side (outside

the cavity). The wavevector magnitudes are k = ω
c

√
εµ and k′ = ω

c

√
ε′µ′ in the two

media. A 2D plane wave ∼ ei(kxx+kyy) with fields ~Ei, ~Bi, propagating in medium n with
~ki = (kx, ky) = k(sin θi, cos θi) and incident on the boundary at angle θi, can be polarized

either in the TM or TE polarizations (see Chap. 7 of Ref. [15]).

TM polarization: For incident ~Ei = E0
i ẑe

i(kxx+kyy) perpendicular to the plane of

incidence, there is also a reflected wave ~Er = E0
r ẑe

i(kxx−kyy) with the same polarization,

but a different magnitude and phase, E0
r = E0

i e
iα, by the Fresnel formula

eiα =

√

ε
µ

cos θi −
√

ε′

µ′ cos θ′

√

ε
µ

cos θi +
√

ε′

µ′ cos θ′
(1)

Here θ′ is the angle of the refracted wave, obtained from Snell’s Law, n sin θi = n′ sin θ′,

which implies TIR when θi surpasses the critical angle θc, defined by

sin θc =
n
′

n
. (2)

Under TIR, E0
r has the same magnitude as E0

i , but is phase shifted by angle α,

because the cosine of the refracted wave becomes pure imaginary:

cos θ′ = iγ, γ =
√

(sin θi/ sin θc)2 − 1. (3)

Then it is useful to express the phase difference between the incident and reflected waves

as

tan
α

2
= − µ

µ′

√

cos2 θc

cos2 θi
− 1 (4)

The linear combination of incident and reflected waves in medium n is ~E = ~Ei + ~Er =

Ez ẑ, having the spatial variation approaching the boundary (region y < 0),

Ez = Ei + Er = 2E0
i e

i α
2 eikxx cos

(

kyy −
α

2

)

(5)

Corresponding to this is the associated evanescent wave in medium n
′ (region y > 0),

E ′
z = 2E0

i cos(α/2)ei α
2 eikxxe−k′γy, (6)
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where kx = k′x due to Snell’s Law. Equation (5) shows that the Ez field on the incident

side acquires a node at the boundary y = 0 and satisfies Dirichlet BC only when the

phase shift attains the value α = −π. According to Equation (4), this occurs only in

the limit θi → 90◦, i.e., extreme grazing incidence. Alternatively, at the threshold for

TIR (θ = θc), Equation (4) gives α = 0, whereby (5) indicates that the Ez field now will

peak at y = 0 and satisfies a Neumann BC.

Seeing that the BC on Ez ranges between the two extremes of DBC and NBC,

clearly neither boundary condition is fully applicable to the TIR regime. However, it

suggests that one should use NBC for finding the TIR threshold conditions, and DBC

to determine the field distributions at large enough index mismatch. One can get some

indication of the crossover to DBC-like behavior by locating the incident angle θi = θ̃

where the phase shift passes −π
2

, i.e., when tan α
2

= −1. From Equation (4) one finds

cos θ̃ =
cos θc

√

1 +
(

µ′

µ

)2
. (7)

In the usual practical situation, with µ = µ′ ≈ 1, we have cos θ̃ = 1√
2
cos θc. For

usual optical media with very weak magnetic properties, one sees that a large index

ratio n/n′ ≈
√

ε/ε′ does not increase the range of applicability of Dirichlet BC for TM

polarization. To give a numerical example, for a weak index mismatch with sin θc = 1/2,

giving θc = 30◦, the crossover angle is θ̃ = 52.2◦; in order to reach phase angle α = −0.9π,

quite close to DBC, requires an incident angle θi = 82.2◦. Even for a larger mismatch

sin θc = 1/4, with θc = 14.5◦, one gets only a slight improvement to θ̃ = 46.8◦, and to

get to α = −0.9π still requires θi = 81.3◦.

We see that it makes some sense to apply NBC to find the limiting conditions

for TIR of a single plane wave, but, in general, provided the incident angle is

sufficiently larger than the crossover angle θ̃, the fields on the incident side (within

the cavity) approximately satisfy DBC. The adequacy of DBC improves with higher

index mismatch, but not as strongly as one would hope, because the phase angle does

not depend on the dielectric permittivities for TM polarization.

TE polarization: Now the magnetic field ~B is polarized in the ẑ direction everywhere,

and controls the other fields, according to relations ~B =
√
εµ k̂× ~E for each plane wave,

and amplitude relations B =
√
εµ E. Taking incident wave ~Bi = B0

i ẑe
i(kxx+kyy), with

electric field amplitude E0
i = B0

i /
√
εµ, there is a reflected wave ~Br = B0

r ẑe
i(kxx−kyy), with

electric field amplitude E0
r = B0

r/
√
εµ. The amplitude ratio E0

r/E
0
i = eiα is described

by the Fresnel formula:

eiα =

√

ε′

µ′ cos θi −
√

ε
µ

cos θ′

√

ε′

µ′ cos θi +
√

ε
µ

cos θ′
(8)

The phase difference between the incident and reflected waves can be expressed as

tan
α

2
= − ε

ε′

√

cos2 θc

cos2 θi
− 1. (9)



Resonant mode lifetimes . . . in equilateral triangular dielectric cavities 5

The linear combination of incident and reflected magnetic waves in medium n is
~B = ~Bi + ~Br = Bz ẑ, and mirrors the behavior of ~E for the TM problem, having

the spatial variation approaching the boundary,

Bz = Bi +Br = 2B0
i e

i α
2 eikxx cos

(

kyy −
α

2

)

(10)

The associated evanescent wave in medium n
′ is

B′
z = 2B0

i cos(α/2)ei α
2 eikxxe−k′γy. (11)

The behavior of Bz near the boundary for TE polarization is the same as that for Ez

near the boundary for TM polarization. It means that provided the incident angle is far

enough beyond the critical angle, one could also apply DBC for TE fields; NBC would

only be reasonable just beyond the TIR threshold, for a single plane wave. However,

due to the presence of the permittivity ratio in Equation (9), a large index mismatch

enhances the applicability of DBC for TE polarization. The crossover incident angle θ̃

at which tan α
2

= −1 is now

cos θ̃ =
cos θc

√

1 +
(

ε′

ε

)2
≈ cos θc
√

1 +
(

n
′

n

)4
, (12)

where the latter expression applies when µ ≈ µ′. Now the modest index mismatch with

sin θc = 1/2 and θc = 30◦ leads to a very nearby crossover angle θ̃ = 32.8◦, meaning

that the strong TIR regime and region of adequate applicability of DBC is very wide.

For larger mismatch sin θc = 1/4 with θc = 14.5◦, the DBC regime is even closer to θc,

beginning around θ̃ = 14.9◦. Thus, application of DBC for the modes of a cavity with

TE field polarization should be very acceptable, even more so than for TM polarization,

except when the mode is extremely close to the TIR threshold.

Within mentioned limitations, we continue discussing the modes in a 2D equilateral

triangle of edge length a, under the assumption of DBC for both polarizations.

3. Exact modes for an equilateral triangle with DBC

The triangular cross section in physical problems has evoked interest ever since the first

solution for triangular elastic membranes by Lamé [16]. Related problems have been

solved analytically [17, 18, 19] for both DBC and Neumann BC, including quantum

billiards [20, 21, 22, 23], quantum dots [24], and lasing modes in resonators and mirrored

dielectric cavities [2, 25].

Coordinates are used with the origin at the geometrical center of the triangle of

edge length a, and the lower edge parallel to the x-axis, as in Fig. 1. The notation b0, b1,

and b2 is used to denote the lower, upper right, and upper left boundaries, respectively.

The general solution is a superposition of six plane waves, obtained by 120-degree

rotations of one partially standing wave ψ0, which goes to zero on boundary b0, with
~k1 = k1 x̂ and ~k2 = k2 ŷ 6= 0:

ψ0 = ei~k1·~r sin

[

~k2 · ~r +
k2a

2
√

3

]

(13)
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b0

b1b2

x

y

X

Y

L

C

β2π/3−ββ

Figure 1. Coordinates for a 2D triangular cavity of edge a. The geometrical center

at C, the origin of the xy-coordinates, is a distance a

2
√

3
above the lower (b0) edge.

The lower left corner L is the origin of the skew XY -coordinates. The dashed line

demonstrates the reflections of a ray originating at angle β = 70◦ to the lower edge,

requiring two complete circuits to return to the same angle.

Rotations of ψ0 through 120◦ and 240◦ produce related wavefunctions ψ1 and ψ2 which

go to zero on b1 and b2, respectively. The net wavefunction can be written as

ψ = A0ψ0 + A1ψ1 + A2ψ2, (14)

where the relative phases of the components are

A1 = A0e
i 2π

3
m, A2 = A0e

−i 2π
3

m. (15)

and the allowed wavevectors are

k1 =
2π

3a
m, m = 0, 1, 2... (16)
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k2 =
2π

3a

√
3 n. n = 1, 2, 3... (17)

Indexes n and m must be of the same parity with m < n. The resulting frequencies are

ω = c∗
√

k2
1 + k2

2 =
c√
εµ

2π

3a

√
m2 + 3n2 (18)

where c∗ = c/
√
εµ is the speed of light in the cavity. This physically motivated form

for ψ was described by Chang et al. [2] and is equivalent to the first solution given by

Lame’ [16] and used by many authors [19]. Wavefunctions for the sequence of many

of the lowest modes are displayed at www.phys.ksu.edu/˜ wysin/ . Only those with

m 6= 0 can be confined by TIR. Based on a straightforward analysis of the six plane

wave components, using Snell’s Law and requiring all incident angles greater than the

critical angle, the index ratio required for confinement by TIR can be shown to be

n

n′
> Nc =

√

3
n2

m2
+ 1. (19)

4. TIR mode lifetimes

When all of the plane wave components in ψ satisfy the TIR conditions, there is still the

possibility for the cavity fields to decay in time. Clearly, we have only an approximate

solution, since DBC is not exactly the correct boundary condition. The effect this causes

is difficult to estimate. Another source of decay are diffractive effects: the finite length

of the triangle edge and the presence of sharp corners is likely to have special influence

on the TIR that is difficult to predict. One feature, however, which can be considered

as due to diffraction, is the leakage of boundary waves at the corners of the triangle

[9]. Under conditions of TIR, an evanescent wave exists within the exterior medium,

decaying exponentially into that medium, and moving parallel to the cavity surface.

When it encounters the corner of that edge, a sharp discontinuity in the surface, it can

be expected to constitute power radiated from the cavity. Here we consider the mode

lifetime estimates based solely on the losses due to these boundary waves.

Based on the ratio of the total energy U stored in the cavity fields, compared to

the total power P emitted by the boundary waves from all the corners, an upper limit

of the mode lifetime can be estimated as

τ =
U

P
. (20)

The calculations of U and P have slight differences for TM versus TE polarization.

Therefore, there is no reason to expect these lifetimes to be the same.

Cavity energy: For both polarizations, we use the wavefunction ψ reviewed in

Sec. 3, which can be expressed as

ψ = A0

{

eik1x sin
[

k2(y +
a

2
√

3
)
]

(21)

+ eik1(− 1

2
x+

√
3

2
y+a) sin

[

k2( −
√

3

2
x− 1

2
y +

a

2
√

3
)
]
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+ eik1(− 1

2
x−

√
3

2
y−a) sin

[

k2(

√
3

2
x− 1

2
y +

a

2
√

3
)
]

}

The total energy of the fields within the cavity of height h can be written as

U =
∫

h dx dy
ε| ~E|2
8π

=
∫

h dx dy
| ~B|2
8πµ

; (22)

the first form is convenient for TM modes (| ~E|2 = |ψ|2), the second is convenient for

TE modes (| ~B|2 = |ψ|2). So both calculations require the normalization integral of ψ.

This integral can be simplified by a transformation to a skew coordinate system whose

axes are aligned to two edges of the triangle, as shown in Fig. 1. Placing the origin of

the new coordinates (X, Y ) at the lower left corner of the triangle, with X increasing

from 0 to a along edge b0, and Y increasing from 0 to a along edge b2, we have

X + Y cos 60◦ = x +
a

2
,

Y sin 60◦ = y +
a

2
√

3
. (23)

The numbers (a
2
, a

2
√

3
) are simply the displacement of the origin (vector from triangle

corner L to center C). The wavefunction is now expressed as

ψ = A0

{

eik1(X+ 1

2
Y −a

2
) sin

[

√
3

2
k2Y

]

+ eik1(− 1

2
X+ 1

2
Y +a) sin

[

√
3

2
k2( −X − Y + a)

]

+ eik1(− 1

2
X−Y −a

2
) sin

[

√
3

2
k2X

]

}

. (24)

In this form, it is more obvious that each term goes to zero on one of the boundaries,

X = 0 (b2), Y = 0 (b0), or X + Y = a (b1). Using the periodicity of ψ, the integration

over the triangular area is effected by
∫

dx dy =
1

2

∫ a

0
dX

∫ a

0
dY |J | (25)

where the Jacobian is |J | =
√

3
2

and the factor of 1
2

cancels integrating over two triangles.

The absolute square of ψ involves three direct terms (squared sines involving only k2)

and six cross terms from Equation (24). It is possible to show that the cross terms

integrated over the triangular area all are zero, due to the special choices of allowed k1

and k2 given by (16) and (17). The remaining nonzero parts result in
∫

dx dy |ψ|2 =
3
√

3

8
a2|A0|2. (26)

Boundary wave power: The symmetry of the wavefunction causes the boundary

wave power out of each edge to be the same, therefore, we calculate that occurring in

edge b0 (at y = 0) and multiply by three for the total power. This calculation follows

that presented by Wiersig [9] for resonant fields in a regular polygon.
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Looking at the wavefunction (21), one can see that there are three distinct plane

waves incident on b0. First is the wave with the smallest angle of incidence, resulting

from the first term in (21),

ψ−
0 =

−A0

2i
e

−ik2a

2
√

3 ei(k1x−k2y). (27)

Using the allowed values for k1 and k2, the angle of incidence is seen to be

sin θ−0 =
m√

m2 + 3n2
. (28)

Next, there is a wave with the largest magnitude incident angle, due to the second term

in (21),

ψ+
1 =

A0

2i
e

i(k1+
k2

2
√

3
)a
ei[(− 1

2
k1−

√
3

2
k2)x+(

√
3

2
k1− 1

2
k2)y], (29)

whose incident angle is

sin θ+
1 =

1

2

−m− 3n√
m2 + 3n2

. (30)

A negative value of θ1+ means the wave is propagating contrary to the x−axis. Finally,

the last term in (21) leads to a wave with an intermediate incident angle,

ψ+
2 =

A0

2i
e

i(−k1+
k2

2
√

3
)a
ei[(− 1

2
k1+

√
3

2
k2)x+(−

√
3

2
k1− 1

2
k2)y], (31)

whose incident angle is

sin θ+
2 =

1

2

−m + 3n√
m2 + 3n2

. (32)

The plus/minus superscripts on these waves refer to the positive/negative exponents in

the sine functions of Equation (21).

Now, for each of these incident waves, there is a corresponding evanescent wave

propagating along the edge of the cavity; these are assumed to produce emitted power

when encountering the triangle corners. The Poynting vector ~S ′ associated with a single

plane evanescent wave along the b0 boundary is

~S ′ =
c

8π
<( ~E ′ × ~H ′∗) =

c

8π

√

ε′

µ′
| ~E ′|2 sin θ′ x̂ (33)

On the other hand, the linear superposition of the three waves ψ−
0 , ψ

+
1 , ψ

+
2 leads to an

interference pattern both within the cavity, and in the evanescent waves and exterior

power flow. Careful consideration of a linear combination of two waves shows that,

although interference leads to a spatially varying ~S ′ with components both parallel

and perpendicular to the boundary, an integral number of wavelengths of that pattern

fits along the edge. Thus, it is clear that the interference effects can be ignored in

the calculation of the emitted boundary power. For the total emitted power due to

boundary waves, it is sufficient to sum the individual powers for the three independent

incident waves.

For TM polarization, with ψ = Ez, the exterior electric field of a single evanescent

wave has only a z-component like that in Equation (6). Applying Snell’s law, and
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integrating the Poynting vector from y = 0 to y = ∞, the power flow along x̂ in one

boundary wave, on one edge, is

Px =
ch

4πµ′

|E0
i |2

ω/c

n sin θi
√

(n sin θi)2 − (n′)2
cos2 α

2
(34)

where α is the phase shift given by (4) in Sec. 2. One can see that the boundary wave

power has a dependence on (sin θi − sin θc)
−1/2. Although each of the waves ψ−

0 , ψ
+
1 , ψ

+
2

will produce a boundary wave emission, the wave ψ−
0 has the smallest angle of incidence,

and produces by far the largest boundary wave power. This can be seen by examining

the expressions for incident angles θ−0 , θ
+
1 and θ+

2 , and using the facts that m < n and

m,n have the same parity. Therefore a good lifetime estimate can be made using only

the power due to ψ−
0 . From the expression (27) for ψ−

0 , the squared magnitude of its

electric field is |E0
i |2 = 1

4
|A0|2. From expressions (26) and (22), the total TM cavity

energy is

UTM =
εh

8π

3
√

3

8
a2|A0|2. (35)

The estimate of the lifetime due to boundary wave emission only, from all three edges

combined, is τTM ≈ UTM/3Px. It is convenient to express the result in dimensionless

form, scaling with the mode frequency to give the quality factor QTM,

QTM = ωτTM ≈
√

3

4

(

ωa

c∗

)2

√

1 − (sin θc/ sin θ−0 )2

cos2 θ−0

× µ

µ′



sin2 θ−0 − sin2 θc +

(

µ′

µ

)2

cos2 θ−0



 , (36)

where θ−0 depends on the mode quantum numbers according to Equation (28). In the

usual case where µ ≈ µ′, the second line of the formula simplifies to just cos2 θc.

Obviously, when θ−0 approaches θc, which would occur at weak enough index

mismatch, the estimated lifetime τTM → 0, which is the limit of a non-bound state.

At the opposite extreme of large index mismatch where n/n′ � 1, this estimate varies

as 1/ cos2 θ−0 , and since ωa/c∗ is a number of order unity, the order of magnitude is

determined by

τTM ∼ a

c

√
εµ. (37)

The result is interesting because it shows a lifetime that increases with the triangle size,

as well as being proportional to the refractive index in the cavity.

For TE polarization, with ψ = Bz, the exterior magnetic field of a single

evanescent wave has only a z-component like that in Equation (11). The calculation

follows the same reasoning as used for the TM modes, but the specific details lead to

a slightly different result. Definition of the Poynting vector as in Equation (33) is the

same. The substitution | ~E ′| = |B′
z|/

√
ε′µ′ together with Equation (11) for B ′

z, followed
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by |E0
i | = |B0

i |/
√
εµ within the cavity, leads to the boundary wave power with extra

factors,

Px =
ch

4πµ′

µ′ε

ε′µ

|E0
i |2

ω/c

n sin θi
√

(n sin θi)2 − (n′)2
cos2 α

2
(38)

where now the phase shift α given by (9) in Sec. 2 depends on the ratio ε/ε′ � 1 rather

than µ/µ′ ≈ 1. Furthermore, using (26) and (22), the energy stored in the cavity fields

is now

UTE =
h

8πµ

3
√

3

8
a2|A0|2. (39)

With cavity magnetic field strength |B0
i |2 = 1

4
|A0|2, and again estimating the lifetime

using only the ψ−
0 boundary wave from all three edges, the lifetime is τTE ≈ UTE/3Px.

One finds the quality factor,

QTE = ωτTE ≈
√

3

4

(

ωa

c∗

)2

√

1 − (sin θc/ sin θ−0 )2

cos2 θ−0

× ε

ε′



sin2 θ−0 − sin2 θc +

(

ε′

ε

)2

cos2 θ−0



 . (40)

The second line of this formula highlights the difference for TE polarization compared

to TM. The factor in the brackets is some number less than 1; it contrasts the bracket

which reduces to cos2 θc in formula (36) for the TM polarization lifetime when µ = µ′.

The crucial difference is the factor ε/ε′ � 1 present here, compared to a similar factor

µ′/µ ≈ 1 for the TM lifetime formula. This is the more dominant factor, and it suggests

that roughly speaking, the ratio of the lifetimes for the two polarizations, which have

the same (approximately DBC) boundary conditions and frequencies, is

τTE
τTM

≈ ε

ε′
=
(

n

n′

)2

. (41)

The result holds as long as the index mismatch is adequately large compared to the cutoff

value needed to stabilize that mode by TIR. Otherwise, at smaller index mismatch, the

TM lifetime can be longer than the TE lifetime.

Some results for τTM are presented in Fig. 2, showing lifetimes as functions of the

index mismatch for some of the lowest modes. Scaled by the triangle size and light

speed in the cavity, the lifetimes increase abruptly above the TIR confinement limits,

eventually increasing at a slower rate. For the modes shown, dimensionless frequencies

ωa/c∗ are typically numbers greater than 10 [See Equation (18)], with the values of

τc∗/a also of the order of 10. Combining these rough results, the mode lifetimes in units

of the mode periods T are similar to

τ

T
=
ωτ

2π
∼ 10 × 10

2π
≈ 16. (42)

Assuming that the lifetime estimates have included the dominant loss mechanism in the

cavity, this result for τ/T indicates that the original assumption of a resonance mode

weakly confined by TIR should be a valid concept. Obviously, this holds far enough
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2D TM modes
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Figure 2. Estimated lifetimes for some low TM modes indicated by (m, n) pairs,

versus the index ratio N = n

n
′
. The lifetime is scaled by a/c∗, the signal propagation

time across the cavity, where c∗ is the speed of light in the cavity medium.

above the TIR confinement limits only, keeping in mind the approximate nature of the

Dirichlet boundary conditions that were applied.

Comparative results for τTE for the same mode indexes are shown in Fig. 3. Due

to the presence of the extra factor of ε/ε′ ≈ N
2, these lifetimes increase more rapidly

than the TM lifetimes. As an example, for mode (3, 5), the TE lifetime is about 6 times

longer than the TM lifetime at N = 8. On the other hand, for the mode (1, 3), which

has a much larger TIR confinement limit, the TE lifetime is only about 1/3 longer than

the TM lifetime at N = 8. Clearly, modes with (m,n) indexes nearly the same, as in the

form (m,m+2) with large m, require smaller index mismatch for TIR confinement, and

will more closely follow the lifetime ratio determined strongly by the index mismatch,

Equation (41).

In earlier experiments [2] triangular semiconductor cavities with edges ranging from

75 to 350 µm were used. Assuming an effective index of refraction around n ≈ 4, with

vacuum on the exterior, and using a ≈ 100µm, (37) and (41) give rough lower estimates

τTM ∼ 1.3 ps, and τTE ∼ 20 ps. Of course, for practical purposes of maintaining
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2D TE modes
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Figure 3. Estimated lifetimes for low TE modes indicated by (m, n) pairs, versus the

index ratio N = n

n
′
. These lifetimes are larger than the corresponding TM lifetimes

(Fig. 2) when N is sufficiently larger than the cutoff value for that mode.

a resonating mode, a large value of τ/T is much more relevant, as discussed above.

Based on these calculations, smaller cavities will have reduced lifetimes, but also shorter

oscillation periods in the same ratio. For large index ratio, where sin θc � 1, cos θc ≈ 1,

and using the fact that m < n, lifetime expression (36) and frequency expression (18)

produce the estimate,

τTM
T

≈ π2n2

√
3
. (43)

This ratio is independent of the cavity size or dielectric properties, increasing only with

the squared mode quantum number n. For example, at index ratio N = 4, Equation (19)

shows that the lowest TIR-confined mode has (m,n) = (2, 4). Then an estimate of its

quality factor, based on Equation (43), is QTM = 2πτTM/T ≈ 500, somewhat larger

than recent experimental results on 5 – 20 µm cavities [3], but similar to or smaller than

other theoretical analysis[11]. The TE mode lifetime (and Q) under these assumptions

should be even larger, by the squared refractive index ratio (n/n′)2. Of course, these

should be considered over-estimates for Q, as only the losses due to boundary waves
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have been included.

5. Conclusions

The resonant mode lifetimes of an optical cavity with an equilateral triangular cross-

section have been estimated approximately, employing the exact analytic triangle

solutions for Dirichlet boundary conditions. Deep enough in the TIR regime, both

TE and TM polarizations can be adequately described using DBC. (Neumann BC

applies to either polarization of a single plane wave exactly at the TIR threshold.)

Furthermore, the transition into the TIR regime is much sharper for TE polarization

than for TM polarization. An increased index mismatch at the cavity boundary aids the

confinement of the TE polarization much more than the TM polarization. This means

that for the plane wave components with incident angles only slightly above the critical

value, the DBC approximation is typically much better for TE polarization than for TM

polarization.

The different polarization-dependent Fresnel factors associated with the cavity

boundary produce different rates of energy loss due to evanescent boundary waves. For

these 2D E&M fields at large index mismatch between the cavity and its exterior, this

leads to considerably longer lifetimes for TE polarization, enhanced approximately by a

factor of the squared index ratio (n/n′)2 compared to the TM lifetime. Conversely, the

differences in these lifetimes would be expected to imply stronger coupling of EM fields

from outside to inside the cavity in the TM polarization. This suggests that stimulation

and generation of the modes by an external light source should be more efficient for TM

polarization.
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Federal de Viçosa, Brazil, where this work was completed with support from FAPEMIG.

References

[1] McCall S L, Levi A F J, Slusher R E, Pearton S J and Logan R A 1992 Whispering gallery modes

in microdisk lasers Appl. Phys. Lett. 60 289

[2] Chang H C, Kioseoglou G, Lee E H, Haetty J, Na M H, Xuan Y, Luo H, Petrou A and Cartwright

A N 2000 Lasing modes in equilateral-triangular laser cavities Phys. Rev. A 62 013816

[3] Lu Q Y, Chen X H, Guo W H, Yu L J, Huang Y Z, Wang J, Luo Y 2004 Mode characteristics

of semiconductor equilateral triangle microcavities with side length of 5–20 µm IEEE Photon.

Technol. Lett. 16 359

[4] Poon A W, Courvoisier F and Chang R K 2001 Multimode resonances in square-shaped optical

microcavities Opt. Lett. 26 632

[5] Fong C Y and Poon A W 2003 Mode field patterns and preferential mode coupling in planar

waveguide-coupled square microcavities Optics Express 11, 2897

[6] Moon H-J, An K and Lee J-H 2003 Single spatial mode selection in a layered square microcavity

laser Appl. Phys. Lett. 82, 2963



Resonant mode lifetimes . . . in equilateral triangular dielectric cavities 15

[7] Vietze U et al. 1998 Zeolite-dye microlasers. Phys. Rev. Lett. 81 4628

[8] Braun I et al. 2000 Hexagonal microlasers based on organic dyes in nanoporous crystals Appl.

Phys. B 70 335

[9] Wiersig J 2003 Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A 67 023807

[10] Huang Y Z 1999 Eigenmode confinement in semiconductor microcavity lasers with an equilateral

triangle resonator Proc. SPIE 3899 239

[11] Guo W H, Huang Y Z and Wang Q M 2000 Resonant frequencies and quality factors for optical

equilateral triangle resonators calculated by FDTD technique and the Padé approximation IEEE
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