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Abstract

The transient electrical response of GaAs photoexcited by a sub-picosecond
pulse, in the presence of a uniform biasing electric field, has been studied using
a Monte Carlo calculation. Non-interacting electron transport is considered,
using the three-valley model for the conduction band. Scattering from acous-
tic, optical, and intervalley phonons is included. The valence band dispersion
relations and valence to conduction band momentum matrix elements needed
to treat the optical absorption were obtained from a full zone k-p calculation.
The optical absorption has been given a realistic treatment by including an
effective energy linewidth resulting from the combination of the Fourier trans-
form of the driving pulse, electron-phonon scattering, and the effect of the
applied electric field. The average electron velocity is found to overshoot its
steady state value only if the electric field is larger than a critical value which
increases with the photon energy. For example, these calculations indicate that
at 5.0 kV/cm, overshoot occurs for a photon energy of 1.5 eV but not for 1.7
eV. Velocity overshoot is seen to occur when the steady state average electron
energy (for the given applied field) is larger than the average electron energy
of the initial photoexcited distribution. The regime of applied field and photon

energy necessary for overshoot is mapped out.



L. Introduction

Design of semiconductor devices with desired high-speed properties requires an
understanding of how the microscopic dynamics of carrier transport results in a
particular electrical response. The transient response of a semiconductor is a direct
consequence of the relaxation of the carrier distribution towards its steady state.
The relaxation depends on the interactions of the carriers with the lattice and
with each other, as well as on the details of the band structure. An accurate
microscopic model of the carriers’ dynamics therefore can be a very useful predictive
tool. The Monte Carlo (MC) method!~® can be employed in the accurate calculation
of individual semiclassical electron (and hole) trajectories and thus, can ultimately
give the macroscopic response. At the same time its appeal to physical intuition and
direct interpretation make it ideally suited to these distribution relaxation problems.

Laser excitation provides a convenient method for suddenly changing the carrier
distribution and then following the relaxation. Current experimental techniques al-
ln:-;w for measurement of electrical transients in semiconductors on the sub-picosecond
time scale. Experiments have been performed in which a colliding pulse, mode-
locked (CPM) laser is used to produce a train of pulses that have durations of
about 100 fs and energies of 2.0 eV. The beam of pulses is split into two beams,
with a timing relationship that can be precisely varied. One beam is used to pho-
togenerate electron-hole pairs in an electrically biased semiconductor sample, and
the second beam is used in the temporal sampling of the electrical response.f=® The
sampling can be performed either with a short response-time photoconductor or

with an electro-optic polarizing material.



The CPM lasers that have been used for such experiments are tunable only
over a very narrow spectral range near 2.0 eV. However, experimental studies for a
range of photon energies are needed to fully characterize photoconductive responses,
because the initial carrier distribution depends strongly on the photon energy. Ex-
perimental techniques to generate spectrally tunable subpicosecond pulses are be-
coming available.®~'° To aid in the interpretation and understanding of these types
of experiments, we present a MC calculation of the relaxation of the distribution
for photoexcited GaAs in the presence of a uniform electric field. In particular,the
dependence of the response on the photon energy will be determined.

The dynamics of carrier relaxation toward a steady state distribution depends on
the initial distribution and on the steady state distribution. The initial distribution
is determined by the characteristics of the laser pulse, principally the photon energy,
and the steady state distribution is determined by the electric field. In this paper,
we present a systematic series of Monte Carlo calculations of electron relaxation
in GaAs. We consider the case in which the electrons are generated by a 100 fs
optical pulse and the GaAs is biased by a uniform electric field. We investigate
the dynamics of the electron relaxation as a function of the photon energy and the
magnitude of the applied field.

Similar MC calculations® have been performed with a field, but using as initial
condition the state with all carriers at rest at k=0. It is impossible to create this
situation experimentally. Photoexcitation results in the initial carrier distribution
occupying two or three shells in k-space, one from each of the highest valence
bands. For the k=0 initial condition, MC calculations predict that the transient

average carrier velocity overshoots its steady state value, sometimes by a large



factor. The initial condition produced by photoexcitation, however, can lead to
completely different results, such as a lack of any overshoot feature. In this paper,
we determine the conditions on the photon energy and bias field for electron velocity
overshoot to occur.

Our calculations indicate that an accurate determination of the photoexcited
distribution (and therefore its average electron energy) is necessary for an accurate
modeling of the electrical response. We find that velocity overshoot occurs only
when the initial state average electron energy is less than the steady state value.
The initial average energy is roughly proportional to the photon energy minus the
band gap, and the steady state average energy is a nonlinear function of the applied
field, so that the presence of velocity overshoot is determined by the relative size of
the photon energy compared with the field.

We have calculated the photoexcited distribution by using valence bands ob-
tained from a full zone k-p calculation, while using a nonparabolic effective mass
fit to the I'-valley of the conduction band. The fitting procedure for the conduction
band (as opposed to the full zone k-p results) was used to be consistent with the
description of the conduction band in terms of its T, L and X valleys in the MC
calculation. In this way the scattering processes are easier to treat. Effects of an
absorption linewidth have also been included, through use of the Maxwell-Bloch
equations with a damping time T;, applied to a light pulse with an electric field
varying with time according to sech(t/7), where 7, is a width parameter. In these
calculations, the laser intensity is assumed to have a full width at half maximum
(FWHM) of 100 fs, and photon energies will be considered from 1.5 eV to 2.2 eV.

The time T, is determined in a self-consistent manner by the total carrier scattering



rate and the applied electric field. Typically we will have T; < r; so the lineshape
will be Lorentzian with energy width varying as 1/T;. Because of the energy de-
pendence of the scattering rates, the linewidths will be functions of both the electric
field and the photon energy. For moderately large fields and photon energies, the
widths can become as large as = 100 meV. We have found, however, that the net
effect of this energy width for most cases of interest has been rather small.

To obtain the leading order response behavior, a number of simplifying assump-
tions have been used. First of all, for the low number density limit, carrier-carrier
interactions are excluded. This approximation is valid at low laser intensity. At
room temperature, the photogenerated carrier density should not exceed about 10"7
em™!, The electric field is assumed to be uniform. This latter condition may actu-
ally be difficult to satisfy experimentally. Device response calculations based on a
macroscopic continuum model indicate that the response of a high resistivity pho-
toconductor to a moderate intensity sub-picosecond pulse involves a collapse of the
electric field, due to the opposing directions of electron and hole drift.!* Using low
laser intensity, so that the photogenerated carrier density is small, minimizes the
effects of the collapsing electric field.!' We take into account only the transport of
electrons, assuming that the lower drift velocity of the holes makes their contribu-
tions to the electrical response much smaller.!* As mentioned above, the conduction
band will be considered as composed of the valleys at I', L, and X. This means that
the process of drifting from the T point over the energy peak and then into either the
L or X valley is excluded. Typically the scattering rates increase strongly enough
(moving up in the band) so that this process is improbable.

The band structure for GaAs as obtained from the full zone k-p calculation is



reviewed in Sec. II. Details of the model employed for the MC calculation, including
the necessary scattering rate parameters and valley fitting constants, are discussed
in Sec. III. Results of a steady state transport calculation for GaAs also are given.
In Sec. IV, the details of how the photoexcited initial distribution was generated
and how the linewidth was included are discussed. Results are presented in Sec. V
for GaAs with fields up to 50 kV/cm and photon energies ranging from 1.5 to 2.2

eV. Our conclusions concerning the trends in the photo-responses are discussed in

Sec. V1.

I1. Band Structure for GaAs

It is straightforward to apply the k-p pseudopotential method to the GaAs band
structure. The calculation was carried out by first using a basis of 113 plane wave
states, corresponding to reciprocal lattice vectors of the zinc-blende structure with
squared magnitudes of 0, 3, 4, 8, 11, 12, 16, and 20 (in units of (27/a)?). After
diagonalization for k=0, only the 27 lowest energy states are retained. The spin-
orbit interaction is added at this point, with splitting parameters Ay = 0.34 eV
and A; = 0.22 eV, and the 54 x 54 matrix is then diagonalized for a range of k.
Input to the calculation is through the pseudopotential form factors, which have
been taken from Ref. 13, for 300 K. We modified these form factors slightly to those
given in the caption of Fig. 1, in order to enforce the band gap to be 1.44 eV, and
the splittings from I to L and from I to X to be 0.33 eV and 0.52 eV respectively.
The lattice spacing is taken to be a = 5.6533 A.

The resulting band structure is shown in Fig. 1. An effective mass fit to the

I-valley of the conduction band gives m*/my = 0.077, with a nonparabolicity pa-



rameter a = 0.8 eV~!, It is difficult to find a set of pseudopotential form factors
that will produce an effective mass and nonparabolicity close to the accepted val-
ues of 0.063 and 0.69 eV~' respectively.* Correspondingly, heavy hole and split-off
hole masses are approximately 0.7 and 0.2, reasonably close to accepted values,
Similarly we can estimate the resulting effective conduction band masses near the
L and X points. Taking these as ellipsoidal valleys, approximate longitudinal and
transverse masses turn out to be mf/mg & 1.5, mE/mg = 0.12, m¥/my = 1.5,
and m{¥ /mgy = 0.25. These values were used in the fits to these valleys for the MC
calculations. The major utility of this band structure calculation, however, was in
employing its valence bands for the photoabsorption calculation, and also in using
the valence to conduction band momentum matrix elements for correctly weight-
ing the allowed optical transitions. The conduction band (I-valley), however, was
fitted with an effective mass of 0.063 my and nonparabolicity of 0.69 eV~! for the
photoabsorption calculation, in order to use the same fit in the MC calculation and

therefore to conserve energy correctly.

ITl. Monte Carlo Model and Steady State Results

The MC method as applied to transport in semiconductors has been described in
Ref. 1. In the semiclassical approximation, drift of a carrier in the applied electric
field is treated classically as smooth motion in a band, interrupted by quantum
mechanical scattering events that discontinuously change the carrier’s wavevector
k. The conduction band can be described in terms of the valleys at I' (k=0), L
(k=(3,3,3)* and symmetric points) and X (k=(1,0,0)®* and symmetric points),

with intervalley phonon scattering making transitions between the valleys possible.



The L and X valleys are taken to be ellipsoidal and nonparabolic. In this way, in
an applied field, the three X-valleys and four L-valleys become inequivalent for an
arbitrary field direction, and effects of this k-space anisotropy are retained. There

may be some dependence of the response on the field direction that cannot appear
if all the valleys are taken to be spherical. This effect might be expected to be
strongest for large electric fields. The ratios of transverse to longitudinal effective
mass have been taken from the full zone k-p calculation, and the density of states
masses mg = (rmym})'/® have been fixed to values given in Ref. 4, which also was
the source for the valley nonparabolicity parameters. Thus the dispersion within

each valley is given by a relation
. 1 AL
where
K= 04 20, (2)
my my

Here g; is the energy at the bottom of the valley, and k; and k, are the longi-
tudinal and transverse components of k as measured in the valley, and a is the
nonparabolicity parameter.

The electrons are assumed to scatter from acoustic, polar optic, nonpolar optic
(only in the L valley), and intervalley phonons. In the low number density limit we
exclude carrier-carrier interactions. A fictitious “self scattering” is also included, so
that the time intervals between scattering events can be chosen from an exponential
distribution. (See Ref. 1.) The interaction Hamiltonians for each type of scattering
process and expressions for the scattering rates can be found in Refs. 1 and 2:

coupling constants and phonon frequencies have been taken from Table 1 of Ref. 4.
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The total scattering rate due to real physical processes (excluding self scattering)
will depend on the valley as well as on the carrier energy. Measuring all energies
relative to the energy at the I'-point, the total scattering rates for GaAs at 300 K
are shown in Fig. 2, including contributions of phonon emission and absorption
processes.

For noninteracting electrons, a large number of single electron trajectories can be
generated, and then averages of time-dependent quantities can be made by averaging
over all the trajectories. For each trajectory, the final k-state after each scattering
event and the times of the events are enough to reconstruct the electron’s k-state
at any desired time. For the scattering time intervals to belong to an exponential

distribution, they are chosen with a random number 0 < r < 1 by
At, = Tg'In(r), where To = Cptys + s (3)

The constant Ty is a scattering rate chosen to be greater than the sum of the rates
of all the real physical processes, I',1y,, and it is assumed that the electron energy
never exceeds some chosen maximum value. The difference T’y — Ippya(c) gives the
self scattering rate I',,, at the energy . When a self scattering event occurs, the
electron’s final state is set equal to its initial state, and it continues to drift in the
field as if no scattering occurred. The term “self scattering” is a misnomer; a better
name for it might be “non-scattering.”

Between scattering events, the equation of motion is
kk = gE, (4)
where ¢ is the charge and E is the applied field. At each scattering time the type
of scattering process is chosen randomly but according to the relative probabilities

9



of each of the allowed processes, using a random number generator, The random
number generator is also used to choose an allowed final state, from those consistent
with conservation of energy and momentum. For scattering from optical phonons,
choosing from the allowed states is relatively easy because the phonon frequency is
fixed. For acoustic phonons the choice is more difficult and a “rejection technique™
for choosing final states of the desired distribution is used (as in Ref. 1).

The time-dependent response quantities of most interest are the average velocity

(or current), the average carrier energy, and the relative populations of the valleys.

The velocity is determined by
V=——. (5)

For the steady state case, time averages of these quantities can be easily calculated,
and fewer electrons are needed to get small statistical errors than are needed for
time-dependent problems. As an example, we have reproduced the calculation of
the steady state conduction in GaAs at 300 K, using the trajectories of 400 electrons
for 100 ps. The beginning 20 ps of each trajectory was discarded. Results for the
average velocity and energy versus the applied field (in the [100] direction) are
shown in Fig. 3. The initial condition consisted of all electrons starting at k=0,
with averages formed from the data after the initial transient passed. The carrier
energy tends to saturate because the scattering rates, which i-ncrease with energy,
compete against the applied field, tending to prevent the energy from increasing.
The energy versus field curve will be relevant for estimating the velocity overshoot

regime for the time dependent photoexcited transport problem.
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ited Initia
We consider a laser pulse with vector potential varying as
At)=Ap ¢ :i”“lsech[tfrﬂ}, (6)

with amplitude Ay, polarization unit vector €, center frequency wy, and envelope
width parameter 7. (For this envelope, the laser intensity FWHM = 1.76 r,.) If
effects of the absorption linewidth due to damping are excluded, and also wgry > 1,
then the rate for a transition from a valence band state vy to a conduction band

state ¢y is given in the dipole approximation by Fermi'’s Golden Rule,
27 2
w= o= | (ex|Hintlvx) [* 6(ec — £ = huwy), (7)

with interaction Hamiltonian

[

Hint — '."'i'I('_ntA P {S}

Here the envelope slowly modulates the transition rate. The general case with
damping will be considered in more detail below. States in k-space are chosen
satisfying the delta function, with the conduction band described by Eq. 1 and
the valence band dispersion &,(k) derived from the full zone k-p calculation. The
delta function defines an equi-energy surface in k-space. After choosing a random
direction in k-space, the magnitude of k for the transition from a chosen valence
band is found numerically. When computing averages, the subsequent MC trajec-
tory of the electron created at that k is then weighted by the momentum matrix
element | (e |€- p|vy) |*. An initial distribution of electron states will be composed
of either two or three peaks, due to the two or three allowed valence to conduction

band transitions, and they will have small energy widths caused by the angular
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dependence of the valence band dispersion relations. For transitions from a given
hole band, numerical integration of the transition rate over the equi-energy sur-
face then gives the relative contribution of transitions from that hole band to the
absorption. Initial electron states are thus created from the two or three allowed
transitions with the appropriate relative numbers (as determined by these integrals
involving the optical matrix elements). The total absorption coefficient aas, and
the contributions from the three transitions are shown in Fig. 4.

Strictly speaking, Fermi’s Golden Rule as given above should be used only in
situations where the electron will not likely scatter during the laser pulse time
interval. If the scattering rate is high enough, however, a linewidth is introduced
due to the finite lifetime of the excited state. Similarly, an applied field also causes
a finite lifetime and therefore a linewidth. The effects of both of these processes can
be incorporated in terms of a dar.ping time, T;, as a parameter for the Maxwell-

Bloch (MB) equation. If the electron-photon interaction Hamiltonian is written in

the form

Xoot = (K a(t), (9)
with

100 = 2 afe-plo),  and  aft) = 2 cos(wot)sech ¢/ ), (10)

then the transition rate w(t) is given by

1
w(t) = za()F (), (11)
where F(t) satisfies the MB equation in the form

d*F 2 dF Acy 1 2|4 (da  a
_tft-i--'-ﬁﬁ-'_[[_ﬁ_} +IT==JF— % (E"‘I—..: . (12)
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Here A is the transition change in energy between valence and conduction bands,

as in
Ac = g, (k) — &, (k). (13)

Equation (12) can be solved by Fourier transforms. Performing the inversion by

summing over the required poles produces the following expressions for the time-

dependent transition rate: for t < 0,

B -'lfn|"'_|'|i ) 2 nzne{:nujtfru
w[i] . h! Bﬂh{"fﬂ:] rg}[ 1] [nfu}! + t-:‘ {14]
To
= (2 —
Ly {n+!]+T= (15)

and for t > 0,

2 oo i a=(2nd1)tfry
i) = Lr?;'i'i““h“" L {" 2"”"1%)@
e~t/Ts

T chsh 207 + cos 2

[sin asinh Asin 1t + cos a cosh 3 cos Nt]} (16)

To TTo Ea Vi
fa=(2n+1) - 2, =10 =T
(2n+1) ! “=n h== (17)
where the de-tuning from resonance, 1, is given by
Ae
1= T = Wig. [18:]

Some typical curves of w(t) for damping ratio 7 /T3 = 1.5 are shown in Fig. 5, for a
range of de-tuning frequencies {1 . Integration of w(t) over all time for a range of N
gives the lineshapes (disregarding effects of the slowly-varying momentum matrix
elements) shown in Fig. 6, for a range of damping ratios. For small damping,
70/Ty < 1, the lineshape is fit approximately by sech?(*3%) , i.., the squared

Fourier transform of the driving field, and the halfwidth varies as 1/7,. For larger
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damping, the lineshape becomes Lorentzian with halfwidth 1/T; . For most cases
considered here, with a laser intensity pulse with FWHM = 100 fs, such that 7y =
28.4 fs, the transitions will be heavily damped. For example, for the transitions
from the heavy hole band, the damping time T can be around 10 fs, producing a
FWHM up to about 120 meV. Low damping will occur only for photon energies
just above 1.44 eV and 1.77 eV, where transitions into states near k=0 take place.
Then the effective damping time T3 = 370 {s when there is no field.

For low enough damping, 7/T2 < 1.3, the time-dependent transition probabil-
ity w(t) can be negative a short time after ¢t = 0. This corresponds to stimulated
emission immediately following the absorption. For a time-dependent simulation
at time scales shorter than the laser pulse width, this would complicate the algo-
rithm for creating electron-hole pairs, because we would also need to allow for the
stimulated recombination process. For the simulations presented here this is not
a problem because the response well after the light pulse is desired, and the pairs
can be thought of as being created almost simultaneously. The recombination can
be treated in terms of negative weights for the trajectories of electron-hole pairs
that were created when w < 0. For most cases only the transition from the split-off
band will have such low damping, for a 100 fs pulse. Such transitions contribute
the smallest number of electrons to the conduction band. (See Fig. 4.)

The damping time T; is determined as follows. The damping rate 1/T; should
have a contribution 1/7,.s: due to the total scattering rate of the electron, plus a
contribution due to drifting in the applied field, written in terms of a drift time as

1/Tasins
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1 1 1
— = +—. 19
T2 Tacatt Tdrift I: }

The drift time 74:n is taken to be the average time interval needed for the electron
to drift in the applied field across the HWHM of the absorption line, according to

the semiclassical equation of motion

1 eE  eE (1 BE) : (20)

Tarn  hOk  DAe \hOk
Here Ae is the HWHM of the absorption line. The product ryAe is a function only
of 70/T3. Thus 74in can be eliminated from Egs. 19 and 20, and we can solve for T}
numerically, with the help of the known relationship for the HWHM as a function of
70/T3. (See Fig. 6.) In this way the drift time r4rp and the HWHM are determined
self-consistently, even when the scattering time becomes much larger than 7o . The

drift time varies as the reciprocal square root of the applied field. For example, if

Tacatt = To = Tdrine , then one obtains T; = 74.n, with

2 =h{1+2us}[ m* r_ (21)

e eE 2¢(1 + ae)

Here € is the energy measured from the bottom of the valley. This formula applies

most accurately at high field. For example, with E = 30 kV/em and for a transition

from the split-off band with a 100 fs pulse of 1.55 eV photons, £ = 0.1 eV, and Eq.

(21) gives ann = 18 fs. When the above inequalities are not satisfied, 744 needs to
be determined numerically.

Distributions of initial states from photoexcitation are shown in Figs. 7 and

8, for GaAs at photon energies of 1.5 eV and 2.0 eV respectively, as a function of

the angle # measured from the [001] direction as in standard spherical coordinates.

Initial states out to 5% of the maximum of the absorption line were included in
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these figures. In part (a) of these figures no linewidth was included; an energy
width still results because of the anisotropy of the valence bands. In part (b}, the
width due to scattering, a laser pulse with a 100 fs FWHM, and no electric field was
included. In part (c), the width due to scattering,the laser pulse, and a 10 kV/cm
field was included. The individual contributions from the split-off, light hole and
heavy hole valence bands are (most obvious when the linewidths are not included)
indicated by the symbols o, A, and 4+, respectively. The linewidths increase with
the photon energy due to the increase of the scattering rates with energy. They also
increase as the field increases, due to the reduction of the drift time 74 . Another
representation of the distribution of states generated by the light field is given in
Figs. 9 and 10, in terms of the number as a function of the conduction band energy.
Note that the states represented in Figs. 7-10 involve transitions at arbitrary times
(the transition rate w(t) has been integrated over time to obtain these results), and
so these plots do not represent the distribution function at t = 0. They are used
only to indicate what initial states are possible for the given photon energy and
electric field, with the creation time of an electron into one of these states being
undetermined.

The weighting of the trajectories is a function of the polarization of the light.
Nevertheless, we have not found any strong dependence of the transient responses
on the polarization in the MC calculations. As suggested above, for time scales of
the order of 7, the effects of the time dependent part of w(t) can be included by

using a set of creation times appropriate to Egs. 14-18, as chosen with a rejection

probability technique.
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V. lo i ults and Discussio

Calculations were made for photoexcitation by a laser pulse whose intensity has
a FWHM of 100 fs, corresponding to 7, = 28.4 fs. The photon energies were 1.5,
1.7, 1.8, 2.0, and 2.2 eV. For hwy < 1.77 eV, only the light hole and heavy hole
bands contribute to the absorption. The electric field ranged from 2.0 kV/cm to
50.0 kV /cm. For each case average values of the velocity, energy, valley populations,
and distribution functions f(c) were computed, as functions of time. Calculations
required between 1000 and 10000 electrons in order to limit the statistical errors.
For the data presented in Figs. 12-15, the light was polarized along [100], and the
electric field was in the [100] direction. The responses exhibited only very slight
dependences on the polarization and field directions.

Some typical time evolutions of the distribution function f(g) are shown in Fig.
11, for hwp = 1.5 eV and 2.0 eV, and E = 5 kV/cm . Note that the earliest f(e)
exhibited is slightly after the center of the laser pulse, and is not exactly the same
as the curves in Figs. 9 and 10, which were time integrals of the transition rate.
Although the initial distributions in Fig. 11 are different, both of them evolve
to the same final distribution, which depends only on the applied field. The two
peaks in the steady state distribution correspond to the populations in the T’ and L
valleys, with about 20% in the L valley. The lower graph (1.5 eV) corresponds to a
case which exhibits velocity overshoot, where a sizeable fraction of the electrons are
created at energies well below the steady state average energy of 0.17 eV. Conversely,
for 2.0 eV no velocity overshoot occurs, and a large fraction of the electrons are

created well above the steady state average energy.
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A set of transient response curves are shown in Fig. 12, for a field of 5 kV/cm.
The average electron velocity, average electron energy measured from the ' mini-
mum, and the fraction of the electrons in the L valleys are shown as functions of
time. The X valleys are only slightly populated for most of the calculations shown
here.'* From top to bottom, the curves for average velocity correspond to the five
photon energies 1.5, 1.7, 1.8, 2.0, and 2.2 eV. Note that the order is reversed in
the average energy and L valley population graphs. The steady state value of each
quantity is independent of the photon energy. The transients, however, have a clear
dependence on the photon energy. Only the 1.5 eV excitation produces an obvi-
ous velocity overshoot. The 1.7 eV excitation appears to be just over the maximum
energy that will produce velocity overshoot. The higher photon energies do not pro-
duce an overshoot and exhibit a much longer velocity rise time. The average energy
and L valley population responses are correlated to the average velocity responses.
The cases that exhibit velocity overshoot involve an average energy that increases
with time. When no velocity overshoot occurs, the average energy monotonically
decreases with time. The behavior of the population of the L valley is similar to
that of the average energy. When velocity overshoot occurs, the fractional L valley
population increases monotonically with time. On the other hand, when no veloc-
ity overshoot occurs, the L valley population overshoots its steady state value. The
only exception to these observations might be for the 1.7 eV excitation, because it
is 50 close to producing velocity overshoot.

A similar set of responses, for a field of 10 kV/cm, are shown in Fig. 13, for the
same set of excitation energies. The time scale in this figure is shorter than in Fig.

12, and the steady state values have changed, but the general relationships between
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the response quantities are the same. Now velocity overshoot occurs for the 1.5,
1.7, and 1.8 eV excitations, and these are the only cases with an increasing average
energy transient, and a monotonically increasing L valley population (or L valley
population that does not overshoot). Also, it is clear that the relative size of the
overshoot for 1.5 eV is now larger than it is for the 5 kV /cm field.

If the field is increased to 20 kV /em, the responses shown in Fig. 14 are obtained.
Note that again the steady state values have changed, and the time scale of the
graphs has been shortened. As the field is increased the average energy increases,
causing the average scattering time to be reduced, and consequently shortening the
response time. Now we see that the 2.0 eV excitation is very close to producing
velocity overshoot. The correlations between the response quantities are the same
as in Figs. 12 and 13.

Finally, a set of response curves for a field of 50 kV/cm is shown in Fig. 15.
The 2.0 eV excitation appears to be very near the limit for overshoot. In the
average energy response for 2.0 eV, there is initially is very small decrease followed
by a small increase, the latter accounting for the velocity overshoot feature. At
this field only the 2.2 eV excitation does not produce velocity overshoot. The L
valley population response for 2.2 eV, however, does not exhibit an overshoot as
might be expected from the observations for the lower fields, because about 25% of
the electrons transiently occupy the X valleys.!* The relative sizes of the velocity
overshoots for excitations below 2.0 eV have increased well above those seen for 10
kV/cm.

For all of these fields, any velocity overshoot features present at low fw eventu-

ally are suppressed at higher fiwy. Also, a velocity overshoot is always accompanied
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by an increasing energy transient. Conversely, lack of overshoot is associated with a
decreasing energy transient. This suggests that knowledge of the initial and steady
state average energies generally is adequate to predict velocity overshoot. There
may be a few exceptions where the photon energy is near the maximum for which
velocity overshoot is allowed. These data make clear the idea of a critical field (or
critical photon energy) necessary for overshoot.

These results can be summarized in terms of a photon energy—electric field
“phase diagram.” In particular, a curve can be drawn that corresponds to the
photon energy needed so that the initial average electron energy &i(hwo, E) is equal
to the steady state average energy e,,(E), as from Fig. 3. Such a phase diagram is
presented in Fig. 16. Individual cases tested are indicated on the diagram as either
solid, for overshoot, or open, for no overshoot. One can see that the general rule is
that all of the overshoot cases fall below the equi-energy curve described above. The
question can be raised whether this rule will still be valid for other temperatures, A
number of calculations were also performed for 77 K. It was found that the rule still
generally holds, but there are some exceptions to it when the initial energy is just
above the steady state value, where overshoot can still occur. This happens because
there is a very fast drop in the average energy, followed by a rise back towards the
steady state value, which is synchronized with the velocity overshoot feature,

The relative magnitude of the velocity overshoot is a function of both hw, and
E. This is exhibited in Fig. 17 , in terms of the maximum velocity vm.. and the
steady state velocity v., where the percentage overshoot, (Vmax — Vss) /s, is plotted
versus the applied field, for various photon energies. Critical turn-on fields can be

seen; there is a tendency for the relative overshoot to saturate with increasing field.
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Some transients at high photon energy also show another interesting feature, in
cases where a large fraction of the electrons have been created high in the I'-valley
of the conduction band and then scatter very quickly ( < 10 fs) into the L-valley.
This dramatically reduces the effective mobility to such an extent that the velocity
transient has a delay interval, where v is very small before eventually beginning to

slowly rise towards its steady state value.

V1. Summary and Conclusions

We have presented a systematic series of Monte Carlo calculations of electron
relaxation in GaAs. The case was considered in which the electrons are generated
by a 100 fs optical pulse and the GaAs is biased by a uniform-in-space and constant-
in-time electric field. We investigated the dynamics of the electron relaxation as
a function of the photon energy and the magnitude of the applied field. We have
found that velocity overshoot occurs when the initial average electron energy is
less than the steady state value and does not occur when the opposite is true. In
particular, for excitation with 2.0 eV photons, as occurs in experiments using direct
excitation from a CPM laser, velocity overshoot does not occur for applied fields
less than about 30 kV/cm. These results demonstrate the importance of using a

spectrally tunable source in experiments designed to observe velocity overshoot.
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Figure Captions

Figure 1 GaAs band structure from the full zone k-p calculation. In the notation
of Ref. 13, the nonzero pseudopotential form factors, in Rydbergs, were V¥ =
-0.237,V¢* = 0.07,V# = 0.0496,V° = 0.01,V{ = 0.0628,andV? = 0.01 . (a)
Shown over the whole zone versus k. (b) Region near k = 0 versus k?, to exhibit

the deviations from parabolic bands.

Figure 2 Energy dependence of the total electron-phonon seattering rates, in-
cluding acoustic, optical, and intervalley phonons. The curves correspond to an

electron in the T' valley (solid), L valley (dashed), and X valley (dotted).

Figure 3 Results of a steady state MC calculation for GaAs at 300 K. The average
electron velocity and energy were obtained by simulating the trajectories of 400
electrons for 100 ps, after discarding first 20 ps containing the transient effects of

the k=0 initial condition.

Figure 4 Calculated GaAs absorption coefficient, as obtained by using optical
matrix elements from the full zone k-p calculation. The relative contributions from
the three valence I:rands‘ are indicated; these were applied to the generation of the

photoexcited initial electron states.

Figure 5 Time-dependent absorption transition rate w(t), for fixed r/T3 = 1.5.
From top to bottom, the curves correspond to values of the de-tuning frequency fir,
of 0, 0.5, 1.0, 1.5, and 2.0 . Note that while t=0 corresponds to the center of the

laser pulse, w(t) peaks slightly after t=0, depending on the damping and de-tuning.
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Figure 6 Absorption lineshape functions, as obtained by integration of w(t) over
all time. From top to bottom, the curves correspond to values of the damping ratio
70/T3 of 0, 0.5, 1.0, 1.5, and 2.0 . The lineshape changes from a squared hyperbolic

secant to a Lorentzian for 7/T; greater than about 1.3 .

Figure T Photo-induced initial state energies as a function of polar angle 8 for 1.5
eV photons. Here and in Fig. 8, the symbols indicate contributions from the split-
off (o), light hole (£), and heavy hole (+) valence bands. In part (a), no linewidth
is included. In part (b), the linewidth due to a 100 fs laser pulse combined with that
due to finite T; is included. Part (c) is the same as part (b) but with the addition

of a 10 kV/cm field.

Figure 8 Photo-induced initial state energies as a function of polar angle ¢ for

2.0 eV photons, with parts (a), (b), and (c) as described in Fig. 7.

Figure 9 Conduction band energy distribution of the photoexcited electrons with

1.5 eV photons, for no field and 10 kV /cm.

Figure 10 Conduction band energy distribution of the photoexcited electrons

with 2.0 eV photons, for no field and 10 kV/cm.

Figure 11 Evolution of energy distribution function for an example without ve-

locity overshoot (2.0 eV , 5 kV/cm) and one with velocity overshoot (1.5 eV, 5

kV/cm).
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Figure 12 Transient responses of the average velocity, average energy, and L
valley fractional population for a field of 5 kV /cm, with a 100 fs laser pulse (FWHM
of the intensity). The curves correspond to photon energies 1.5 eV (solid), 1.7 eV

(dashed), 1.8 eV (dotted), 2.0 eV (chain-dot), and 2.2 eV (chain-dash).

Figure 13 Transient responses as described in Fig. 12, for a field of 10 kV/cm.
Figure 14 Transient responses as described in Fig. 12, for a field of 20 kV fem.
Figure 15 Transient responses as described in Fig. 12, for a field of 50 kV/cm.

Figure 16 Overshoot “phase diagram”, in terms of the photon energy hv and
the field E. The solid circles represent simulations in which velocity overshoot
occurred; the open circles represent cases where overshoot did not occur. The
curve corresponds to cases where the steady state average electron energy is equal

to the average electron energy of the photoexcited electrons.

Figure 17 Percent of velocity overshoot as a function of the applied field, in terms

of the maximum average velocity vmax and the steady state average velocity vg,.

26



(a)

i



2.2

O
|
)
(4§

-0.5 —A
-1.0 ' f '
0.02 0.01 0.0 0.01 0.02

—[111] [100] -

ka 2
(-—2-—1]:)

Fij. |



0.8
2

o
L
w
=]
\.],,..
13
=
(%)
™~
O
f i
I I o
w <t o o
o © o ©
. — — e —

(1-09s) sajp.



2.0

J"'-J}‘HZ‘D - n"na
\.\ o
E15 | A
o 9
~ S
Q 1.0’ I =t . o o @ |
N 5
3 0.5 =
0.0 | | |
0.4
0.3 |- w®’
o~ u“u
} e
W02 |- ‘
W oy
0,0
0.0 ] ] |
0.0 5.0 10.0 15.0

20.0

Fi3.3



F18 -



0.3

0.2

(hm

0.1

0.0

=2 0.0 2.0 4.0

—4.0

YT,



ﬁ _ | _
N =] o)

-
—

A}ljiqogo.d cm.:&mﬂo

o ) o
o

Fla. o



1.0

(a)
(b)
0.5

cos 6

1.5eV

Flj."l



0.75

2.0eV (a)
0.50 " merasmargnpumstise.

0.25

0 |
0.75

- - . . " b
Tk ¥ .. ( )
- * - - - +
= ay  * b Faate a4 T o g
Ll b S Y -I-":’ L /
W 'i' ‘f, - I Y,

+| .p"-- . o - :".:‘.. i -|.+ "“J"_.l W ' =

ARt i;“‘ -.',!-41:“1+.‘ h-|+;-r"&4¢+

0.50 P smi iy e Fy i AR
. &

£ (eV)
&
’
5

0.25+

0 * |
0.75 ——— —

0.50 [i3:€

. Pt % :":.? ot G A
0.25 ﬂgﬂ l.n ﬂ':‘ _: ‘l ok T .lﬁl "l &
-] o = o @ - o ﬂ'ﬂﬂ oo o
S IR P e

FI\(.‘] .;L"'



1.0 [ E5) eV

0 kV/em

| l ]

10 kV/em

0.0 :
0,00 0.03

006 009 012 015

e (eV)



10 2.0 eV 0 kV/Cm

0.6

04
L
0.0 \l I 1

0 .20 eV 10 KV/em

Fié}. 10






0.0 2.0 4.0 6.0 80  10.0

Fia. 12



10 kV/em

t (ps)

Fi%, 12



20 kV/em

1.0

0.0
0.7

0.6 -
G5 -

0.4 -

0.3

& (eV)

02
01

0.0
1.0

p(L)

0.4

02 =

0.0 -
-04 00 04 0B 12 16 20

t (ps)
Fia. |4



50 kV/ecm

~0.2 00 02 04 06 08 10

t (ps)
'F_‘:a. 15



hv (eV)

2.4

2.2

Fij. ¥

25



1.5 eV

1.7': eV

1._8_ eV

29 eV

[T

E (kv/em)

0.0 100 200 300 400 50.0 60.0

F_ia. \ T




