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Magnon modes in the presence of solitons (vortices) in two-dimensional (2D) easy-plane
antiferromagnets are studied. The vortex-magnon scattering matrix is obtained numerically.
The analysis shows the presence of a new localized mode with a well-defined frequency
determined by the strength of the anisotropy. It may be possible to observe this mode in
resonance experiments for quasi-2D magnetic materials with a finite density of vortices.
PACS numbers: 75.10Hk, 75.30.Ds, 75.40Gb, 75.50Ee

It is well-known that strongly nonlinear topologically
nontrivial excitations (solitons) play a special role in low-
dimensional magnetic systems. For example, kinks in 1D
systems are responsible for the destruction of long-range
order at finite temperatures, and the presence of vortices
in 2D systems gives rise to a special type of phase transi-
tion – the Berezinskii-Kosterlitz-Thouless transition [1].
Experimental observation of soliton signatures in the re-
sponse functions is usually based on the fact that transla-
tional motion of solitons leads to the the so-called soliton
central peak, for review see [2–4]. Another possibility is
to look for internal degrees of freedom of solitons, such
as magnon modes localized on a soliton. Resonances at
characteristic frequencies of an internal motion can be
observed in electron spin resonance or inelastic neutron
scattering (INS) experiments. In 1D such effects of “soli-
ton magnetic resonance” were detected in the Ising-type
antiferromagnet (AFM) CsCoCl3 [5], and were predicted
theoretically for Heisenberg AFMs [6]. In 3D, magnon
modes localized on domain walls in AFMs were observed
in thulium orthoferrite [7]. Presently, no experimentally
testable examples of internal soliton dynamics in 2D are
known. Moreover, only a quasi-local mode has been pre-
dicted for solitons in isotropic [8], XY-type [9], and easy-
plane Heisenberg [10–12] 2D ferromagnets (FM).

The aim of the present Letter is to draw attention to
the fact that in classical easy-plane Heisenberg 2D AFMs
“out-of-plane” vortices have finite-frequency truly local-
ized internal modes which may be detectable in resonance
or INS experiments. We also numerically obtain the
vortex-magnon S-matrix in the long-wavelength region,
analyzing linearized perturbations of the vortex struc-
ture, for continuum and discrete lattice models.

The Model.— Consider the classical 2D-model of a
Heisenberg easy-plane AFM, with the Hamiltonian

Ĥ = J
∑

n,a

[

~Sn
~Sn+a + (λ − 1)Sz

n
Sz

n+a

]

. (1)

Here J > 0 is the exchange constant, 0 < λ < 1 describes
anisotropy with the xy-plane as the easy-plane. Spins ~S

are classical vectors on a 2D-square lattice with lattice
constant a. n denotes lattice sites of one sublattice, and
a’s are the set of displacements to the nearest-neighbors
on the other sublattice. We are interested in the small
anisotropy case (1 − λ) � 1.

A continuum model of AFM’s can be derived from (1)
in the usual way, see [2,4,6]. We define the magneti-

zation vector ~m = (~Sn + ~Sn+a)/2S and the sublattice

magnetization vector ~̀ = (~Sn − ~Sn+a)/2S on the set of

nearest-neighbor pairs, with the constraints ~m · ~̀ = 0,
~m2 + ~̀ 2 = 1 . Then, for low frequencies ω � 8JS/h̄
and small gradients, |∇`| � 1/a, the magnetization of

an AFM is small, |~m| � |~̀| ' 1. The magnetization can
be considered as a “slave” variable, and can be expressed
as ~m = X (~̀ × ∂~̀/∂t), where X is a susceptibility de-
fined below [Eq. (3)]. After eliminating ~m one obtains

equations for ~̀ only. Using the usual angular variables,
(`x + i`y = sin θ exp(iϕ), `z = cos θ) these equations can
be written in the form [4,6]

∇2θ + sin θ cos θ

[

1

∆2
o

− (∇ϕ)2 +
1

c2

(

∂ϕ

∂t

)2
]

=
1

c2

∂2θ

∂t2
,

∇ · (sin2 θ ∇ϕ) =
1

c2

∂

∂t

(

sin2 θ
∂ϕ

∂t

)

(2)

where c is the magnon phase velocity, ∆o is the charac-
teristic length scale. For the Hamiltonian (1)

∆o = (a/2)[λ/(1 − λ)]1/2, c = 2 (JS/h̄a) (1 + λ)1/2,

X = (h̄/16JS) [2(1 + λ)]1/2. (3)

Magnon and Vortex Excitations.— In the absence of
vortices, this 2D-model has well-known magnon excita-
tions about the classical AFM ground state. There are
two branches of magnons: “in-plane” one with ~̀ oscil-
lating in the easy-plane, and “out-of-plane” one with ~̀

oscillating in the z-direction, with out-of-plane and in-
plane oscillations of ~m, respectively. These have gapless
and finite activation dispersion laws, respectively:

ω1(~k) = ck, ω2(~k) = (ω2
o + c2k2)1/2, ωo ≡ c/∆o (4)
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where ~k is the wave vector. These can be also obtained
from a Taylor expansion of the dispersion law for the
discrete model, see Ref. [13].

In the continuum models like Eq. (2), the out-of-plane
vortex with the usual topological charges of vorticity ν
and polarization p is described by the solution [14] θ =
θo(x), x ≡ r/∆o, ϕ = ϕo(χ) = νχ + φo, where (r, χ) are
polar coordinates, θo(∞) = π/2, cos θo(0) = (−1)p+1,
and φo is a constant. Only the case ν = p = 1 will
be discussed here. The function θo(x) is described by an
ordinary differential equation (ODE) which can be solved
numerically by a shooting method, see [14,15].

FIG. 1. The `z vortex profile for ν = 1, p = 1. Solid line
— continuum solution for cos θo; points — `z from discrete
lattice model (1).

The distribution of spins in the static vortex also can be
analyzed directly from the discrete model (1), see [10,11].
Energy minimization is carried out starting from a nearly
in-plane structure, and redirecting spins along the effec-
tive fields due to the neighbors, iterating until conver-
gence. The coincidence between the data of these ap-
proaches is surprisingly good, even for large anisotropy,
see Fig. 1. Large discrepancies appear only for λ < 0.8
(∆o < a), when the vortex structure is rapidly approach-
ing the in-plane form.

Magnons on a vortex. Continuous approach.— Let’s
introduce small deviations of variables θ, ϕ from those
in the vortex solution, θ = θo(r) + ϑ(r, χ), ϕ =
ϕo+µ(r, χ)/ sin θo(r). In local rotated coordinate frames,

~e1, ~e2, ~e3, where the axis ~e3 coincides with the ~̀-vector’s
direction in the unperturbed vortex, and

~e1 = ~ey cosϕo − ~ex sin ϕo

~e2 = ~ez sin θo − cos θo(~ex cosϕo + ~ey sin ϕo), (5)

the variables ϑ, µ are the projections of the ~̀-vector on
the local axes ~e1 and ~e2: µ = ~̀ · ~e1, ϑ = −~̀ · ~e2.

It is easy to get the coupled set of two partial differen-
tial equations for ϑ and µ:

[

−∇2
x + U1(x)

]

ϑ + (2ν cos θo/x2)∂µ/∂χ = (ω2/ω2
o)ϑ,

[

−∇2
x + U2(x)

]

µ − (2ν cos θo/x2)∂ϑ/∂χ = (ω2/ω2
o)µ, (6)

where ∇x ≡ ∆o∇, and the “potentials” are: U1(x) =
(ν2/x2 − 1) cos 2θo, U2(x) = (ν2/x2 − 1) cos2 θo −
(dθo/dx)2. Using the ansatz like that in [8],

ϑ =
∑

k

∑+∞
m=−∞ fk,m(x)Fm(χ) exp(−iωt) + c.c.,

µ =
∑

k

∑+∞
m=−∞ gk,m(x)Gm(χ) exp(−iωt) + c.c., (7)

where Fm(χ) = a exp(imχ) + b exp(−imχ), Gm(χ) =
i[a exp(imχ) − b exp(−imχ)], and a, b are arbitrary con-
stants, one obtains a coupled set of ODEs for fk,m and
gk,m. Here m = 0,±1,...; k and m are the full set of quan-
tum numbers denoting the eigenvalues ω = ωk,m The
presence of the combination of exponentials exp(±imχ)
with arbitrary coefficients is due to the degeneracy of the
modes with m = +|m| and m = −|m|. One can see that
the coupling of ϑ and µ in Eq. (6) comes from the term
with cos θo(∂/∂χ) only. This means that (i) the coupling
vanishes exponentially at x � 1 (r � ∆o); (ii) there
is no coupling for m = 0 modes, in contrast to the FM
case [8,12].

Discrete Approach.— Numerical diagonalization for
magnon modes on a vortex was performed for circu-
lar square lattice systems with radius R < 20a and
fixed boundary conditions, using the method of Ref. [11].
Spin deviations Sx̃

n
and S ỹ

n
from the static vortex spins

were written in local coordinate frames for each spin
in terms of creation/annihilation operators, e.g., Sx̃

n
=

ih̄
∑

α[w
(2)
n,αBα−w

(2) ∗
n,α B†

α], and replacing w
(2)
n,α → −w

(1)
n,α

to give S ỹ
n
. Here α = {k, m}. The matrix equations of

motion for the {w
(1)
n,α, w

(2)
n,α} coefficients was diagonalized

numerically. Some modes for a system of radius R = 8a
with a vortex at the center are shown in Fig. 2; the w’s
are represented as arrows in the complex plane.

Using the semiclassical condition, Bα ∼ exp(−iωαt),

connections between the {w
(1)
n,α, w

(2)
n,α} coefficients and

{fm, gm} can be established. Using the formula ~ex̃,ỹ,z̃ =
~e1,2,3 for the first ~ex̃,z̃ = −~e1,3, ~eỹ = ~e2 for the second
one, with ~ei determined by (5), we have

2S~̀
n = (Sx̃

n
+ Sx̃

n+a
)~e1 + (S ỹ

n
− S ỹ

n+a
)~e2, (8)

and a similar equation for 2S ~mn, changing the signs be-
fore Sx̃,ỹ

n+a
. Then one can show that the connections are:

w(1)
n,α − w

(1)
n+a,α = −ifα(r)Fm(χ),

w(1)
n,α + w

(1)
n+a,α = −ωXgα(r)Gm(χ), (9)

and similarly for w
(2)
n,α, changing if → ωXf and iωXg →

g. The equations (9) work well for low-energy modes.
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FIG. 2. Modes from numerical diagonalization. Complex amplitudes w
(1)
n,α and w

(2)
n,α are shown as open arrows ( —> ) and

closed arrows ( —� ), respectively. (a) Local mode, with w
(2)
n,α arrows enlarged by a factor of 4. (b) Nonlocal m = 0 mode,

with w
(1)
n,α arrows enlarged by a factor of 8. (c) m = ±1 translational mode, with equal scales for w

(1)
n,α and w

(2)
n,α arrows.

For example, the arrows for w
(1)
n,α in Fig. 2a, b, are per-

pendicular to those for w
(2)
n,α; in different sublattices they

are antiparallel for the mode with g ≈ 0 (Fig. 2a),
and parallel for the f ≈ 0 mode (Fig. 2b). For the
case m 6= 0 (e.g., Fig. 2c), the ratio a/b [Eq. (7)]
can take the values ±1, and degenerate pairs of modes
(±m) combine to form linear combinations with struc-

ture (w
(1)
n,α, w

(2)
n,α) ∝ (cosmχ, sin mχ).

Local mode.— For m = 0, the equations for f and g
are uncoupled and have the forms of usual Schrödinger
equations (SE). Then it is easy to show that the equation
for gk,0(x) has a gapless continuous spectrum only, with
the usual oscillating asymptotic scattering form far from
the vortex,

r−1/2 cos(kr + φ), k = |ω|/c. (10)

The equation for fk,0 can be put in the form of a SE with
the potential U1(x), where U1(x) ' −1 + 1/x2 at x → 0
and U1(x) ' 1 − 1/x2 at x � 1. So, the continuous
spectrum of this problem has a gap, and for ω2 > ω2

o

can be put in form (10) far from the vortex, with kc =
(ω2 − ω2

o)
1/2. But the presence of the attractive part of

the potential, U1(x) < U1(∞) = 1, gives the possibility
of the appearance of a local mode with the frequency
ω`, ω2

` < ω2
o , with well-pronounced exponential decay,

f`,0 ∝ exp[−x(1−ω2
` /ω2

o)
1/2]. The analysis of this mode

was done numerically by using a shooting method [15]
in finite circular systems of radius R = X∆o, with the
conditions, f(0) = f(X) = 0, X ≤ 40. Comparison
with the results of exact diagonalization have shown very
good agreement of the two approaches, see Fig. 3. The
dependence of ω` on R is very weak for large enough
R, e.g., ω` ' 0.958ωo for R ' 9∆o, and ω` ' 0.955ωo

for R ' 40∆o. Size effects become strong only for R <
(1 − ω2

` /ω2
o)−1/2∆o ' 3.4∆o. The presence of a literally

local mode inside the continuous spectrum is a unique
property of AFM-vortices. It should manifest itself in
response functions of the AFM’s with vortices, and since
the excitation of the local mode requires no momentum
transfer, such resonance can in principle be observed in
ESR experiments.

FIG. 3. The local mode, f`,0, from continuum theory (lines)
and from discrete model numerical diagonalization (symbols)
for radius R = 20a circular systems.

Vortex-Magnon S-matrix.— For m 6= 0 modes the in-
and out-of-plane ~̀ oscillations are coupled strongly near
the vortex center. For x � 1 (r � ∆o) one has the
Taylor expansions

fm ± mgm = C(±)x
|ν±m| (1 + a

(±)
1 x2 + a

(±)
2 x4 + ...),

where the coefficients a
(±)
n are determined by ω2 and ar-

bitrary parameters C(±). The presence of non-scale coef-

3



ficient ε ≡ C(−)/C(+) is a special property of the eigen-
value problem (6); the ratio of amplitudes of in- and out-
of-plane oscillations in the wave with given frequency ω
is regulated by ε.

Far from the vortex core, x � 1, the coupling
term in (6) is exponentially small, cos θo ∝ exp(−x).
For r � max(∆o, 1/k) the solution for g can be ex-
pressed in the oscillating form (10). For fk,m(r) one has
asymptotics with linear combinations of exponents like
r−1/2A(±) exp(±κr), where κ = c−1(ω2

o − ω2)1/2, and
constants A± depend on ω and C(±). For ω2 > ω2

o only
oscillating asymptotics like (10) appear.

In the most interesting region of small frequencies,
ω2 < ω2

o , the eigenfunction with oscillations of gk,m(x)
combined with exponentially decaying fk,m(x) can be
constructed using the shooting method, “killing” the
growing exponent in fk,m(x) by choosing an appropri-
ate value of ε. Numerically, the boundary condition
f(X) = 0 was applied, and very well-pronounced expo-
nential decay of f(x) resulted, even for X ' 40. The scat-
tering problem can be analyzed from these calculations.
In order to explain let’s consider the magnons without a
vortex. The solutions can be represented in the form (7)
with fk,m = 0, gk,m = Jm(kr), which is (10) with a de-
fined value of the phase φ = −(π/4)(2m+1). In the pres-
ence of the vortex φ takes another value, which means the
asympotic is in the form gk,m ∝ Jm(kr) + ρm(k)Ym(kr),
where Ym is a Neumann function. Obviously, the coeffi-
cient ρm is the measure of the intensity of scattering, see
Fig 4. Then, the S-matrix can be obtained from Sm(k) =
(1 − iρ)/(1 + iρ). The values of ρm(k) are smaller for
larger values of m, for example, ρm(k) ≤ 10−2, 2 × 10−3

and 2 × 10−5 for m=3,4 and 6.

FIG. 4. The ρm(k) dependence for m = 0, ±1 and ±2, ex-
tracted from the shooting solutions.

It is well known that the presence of a quasi-local mode
with large lifetime at ω ' ωq` gives a sharp maximum in

Sm(kq`), kq` = ωq`/c. The components of the S-matrix
for all m’s excluding m = ±1 have no such maxima at
k∆o 6= 0, 1, and the maximum for m = ±1 is very wide.
It means that there is no chance to have a well-defined
quasi-local mode at ω` 6= 0, ωo for |m| 6=1. However,
at k → 0, the ρ1(k) dependence is very fast, possibly
indicating a root type singularity. The eigenfunctions
near this point have a special shape with a well-defined
maximum at r ≤ ∆o, which is fitted by the translational
mode functions ( fo = (dθo/dx), go = (1/x) sin θo,) and a
small amplitude oscillating tail. It means that the quasi-
local mode with m = ±1, ω ' 0 is present, as in FMs.
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