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We develop and carry out Monte Carlo simulations for an ensemble of superparamagnetic
particles uniformly distributed in a nonmagnetic matrix. We find the magnetization below
the blocking temperature TB when it shows hysteresis and above TB in the superparam-
agnetic region. We determine the blocking temperature for a set of anisotropy strengths
from the magnetization and the susceptibility of the particles. A fixed number of Monte
Carlo steps with a constrained acceptance rate is shown to be equivalent to an observation
time in the simulations that is much shorter than experimental observation times. We show
how the blocking temperature obtained in the simulations can be converted into the cor-
responding experimentally measurable blocking temperature by using this difference in the
observation times. This provides a new method to compare Monte Carlo simulation results
with experiments, such as recent ones on fcc Co particles.

PACS numbers: 75.10.Hk, 75.60.Jp, 75.10.Nr, 75.30.Gw

A number of numerical simulations have been per-
formed to study the magnetic properties of clusters or
very small particles both at nonzero1–8 and at zero
temperatures.9,10 The nonzero temperature properties
have been studied in Monte Carlo (MC) simulations1,2

assuming that the anisotropy of the particles can be ne-
glected. While this assumption is reasonable when the
particles are studied on an atomic level or when the
magnetization of the particles behaves essentially para-
magnetically, it excludes the low temperature proper-
ties when the magnetization shows hysteresis due to the
anisotropy. Here we intend to study the combination of
temperature and anisotropy effects on the magnetization
of fine magnetic particles using the Metropolis Monte
Carlo scheme.11

The description of the magnetic properties of single-
domain particles in general for nonzero temperatures is
based on the superparamagnetic theory.12 The basic as-
sumption of this theory is that the atomic magnetic mo-
ments within a particle are moving coherently and thus
its magnetic moment can be represented by a single vec-
tor with a magnitude equal to µ = µ0N , where µ0 is
the atomic magnetic moment in Bohr magnetons and
N is the number of atoms in the particle. The mag-
netic moment of the particle is considered coupled to a
uniaxial anisotropy, for instance due to crystal or stress
anisotropy, and to the external magnetic field. In the ab-
sence of an external field, the uniaxial anisotropy leads to
two equivalent equilibrium states of the moment. For an
ensemble of identical particles which have been initially
saturated in a given direction, the magnetization per par-
ticle will decrease from its initial value as M = Mse

−t/τ ,
where Ms = µ/V and V is the particle’s volume, as equal
populations of the two states are acquired due to thermal
fluctuations.

The relaxation time τ is essentially the average time to
reverse a particle’s magnetization from one of the equilib-
rium states to the other, and is determined by the Boltz-
mann factor exp (−D/kBT ) and a characteristic constant
frequency f0 (of the order of 1010 Hz) through the rela-
tion

1

τ
= f0 exp(−D/kBT ), (1)

where T is the temperature, kB is Boltzmann’s constant
and D is the energy barrier separating the two states.13

D is determined by the anisotropy energy density K and
the particle’s volume, D = KV . For high T (kBT � D)
the time-scale of the thermal relaxation τ in Eq. (1) is
much shorter than any experimental observation time
over which magnetization is measured, so the system ap-
pears superparamagnetic. On the other hand, for low T
(kBT � D), the thermal reversal time scale τ becomes
very large, much larger than any observation time, and
the system appears ferromagnetic. The temperature de-
termined from Eq. (1) with τ set equal to the experimen-
tal observation time t defines the blocking temperature
TB which separates the two regimes. However, the time
t is determined by the experimental requirements, so the
definition of TB is not unique, but can depend on the
type of experiment. For t = 1000 (sec) we have

TB ≈ D/30kB, (2)

where the numerical factor comes from ln(f0t) ≈ 30 for
f0 = 1010 Hz. If we want to use Monte Carlo or even a
spin dynamics simulation based on Landau—Lifshitz or
Langevin equations to study the magnetic properties in
the presence of anisotropy, it is impossible to make a long
enough simulation that will correspond to 1000 seconds.
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Therefore, part of our goal here is to describe how a labo-
ratory value of TB can be obtained from simulations that
correspond to observation times much less than 1 second.

We show in this paper that all of the results in the
superparamagnetic theory can be obtained by Monte
Carlo simulations where we use an observation time much
smaller than the experimentally used values. Neverthe-
less, the data from the simulations can be compared with
experimental results after we account for the shorter ob-
servation time of the Monte Carlo simulations.

We choose to do the simulations by using a Metropolis
Monte Carlo scheme rather than using Landau—Lifshitz
or Langevin equations because the implementation of the
temperature is straight forward. However, it presents
the usual problem with MC schemes that individual MC
steps do not correspond to real time, but are only sam-
pling the phase space at some rate. If the MC acceptance
rate can be set to some desired value (we use 30 to 40%),
however, this effectively sets the rate of motion in phase
space. For the problem here, the magnetic moment can
remain for many steps in one side of the double potential
well due to the anisotropy term. Over some character-
istic number of MC steps, it will typically pass near the
barrier to go to the other side of the well. That is, there
really will be a characteristic attempt frequency to jump
to the other well, measured in attempts per MC step.
This frequency should correspond approximately to f0

in Eq. (1), and implies the conversion of MC steps, or
“MC time”, into real time. We do not, however, try to
measure the characteristic frequency directly in MC sim-
ulations. Instead, we use a fixed large number (1.2×106)
of MC steps, keeping the acceptance rate from 30% to
40%, and determine TB from magnetization and suscep-
tibility results for different values of D. We find a linear
relation between TB and D, as in Eq. (2), but with the
numerical factor of approximately 14.8 instead of 30. The
smaller numerical factor is interpreted to mean that the
1.2×106 MC steps correspond to a much shorter “obser-
vation time” tMC than the 1000 (s) applied in Eq. (2),
according to ln(f0tMC) ≈ 14.8.

By understanding this effective physical time scale over
which the MC averages were made, it allows us to infer
the corresponding laboratory measurements that would
be made at the 1000 (s) time scale. Although the model
used here is simple, these ideas are important for the
interpretation of any simulation of a more realistic model
of fine magnetic particles with metastable states relaxing
over a barrier at finite T .

We assume that our system consists of an assembly of
spherical particles with identical sizes. The particles are
embedded in a nonmagnetic matrix and can be consid-
ered approximately as noninteracting. Due to the spher-
ical shape of the particles we assume that the origin of
the anisotropy is only from crystal anisotropy. Such a
kind of a system has been realized experimentally (see,
for example, Ref.14).

Next, we assume that the magnetization is homoge-
neously distributed throughout the volume of the parti-

cle and thus can be represented by a single vector with a
constant magnitude. The Hamiltonian of each particle is

H = −µ ~H · Ŝ − D(n̂ · Ŝ)2, (3)

where ~H is the external magnetic field, Ŝ, the “spin” of
the particle, is a unit vector along its magnetization, and
n̂ is a unit vector along the particle’s anisotropy axis. The
n̂—vectors of the particles are assumed to be uniformly
distributed in all directions. When we calculate the com-
ponent of the magnetization of the system along the field,
it is enough to calculate the average magnetization of the
particles with anisotropy axes n̂ in a single plane which

includes the direction of the field ~H . The magnetization
of the system will then be obtained using the azimuthal
symmetry about the direction of the field. We chose the

z-axis to be along ~H and take the xz-plane as the plane

containing ~H and n̂. The Hamiltonian of each parti-
cle is invariant under the transformation n̂ → −n̂ so we
may restrict the angle θ between the field ~H and a given
anisotropy axis n̂ in the interval 0 ≤ θ ≤ π/2. To obtain
the magnetization per particle and the susceptibility of
the system we perform two averages. First, we determine
the thermal averages 〈Sz〉θ and 〈S2

z 〉θ for a given n̂(θ) by
Monte Carlo simulations, and second, we average these
results over the uniform distribution of n̂ on the unit
sphere. Then the magnetization per particle will be

M = Ms〈Sz〉 = Ms

∫ π/2

0

〈Sz〉θ sin θdθ (4)

and the mass susceptibility is

χ =
µσs

kBT

∫ π/2

0

(〈S2

z 〉θ − 〈Sz〉
2

θ) sin θdθ, (5)

with thermal averages

〈Sk
z 〉θ =

∫

e−βH{θ,θ′}Sk
z dΩ′/

∫

e−βH{θ,θ′}dΩ′ (6)

for k = 1, 2 and H{θ, θ′} = −µHSz − D(nxSx + nzSz)
2,

Ŝ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′), n̂ = (sin θ, 0, cos θ),
β = 1/kBT , dΩ′ = sin θ′dθ′dφ′. The saturation magne-
tization σs = MsV/m is in (emu/g), m is the particle’s
mass, and the magnetic moment µ of the particle is in
Bohr magnetons.

The average over the distribution of anisotropy axes,
i.e. taking the integrals in Eq. (4) and Eq. (5), is per-
formed numerically using the extended midpoint rule,
dividing the interval 0 < θ ≤ π/2 into 90 parts and
incrementing θ by ∆θ = 1 degree. The thermal averages
〈Sz〉θ and 〈S2

z 〉θ, defined by Eq. (6), are calculated in the
Monte Carlo simulations for each θ using the Metropolis
algorithm.11 The most important part of our implemen-
tation of the Monte Carlo simulation is in the way of
performing Monte Carlo steps (MCS). In a Monte Carlo

step an attempt to change the spin from Ŝold to Ŝnew is
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made such that the deviation of Ŝnew from Ŝold is small
but randomly chosen with a fixed limit δSmax. This ap-
proach allows the freedom to control the acceptance rate
of MC moves by adjusting the limit δSmax and, more im-
portantly, models the real system more accurately than
other schemes used2 where Ŝnew is completely randomly
chosen independently from Ŝold. It is very important to
understand that if we employed this latter type of move
the system would always be paramagnetic for any T > 0
and no hysteresis would result. That is, for completely
random and independent moves arbitrarily large fluctu-
ations are allowed in a single Monte Carlo step and the
system will escape very quickly from any metastable state
which may be responsible for hysteresis. We actually
perform the Monte Carlo in such a way that it samples
the phase space only “locally” (near current position), al-
lowing for confinement into metastable states responsible
for hysteresis. It is important to use such a non-ergodic
scheme in order to obtain the blocking temperature.

The initial equilibration for each θ and given initial
values of H and T uses the first 10 to 15 thousand MCS,
which are also used to adjust the acceptance rate to be
approximately between 30 and 40%. These limits of the
acceptance rate are chosen to optimize the simulations,
however, it is essential that we use this same acceptance
rate for different temperatures in order to produce a con-
stant rate of sampling. In this way, the mapping of MC
”time” to experimental time will be considered to be the
same for different temperatures. By using a constant
phase space sampling rate, it is then possible to observe
the obvious change from fast relaxation in the superpara-
magnetic regime, to slower relaxation in the ferromag-
netic regime.

The next 1.2 × 106 MCS are used to collect data but
the consecutive measurements are taken with a specific
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FIG. 1. Dependence of the reduced magnetization on the
temperature for zero cooled system and different values of
D/kB . The external field is constant and equal to 500 (Oe).

interval of MCS between them to minimize the correla-
tion in the data. In the sense of our above discussion,
the observation time of the simulation is determined by
the number of MCS NMC = 1.2×106 made, with a fixed
acceptance rate, for each measurement. When chang-
ing either H or T a new fine equilibration is performed,
adjusting also the acceptance rate before collecting data
again. To consider how to use our simulation data to find
TB, we review how TB is found in real experiments.

In experiments, the blocking temperature is deter-
mined by scanning M(T ) or χ(T ), starting from a zero
field cooled sample and then applying a very small field
and taking measurements as a function of T . The mag-
netization of the system is very close to zero for very
low temperature since approximately half of the particles
with a particular anisotropy axis n̂ have their moments
along n̂ and the other half along −n̂; n̂ is also uniformly
distributed on the unit sphere. That is, the thermal fluc-
tuations are very weak (kBT � D), and they cannot
move the moments from the metastable state (moment
has component against H) to the global equilibrium state
(moment has component along H) implied by the pres-
ence of the very small field, µH � D. Equivalently, the
relaxation time τ in Eq. (1) will be much greater than
any physical observation time. Increasing T will increase
the thermal fluctuations (τ decreases) and thus the prob-
ability for a transition from the metastable state to the
equilibrium state. This will increase 〈Sz〉. The increase
will continue until the system reaches TB. The assembly
of particles will be in the superparamagnetic region for
T > TB and 〈Sz〉 will decrease accordingly when we fur-
ther continue to increase T . TB can also be determined
from the inverse susceptibility, which will have a mini-
mum for T = TB and will increase linearly with T in the
superparamagnetic region.

To determine TB in the simulations we follow the ex-
perimental procedure. We start with two spins for each
θ. Initially one of them is along n̂ and the other along
−n̂ since in the zero field cooled sample one half of the
particles with this n̂ will have on the average their mag-
netization along n̂ and the other half along −n̂. Then
we apply very small constant field H and start to calcu-
late M(T ). This is done for a number of values of the
anisotropy coupling constant 100 ≤ D/kB ≤ 700 (K).
These are typical values, for instance, for Co particles
where Kbulk = 2.7 × 106 (erg/cm3). Different values
of D will correspond to different sizes of particles. The
reduced magnetization M/Ms (Ms is the saturation mag-
netization) obtained by simulation (zero field cooled) is
shown in Fig. 1 as function of T for H = 500 (Oe) and
different values of D/kB. Selected error bars are shown in
the superparamagnetic region; the error bars for T < TB

are of the size of the symbols used or smaller. Changing
the value of H to 100 (Oe) did not change the observed
position of the peak of the magnetization but made the
data more noisy, particularly for large D when µH is
more than two orders of magnitude smaller than D. The
susceptibility is shown in Fig. 2 for the same set of
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FIG. 2. Reduced inverse susceptibility of the system vs. T
for the same values of D/kB as in Fig. 1.

parameters. The blocking temperatures determined from
the peak of the magnetization or from the minimum of
the susceptibility do not differ by more than 1 (K). The
dependence of TB on D and a linear fit are shown in
Fig. 3. We have D/kBT MC

B = 14.81 ± 0.25 from the
slope of the linear fit. Therefore, if we assume that the
characteristic frequency f0 is the same as in the experi-
ment (1010 Hz) we can use Eq. (1) to define an effective
observation time tMC of the Monte Carlo simulations.
Substituting D/kBT MC

B = 14.81 in Eq. (1), we obtain
tMC = 2.70 × 10−4 (s) for a measurement consisting of
NMC = 1.2 × 106 MCS. Increasing the number of MCS
decreases T MC

B and increases tMC but to use a relaxation
time equal to 1000 (s) in the simulations we would have
to use approximately 1.2×106×exp(15.21) MCS per data
point.
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FIG. 3. Dependence of the blocking temperature on the
anisotropy energy and a linear fit to it.

Nevertheless, we can compare the magnetization curves
from our simulations with the experimental ones after we
take into account the much smaller observation time in
the simulations compared to the observation time of 1000
(s) used in the experiments. To account for this differ-
ence we have to consider the measurement of the mag-
netization in two intervals of time with different lengths.
If the temperature and the magnetic field are fixed, the
magnetization measured in intervals of time t1 and t2
(t1 < t2) will be greater for the shorter interval of time
t1 since the magnetization will fluctuate less on a shorter
time scale. Thus, if we are to measure the same value
of the magnetization in two intervals of time t1 6= t2 at
the same external field, we have to perform the measure-
ments at different temperatures. A particular rate of the
fluctuations in a given interval of time can be seen in a
shorter interval of time if the temperature is higher since
the rate of fluctuations of the magnetization will increase
with temperature. Therefore, we expect that a value of
the magnetization measured in an interval of time t1 and
at temperature T1 should be measured also in a time
interval t2 (t1 6= t2) but at temperature T2 such that
T1/TB1 = T2/TB2, where TB1 and TB2 are the blocking
temperatures determined from Eq. (1) with relaxation
time τ set to t1 and t2 respectively.

We can also apply Eq. (1) to obtain a relation be-
tween the blocking temperature in MC simulations and
the blocking temperature in experiments. If an MC ob-
servation time tMC leads to a blocking temperature T MC

B ,
and the longer laboratory observation time tL leads to the
lower blocking temperature T L

B , then these are related by

D

kBT L
B

=
D

kBT MC
B

+ ln

(

tL
tMC

)

. (7)

If the absolute scale of time for the MC simulation were
known, then this would specify how to obtain the labora-
tory blocking temperature from the simulation. However,
tMC is not known in an absolute sense, since the “time”
in the MC simulation is measured only in MC steps, with
no physical dimensions. Alternatively, we can adopt a
different interpretation of Eq. (7). In the MC simulation
we found D/kBT MC

B = 14.81, and we can use Eq. (7)
to determine the value of tMC that recovers the usual
experimental result, D/kBT L

B ≈ 30. Using tL = 103(s),
this leads to tMC = tL exp (−15.12) = 2.70×10−4(s), the
same value as stated earlier. We should also note that Eq.
(7) can be generalized to the case where the anisotropy
constant D takes a different value in the simulation than
in the laboratory. (i.e., change D → D′ on RHS.) The
formula really only specifies how the ratio D/TB changes
with observation time.

With these ideas in mind, we can compare our results
from the simulations with the data for fcc Co particles
18 (Å) in diameter.14 The experimental values for the
anisotropy energy and the magnetic moment per particle
are D/kB ≈ 648 (K) and µ = 550µB with TB = 22 ± 2
(K). The blocking temperature determined from the
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FIG. 4. One half of the hysteresis loops for a set of temper-
atures below TB , where TB = 44(K). The inset shows the
comparison of the reduced coercivity hc (see the text) with
the superparamagnetic theory.

Monte Carlo simulations (Fig. 1) for D/kB = 648 (K) is
T MC

B = 44±1 (K). By Eq. (7), this maps into T L
B = 21.7

(K), in agreement with the experimental value, as must
be the case, because the experimental value of anisotropy
constant is determined from the experimental blocking
temperature via Eq. (2).

The hysteresis loops (magnetization for H increasing
only) are shown in Fig. 4 for the same value of D/kB and
a set of temperatures T < TB. The observed coercivity
agrees well with the theoretical value given by

Hc = 0.48 ×
2K

Ms
(1 −

√

T/TB). (8)

for an assembly of particles with randomly oriented
anisotropy axes.15 The inset of Fig. 4 shows hc =
Hc/Hc0, where Hc0 = 0.96K/Ms, from the Monte Carlo
data and from the theory. The reduced remanent mag-
netization Mr/Ms also agrees well with the theoretical
value of 0.5 and starts to deviate from it when T ap-
proaches TB.

While the values of hc are in good agreement with the
superparamagnetic theory, the experimental values for
the same ratio of T/TB are approximately one order of
magnitude smaller. This could be caused by existence
of imperfections in the crystal structure of the particles
though it does not seem to be the case.14 There are also
considerable deviations from the bulk properties when
the size of the particles is decreased. For instance, the 18
Å in diameter particles show anisotropy energy density
about an order of magnitude larger than the bulk value
and the atomic magnetic moment also increases. These
are attributed to surface effects which should lead to de-
viations from coherent rotation of the atomic magnetic
moments, particularly of the surface spins which have less

nearest neighbors and could fluctuate more. The number
of surface sites is considerable in such small particles so
the smaller coercivity may be due to surface effects too.

Finally, the magnetization curves for three values of
the temperature above TB are shown in Fig. 5 again for
D/kB = 648 (K). These results show that the MC simu-
lations are consistent with the superparamagnetic behav-
ior which is illustrated by the overlap of the magnetiza-
tion curves when plotted vs. H/T , the inset in this figure.
The experiment also shows superparamagnetic behavior
but with approximately half as large saturation magneti-
zation at large external magnetic fields for the same val-
ues of T/TB which is attributed to a core—shell structure
of the particles14 with a saturation magnetization of the
shell of the particle much smaller than the net magnetic
moment of the atoms in the shell. Since the small satura-
tion magnetization of the particles at large fields cannot
be obtained assuming coherent rotation of the atomic
spins, it is of importance to consider the magnetic prop-
erties of the particles with their internal structure taken
into account when the surface starts to dominate their
properties.
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FIG. 5. Reduced magnetization of the system vs. H for
T > TB = 44(K). The inset shows the overlap of the magne-
tization curves when plotted vs. H/T . The error bars are of
the order of the symbols or smaller.

In conclusion, we carried out Monte Carlo simulations
for an assembly of particles with randomly oriented uni-
axial anisotropy. The simulation recovers all of the re-
sults in the superparamagnetic theory. The observation
time in the Monte Carlo simulations is much smaller than
the corresponding time in the experiments. The effect of
the smaller observation time leads to a higher blocking
temperature in the simulations and generally the super-
paramagnetic properties which are observed in the ex-
periments for a given temperature should be observed
in the simulations at a higher temperature. A compar-
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ison of the simulations with the experiments on fcc Co
particles 18 Å in diameter for the same ratio of T/TB

shows that while the properties of these particles are gen-
erally superparamagnetic there are two deviations from
the theory and from the simulations. The coercivity in
the experiment is about an order of magnitude smaller
than the values of the coercivity in the superparamag-
netic theory and in the simulations, and the saturation
magnetization for T > TB is about half as large as in our
simulations. These deviations are assumed to be caused
by the surface of these particles which requires a study of
such particles on an atomic level. The method we have
used suggests a possible extension for simulations on a
single particle with its atomic structure considered and
anisotropy included.
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