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Thermomagnetic Transport Coefficients: Solitons in an
Easy Plane Magnetic Chain

G. H. Wysin® and P. Kumar

Department of Physics

University of Florida

Gainesville, FL 32611

Abstract

Using a simple model, we calculate the transport properties of a
one-dimensional easy-plane ferromagnet in the presence of an in-plane
magnetic field. The model incorporates the combined effects of a magne=
tic field gradient and a temperature gradient acting on a gas of
solitons and spin waves. Suggestions are made for experiments capable
of measuring these effects in materials such as BsHiF3 and CHAB
[[CEHIIHHEJEuBrEI. We also discuss their use as another type of probe

for solitons.

PACS Cat. no. 75.10.Jm, 66.70.+f, 05.60.+w



I. Introduction
Long range order cannot exist in one dimension (1-D), however short
range order is possible. For the particular case of one dimensional

magnets,l’z

the spins interact largely along a specific chain direction.
The interaction between the chains is weak and leads to three dimen-
sional ordering at some low temperature Tc' For T > T':I there is a wide
range of temperature (depending on the ratio of in-chain and interchain
exchange constants) where spins display short-range order along the
chains. The ordered regions are separated by domain walls. These walls
are dynamic objects and in an easy plane system, their properties are
similar to those of sine Gordon (sG) solitons. The thermodynamics above
Tc is then determined by the linear waves (magnons) and sulitnns.3 An
extensive series of neutron scattering, susceptibility, specific heat
and spin relaxation measurements lend qualitative, occasionally even
quantitative, support to this picture, for materials such as EsHiF31 and
CHAEB [{EE'HHNHSJEuBrE],4 and also for antiferromagnets such as TMMC
[(cD,) Minc1 ] .2

The object here is to investigate whether the waves and soliton
picture from equilibrium thermodynamics can be extended to transport
phenomena, in terms of weakly coupled soliton and magnon ideal gases,
subjected to gradients of temperature and applied field. Also, we look
into the possibility of analogues of two well known effects in semicon-
ductors (where the carriers are described semiclassically). In a
semiconductor, carriers can be moved by application of either an
electric field or a temperature gradient. Application of one of them
leads to, under proper circuit conditions, appearance of the other. The

equivalent quantities here are the magnetic field gradient and the
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temperature gradient. The former changes directly the energy of the
soliton while the latter affects the thermal population. Thus a field
gradient can cause the soliton (or magnon) population te increase at one
end of the sample, leading to an effective increase in temperature and
vice versa. In as much as an easy plane ferromagnetic chain can be
described by sine Gordon theory, and that an ideal gas-like description
of the sG model is feasible, it should be possible to study this and
other transport effects in a 1-D magnetic system,

The calculatiens described below are in the ideal gas view of
thermodynamics. An obvious improvement of this work will be to address
the well known difficulties (quantum spins and excursions off the easy
plane) of the sG description, and include more precisely the interac-
tions between solitons and between solitons and magnons. Here the
effects of the magnons upon the solitons are grossly taken into account
via an appropriate normalization of the equilibrium soliton distribution
function fn, as taken from Ref. 3 (CKBT). We calculate the magnon
response treating them as a degenerate boson gas while keeping the
solitons non-degenerate. We have also assumed a single relaxation time.
Again, in semiconductors, the relaxation times for mass/charge current
and the heat current are different. We expect the relaxation times for
mass and heat currents of solitons to be different as well. Yet, we
expect the calculations reported below to be quaiitatively correct.
Indeed an experiment would provide invaluable help in constructing

transport theory of nonlinear excitations.

II. Transport Formalism
The ferromagnetic Hamiltonian for the spin degrees of freedom of a

5

single chain is taken to be
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-3 (- § -8 .+ AsH? - w5 (1)
f nil L=3 n n+l n] n )

Here J is the nearest neighbor exchange coupling, A > 0 is the single
ion anisotropy, the gn are classical spin vectors, and the applied field
H (= ngB] is in the easy (xy) plane; g and Hp are the Lande g-factor
and Bohr magneton respectively. Using spherical coordinates §n =
S (cos O cos$, cos @ sin ¢, sin 6), and assuming H/2AS « 1, a continuum
limit approximately produces a sine-Gordon equation of motion for the

in-plane angle ¢:

<0y, - by SUESin G, 0= (K248, (2a)
with
c2 = 2a3s%a %42, mﬁ = 28HS/K (2b)

where a is the lattice spacing and z is the position on the chain. This
sG limit has essentially converted the out-of-plane degree of freedom
8 to the momentum conjugate to ¢ -- this linearization of a nonlinear
degree of freedom is a substantial part of the error introduced in
approximating the full equations of motion by a sG equation. The sG
equation has well-known soliton, breather, and low amplitude linear
modes, and we review some of their properties needed here.ﬁ

The solitons are traveling wave rotations of the spins through 2n
within the easy plane, with the spin-tilting out of the easy plane
being proportional teo the soliton velocity v < €y- This rotation

occurs over a characteristic length &n, determined by the applied field

(for velocities v « cu}
dﬂ = cufmﬂ = JJSKH " (3)
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The energy is that of a relativistic particle of rest mass Mg and rest

Energy En,
E=Ey , y= {l-vzfcﬁl'”z ’ (4a)
Ey = 8(msHY2 | mo =gyl (4b)

but for simplicity we shall use the nonrelativistic limit for Y, Y=
Bt %(vzfeﬁ). The solitons will be treated using classical
Maxwell-Boltzman statistics.

The dispersion relation for the linear modes, or magnons in the

present context, as a function of wavevector k is

2 2
Ei =gg t {Hcﬂk} ~ (5a)
_ | - 2A
Eq = Hmb =35 @ Eﬂl » @ = 5 . (5b}

The relative anisotropy 24/J ~ .38 for spin-1 CsNiF 7 so typically the

35
energy gap for magnons is much smaller than for the solitons
(EGEEG w07, The magnons will be treated using Bose-Einstein
statistics.

Breather states are bound soliton-antisoliton pairs with an in-
ternal frequency. Their contributions are neglected in this calcula-
tion. The low energy breathers can be thought of as bound magnon
states, dependent on the interaction between magnons, and as such
represent a correction term to the soliton-magnon ideal gas theory. In
the simplest equilibrium thermodynamics theory their effects can be
neglected. Similarly, we expect that the neglect of breathers in this

transport calculation introduces relatively small errors, especially in

a paramter regime where solitons are important.
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The model used here to calculate the transport properties of this
easy plane ferromagnetic chain consists of a two-component ideal gas of
magnons and solitons. Any interaction between magonoens and solitons
leads to (a) normalization of their energies and (b) a relaxation time T
representing approach to equilibrium. This picture is exact within sG
theory which is completely integrable. If we stay close to the field
and temperature region where the sG picture is approximately wvalid, we
are allowed to assume that the interaction corrections are negligible.
Hore precisely, we assume that the approach to equilibrium is caused by
an extrinsic mechanism, e.g. magneto-elastic coupling leading to scat-
tering of magnons and solitons by phonons. The intrinsic relaxation
rate for scattering of solitons by magnons is assumed to be negligible
as compared te the extrinsic relaxation ratio. This also means that a
Matthiessen's type rule exists namely, the soliton and magnon transport
currents are additive. In the following the solitonm and magnon currents
are calculated separately.

The nonequilibrium thermodynamics of both solitons and magnons is
described by a linearized Boltzman equation. In a steady state, the
change in distribution function 6f(z,p) from its equilibrium walue

fﬂ(z,p} satisfies (in the relaxation time approximation),

0 0
6f _ 9E _ of of ;
"t T3 ez *F'yp (6)

where E(z,p) is the energy of the carriers, dependent on position due to
the applied temperature and field gradients, and dependent on momentum

p. The applied force F represents the effect of the field gradient.
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In principle equation (6) should be derived from a microscopic
field theory of the Hamiltonian in equation (1). Such a derivation is
beyond the scope of this paper. One expects that such a calculation
will lead to a Boltzmann equation with terms corresponding individually
to renormalized solitons and magnons together with relatively small
interaction terms, accounting for soliton-soliton, secliton-magnon, and
magnon-magnon (or alse breathers) interactions. As a lowest order
calculation we presently ignore these interaction terms, except for the
modification of the soliton equilibrium distribution by the magnons.
(See section ITA). Then, with this approximation, the soliton and
magnons are effectively treated as independent ideal gases. This sim-
plified calculation offers a much clearer view of the kinetic physical
processes involved, avoiding the mathematical difficulties, at the
expense of some accuracy. These higher order interaction effects are
known to improve agreement between theory and experiment for some

equilibrium properties (e.g. specific heat peaks of CsNiF. and CHAB) ,

3
but principally only by rescaling various parameters while leaving the
functional form intact.E We might expect similar behavior for the
transport properties.

The effect of the field gradient will be treated as follows. We
assume that the length scale EH ~ H/(2H/9z) over which the field changes
is very large compared to the soliton width dg' Generally dﬂ may be
anywhere from a few to tens of lattice spacings, while the field
gradient length scale EB is macroscopic, making this assumption very
easily satisfied. Locally, then, the sG solitons are adequate solutions

to the equations of motion. But as they move in the slowly changing

field, they experience its effect as a mild force towards the region of
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lower soliton energy (which is towards the lower field region), being
adiabatically modified and exchanging energy with the applied field.

Thus the force Fs on a soliton is taken to be

- .98 _ _OQEBH _1
Fs T pz T BH 3z zE{

VH
-ﬁ—] : (7)

Similarly, the force on a magnon of wavevector k is taken to be

2
dE £
e
o smmeRaby) % (8)

In the semiconductor context the physically observable transported
quantities are the charge current and heat current. For this magnetic
chain, the solitons and magnons similarly carry heat current, but the
closest analogue to the charge current is a magnetization current. 1In
particular, there will be only an X=-component of magnetization current
(parallel to the field); the vy and z components average out to zero for
both solitons and magnons. Below we treat the different transport

properties of solitons and magnons separately.

ITA. Solitons

The magnetization current jIn and heat current ju will be given by
integrals of contributions from solitons of all velocities (less than
cﬂ), over the distribution which has been perturbed from equilibrium by

the applied driving "forces",
in = J dv v m(v) 6£(v) 2 (9a)

iy = J dv v ou(v) 6f(v) . (9b)

GWPOO1-A



Here v = 9E/Bp represents the velocity; we consider &f as a function of
velocity instead of momentum. The functions m(v) and u(v) represent the
effective magnetization and "heat" or internal energy carried by a
soliton or antisoliton of velocity v. These functions are determined by
requiring that the equilibrium magnetization M and internal energy U
due to the solitons, as given in Ref. 3, can also be written as

integrals over the equilibrium distribution fu{v};
M= fdvmv) 00 (10a)
_ 0
U= [dvaulv) £f(v) . (10b)

M and U are given from the seoliton/antisoliton equilibrium free energy

sol
Fﬂ
F;ul = kT n*°t | (11a)
sol
oF
= 0 _ 39 ,..s50l
H=- = i U= aﬁ(ﬂfﬂ ) i (11b)

where f = {kT]ql.

tot .
tons, n y 18

The total number density of solitons and antisoli-

1/2 -BE,

BE
tot _ [ 0 P : {12}

= —(z—
dﬂ 2n

with d, and ED as defined in equations (3) and (4). Certainly integra-
tien over Eﬂ[v} should give the total number density of solitons and

antisolitons:

n °t = J dv Eu{v} : (13)

GWPOO1-A
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Combining the different expressions for M and U, equations (10) and

(11), results in consistency conditions involving m(v), u(v) and fniv},

0

kT -'g'—ﬁ- =) £2v) (14a)
afd 0
3 = -u(v) £ (v) : (14b)

To completely determine m(v) and u(v) we need to specify fn[v]. Because

we assume the solitons obey classical statistics, fﬂ can be written as

A
Lo -BGE-p)

0
fi(v) =
cndn

) (15)

0

less constant, and a chemical potential p has been introduced in order

where the factor ¢ dﬂ gives the correct dimensions, AD is a dimension-

to write f':r in a standard form. The constant ﬁn is required for proper
phase space counting; the phase space integral is normalized by Plank's

constant, 1/h, [ dp/h + [ dv{mnfh}, and thus An is set by

o _ "o
=% - (16)

With this assumed form for fu{v}, equations (12) and (13) determine the
chemical potential M necessary to recover the CKBT' result for total
soliton number density (also assuming nonrelativistic dispersion

= .08y
E = Eﬂ + MgV ¥

2BE
P an

and thus fﬂ{v) has been specified.

GWPOOD1-A
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Some comments are in order related to the chemical potential. The
quantity p appears explicitly in Eq. (15) as a chemical potential, and
indeed will appear in the Boltzmann equation again as a chemical poten-
tial (Eq. 23). Effectively the factor eﬁu provides the appropriate
normalization for fn, such that we can reproduce the CKBT results for
ntot, M, U, and so on, while at the same time putting fu in a familiar
standard form.

If p is taken to represent a real effective chemical potential,
then it is interesting to consider its effects on quantum degeneracy,
Typically quantum degeneracy is expected to become important when
passes through zero, thereby implying that each solitonm is confined to

an area approaching h or less in phase space. Equation (17) then gives

a corresponding degeneracy temperature Tq defined by

ulf!
75 ED v (18)

kTq = ﬁﬁwﬂ =

One finds kTq o %ﬁ Eﬂ for either L‘sHiF3 or CHAB, i.e., rather larger

than expected when compared to E However, one of the assumptions of

0
the classical ideal gas soliton thermudynamics3 is that kT « Eu, and we
see that there appears to be a limited range of temperatures over which
the classical approach will be walid. Usually one would attempt to
correct this situation by considering the quantum corrections for the
statistical mechanics of the sG equation. This viewpoint will not be
adopted here. Instead, we recall that the classical sine-Gordon thermo-
dynamics does remarkably well in describing equilibrium experimental
data for both EsHiF3 and CHAB, even for temperatures well below the
predicted Tq (for instance, as low as kTq ~ %Eu}. In wview of such

experimental evidence available, it seems reasonable to attempt to use

GWPOO1-A



12

the same classical sG thermodynamics also to describe transport in these
casy-plane ferromagnets, and for the present to ignore any difficulties
which may be implied by the relatively high Tqi And, of course, it is
not clear whether we can really treat p as a true chemical potential
anyway. Indeed, the locations of the quantum and classical regimes for
these materials, for both equilibrium and nonequilibrium problems, is an
issue yet to be resolved.

Then, with fﬂ(v) as already specified, the consistency conditions

(14) determine m(v) and u(v) as

n(v) = - So(E-p) + AKT/H = -(FE-KD)/H (19a)
u(v) = %[am-pn = B-kT | (19b)

It can be easily verified that these reproduce the known low temperature

limit PE; > 1 equilibrium quantities,

ueol o Lot | Snym (20a)
2 0" 2
usel - ntﬂt[Eﬂ-%kT) : (20b)

It should be mentioned that m(v) and u(v) include the leading order
effects of the linear modes acting on the solitons, as obtained in
equilibrium. The number density used here includes the self energy
effects of scattering events of the linear modes with the solitons. To
see this in a different manner, consider the magnetization pulse carried
by a single unperturbed moving sG soliton. The x-component of the
soliton profile is a pulse deviating from the aligned ground state, with

characteristic width dﬂfy,

GWPOO1-4A
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s* = s(1-2 sechzyzfdﬂ} : (21)

Relative to the ground state, the total x-magnetization carried is
= -]
o= [ dz(s*-s) = -4sd /y . (22)
=0

This result shows that for faster moving solitons, which get narrower
due to the relativistic contraction, the absolute value of the magneti-
zation carried decreases with increasing velocity. This is in contrast
to the previous result for m(v) Eg. 19a, including temperature and
linear modes acting on the soliton, where |m(v)| increases with
increasing velocity (for ﬁEﬂ > 2). This reflects the effective soliton
mass increase induced by the linear modes. In any case integration of
o over all velocities cannot give the known equilibrium magnetization,
This observation originally led to the present self consistent method
for determining m(v) and u(v).

To completely specify the currents, we rewrite &6f in terms of the
applied temperature and field gradients, and the force F,

0
-66/1 = v (B (-vI/T)-Wy + F} . (23)

Since p is a function of T and H, we can eliminate Vi in favor of VT and

VH,
Vo = (kT-p) (-VT/T) - kT(-VH/H) . (24)

Thus the seoliton transport results are determined only by VI and VH.

Again, using the nonrelativistic energy relationship, we obtain

GWFDO1-A
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By = Kop (VT + kS ) (25a)
ip = KL (-I/T) 4+ Kot (-w/m) (25b)

with transport coefficients

Kir = Tl + (Be) + 11, K321 = a1 ((pe)? + 4pe, + 12

sol sol _

Kar = Lol + 21, kPl = aneE)? ¢ ope, - 1,

where
Ic Ic
0 0 1
.= — . g, == < = (27a)
1 52 2 ﬁ2 2H
1/2 -BE
o 1/2 0
I. = — (BE ) a . (27b)
0 anz 0

Aside from some prefactors these results depend only on BEH' There is

no Onsager symmetry relationship relating K;;l and KEEI, due to the fact

that the field gradient creates wvelocity dependent forces (recall

F ~ E), thereby eliminating any Onsager symmetry. K:;l and K:;l

both negative since the soliton magnetization is always a deviation from

are

the aligned ground state configuration.

IIB. Magnons

The general approach used for magnons is the same as for the
solitons, with some minor differences. They will be described by
Bose-Einstein statistics, with zero chemical potential, and the phase
space integrals will be over wave vectors k instead of velocity. Again
the presence of velocity dependent forces implies a lack of Onsager

GWFOO1-A

, (26a)

(26b)
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symmetry. The magnetization and heat carried by a magnon of wavevector

k are
%
m(k} = - E (233]
k

u(k) = €y (28b)
The equilibrium distribution is assumed to be

0 1

S ; (29)

k
e -1
then we obtain the following magnon transport coefficients
ag _ | ag _ 5 3
Kapo =3 (Beg)™" s, (Beg) ,  KIoE =a Jpe so(Pey) ,  (30a)
ag _ ag _ 1 3

Kar- = 25 Bey so(Beg) , Kiof = a, 2(pe)’ s ,(Bep) ,  (30b)

with the functions sn(xu} defined by the integral
1,2 2.1/2 2,1
n- ’
sn(xu} = jx dx ¥ “(x ~Xq /sinh (Ex] . (30c)
0

I1I. Results
Some typical results for these transport coefficients vs. field at

fixed temperature and vs. temperature at fixed field are shown in

7
3"

overall scale of these curves we would need reasonable estimates of the

Fig. 1, for parameters appropriate to CsNiF Note that to ebtain the

relaxation times Ts and Tmag' Also note that these are results for a

ol

single chain, and must be multiplied by the chain number density per

GWPOO1-A
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unit area to obtain conductivities for the bulk medium., As mentioned in
the introduction, the total currents will be given as the sum of soliton
and magnon contributions - the relative contributions being directly
proportional to the respective relaxation times.

It would be useful to identify a quantify which might serve as a
signature of soliton flux. In equilibrium experiments attempting to
identify soliton contributions, the typical approach has been to make
measurements with and without the applied easy-plane field, thereby
observing cases with and without sG solitens present, and attributing
the differences mostly to the solitons and partly to higher order magnon
processes. For example, doing this for the specific heatg'lu predicts a
peak in the specific heat vs. field, whose position and height are pro=
portional to T2 and T respectively, assuming sG solitons are responsi-
ble. We can attempt the same approach here. If the field is set to
zero, no sG solitons are present. Then only magnons contribute to the
currents, and if we also have VH = 0, then the magnetization current is

identically zero. 1In this case the heat current simplifies to

T c
iy = AL s (0)-(-vyT) (31)

u 2
B
where sztﬂj = 1.0472. Now if a uniform field is turned on (still with
VH = 0), the soliten contributions are added, such that the net change

in the total thermal conductivity ﬂKuT' is given by

nagl€2(Beg) = 5,(0)]

o0
ﬁKuT = (—EEJII

-BE

T
v St G e O e 2cpE? + ey + 1) (32)

GWPOO1-A
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and recall that Eq = (JUIES}EH. In Fig. 2 we show the respective magnon

and soliton contributions to AK and the total due to both, assuming

uT?

equal relaxation times. In a case where Tl P T

magnon contribution. The soliton contribution to ﬂKu

mag’ ¥ €an ignore the

T taken alone has a
peak at a field given by (BEDJPEnk = 1.6654. This in curn then predicts
that the field at which the peak occurs is proportional to Tzi similarly
so will be the height of the peak. Peaks can still occur for Taol =
tmag' as in Fig. 2c, but the positions are shifted from the pure soliton

peaks to lower fields. This is shown in Fig. 3, where the peak position

H LY 1 is plotted for T

ea =®, 10.0 and 1.0, for 3K < T <

sal!tmag -
15 K. Perhaps this effect would provide an experimental means for
approximately determining the ratio of the two relaxation times,
provided it is not too different from 1. Alsc note that even for Vaof =
tmag’ the height of the peaks in ﬂKuT is still very closely proportional
to T2 (Fig. 2c).

Another quantity which could be measured is an effective thermo-
power like coefficient, i.e., the ratio of temperature gradient
generated to a given applied field gradient, assuming either the magne-
tization current or heat current can experimentally be set to zero,
Some typical results for (VI/T)/(VH/H), combining soliton and magnon
contributions, are shown in Figures 4 and 5, for various lifetime ratios
Once again it would be extremely useful to assign an

tsulftmag'

approximate value to this ratio.
IV. Discussion
We can contrast this calculation with others relating to nonequi-

librium 1-D soliton dynamics. Other theoretical studies have included:

GWPOO1-A
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i) numerical calculation of spin dynamics for the easy-plane ferro-
magnet, in combined dc and ac arbitrary driving fields, and including
damping;ll ii) similar numerical studies of the dynamics of the damped
driven sG srstem;lz iii) Fokker-Planck and other treatments of the
overdamped sG syatem;la and 1iv) other less closely related problems
invelving transport, such as in polyacetylene. The first two of these
have involved spatially uniform driving, and studying transitions of the
system as a whole to chaotic dynamics, rather than transport. They have
emphasized as a general concept the idea that spatially coherent struc-
tures present in nonchaotic regimes compete with the tendencies of the
individual particles of the systems to move onto chaotic trajectories,
and thus transitions to chaos occur at different control parameter
values for the coupled system compared to the individual particles. The
Fokker-Planck studies of sG systems have not stressed any particular
physical context such as the easy-plane ferromagnet, and generally have
treated only the large damping limit.

This calculation is an attempt to estimate the leading order
behavior of soliton transport for the easy-plane ferromagnet, and it
should be emphasized that it has a number of limitations. First of all,
the continuing controversy over classical mechanics vs. quantum me-
chanitslﬁ for an equilibrium description of low spin systems must be
just as relevant for nonequilibrium properties, Cla;sital statistical
mechanics of the sG model is in fair agreement with some experiments for
easy-plane ferro and antiferromagnets, but inconsistencies persist. If
the system could be described entirely using classical mechanics, one
should then use the solitons of the classical easy-plane ferromagnetic

Hamiltonian, including the complete effects of the out-of-plane degree

GWPDO1-A
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of freedom. But these solitons are known to have dynamics strongly dif-
ferent from sG solitons, including an instability fieId,15 instability
with respect to collisions, and E(v) not single valued.lﬁ In particular
any effects of an instability have not been seen in experiments. Also,
classical transfer matrix calculﬂtiunsl? using the easy-plane ferro-
magnetic Hamiltonian greatly overestimate the peak heights in the speci-
fic heat, when compared to classical sG theory or experiment. Recent
"numerically exact" quantum transfer matrix caltulatinnsIE for a spin-%
easy-plane ferromagnet also give lower values for the specific heat peak
heights, but not entirely consistent with experimental data#’I? for
CHAB. However, the various classical transfer matrix calculatinns,lT‘lg
including and excluding the out-of-plane degree of freedom (i.e. easy-
plane magnet vs. sG) when compared with the various quantum calculations

mraila:l:ulaeﬂl‘ﬂ"::'[‘:i

have allowed a reasonable explanation of how classical
sG theory can be applicable. The consensus seems to be that quantum
effects strongly restrict the spins to the easy plane, thereby competing
with (or eliminating) the tendency for out-of-plane motion, and allowing
classical sG theory to be valid even for a fundamentally strongly quan-
tum (5 = %) system. For the nonequilibrium calculation presented here
this is the viewpoint we must assume. However, at some later stage it
may be instructive to investigate transport for the distorted classical
solitons of the full easy-plane ferromagnetic Hamiltonian, to extend the
contrast between it and the sG system.

Lacking specific knowledge about the dynamics of the relaxation
processes, we have used only the relaxation time approximate solution te
the linearized Boltzmann equation. Obviously, more detailed information
would help in estimating Too1 2nd tmag' which would then set an absolute

scale to our results. Finally, we also have ignored contributioms due

GWEO0D1-A
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to breathers and other higher order interaction terms. In spite of
these difficulties, there may be some range of adequately low field and
temperature over which these results are applicable. Clearly, a non-
equilibrium transport experiment will help to determine the relative
importance of carrier interactions, and also whether a nonequilibrium

soliton picture is reasonable, for materials such as CsNiF, and CHAB.
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Figure Captions

a) Calculated transport coefficients Ku and K normalized

T uH

by a, = Tcﬂf{ ﬁz}, for CsHiF3 parameters J = 23.6 K, A =

4.5 K, g = 2.4, verses temperature T in Kelvin. The curves

sol ; sol
corresponds to Ko (solid), L

ag o ] e
KEH (chain-dotted); b) Transport coefficients K,r and KmH’

(dashed), Kﬁ;g[dutted} and

normalized by a, = -a,/2H, for CsHiF3 parameters. The curves

sol ? sol ag
correspond to KT (solid), K h (dashed), K:T (dotted) and

Kﬁ;gichain-dntted).
The change in thermal conductivity ﬂKuT = KuT{H] - K“T{ﬂ},

using EsNiF3 parameters as in Fig. 1, and normalized by a,

vs. the applied field H for a series of temperatures. The
soliton contribution is shown in a), the magnon contribution

is shown in b), and the total is shown in c) for Tl = Fooie

2

Positions of the peaks in the total axu vs. T", for

Tl

Isulftmag = w (solid), 10.0 (dotted) amd 1.0 (dashed), for

C5H153 parameters.

Ratios of total KquKuT’ equivalent to -(VT/T)/(VH/H) at
zero heat current, for CsHiF3 parameters, and lifetime ratios
rsalftmag = 0.1 (dotted), 1.0 (solid) and 10.0 (dashed).
Part a) shows the temperature dependence at H = 5.0 kG, part
b) shows the field dependence (H in kG) at T = 5.0 K.

Ratios of total KmeKmT' equivalent to -(VI/T)/(VH/H) at zero
magnetization current, for EsHiF3 parameters, and lifetime
ratios tsolftmag = 0.1 (dotted), 1.0 (solid) and 10.0

(dashed). Part a) shows the temperature dependence at

H=5.0 kG, part b) shows the field dependence (H in kG) at

T

5.0 K.
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