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Abstract

A numerical investigation of collisions of kink-antikink (K K) pairs in an easy-
plane classical antiferromagnetic chain is presented here, for the case of an applied
field within the easy plane. An approximate kink profile as obtained from an earlier
Ansatz was used as the initial condition for numerical integration on a discrete lattice.
As a function of the applied magnetic field and kink Ansatz parameter 8,, which
measures the tilt of the spins out of the easy plane, we have found distinct parameter
= regimes resulting in transmission, reflection, and annihilation of the KK pair. Results
for both the in-plane (XY) and out-of-plane (YZ) kinks are summarized, and com-
parison is made to KK scattering in the easy-plane ferromagnet. Similarly to the case
of the easy-plane ferromagnet CsNiF;, it is found that these results imply difficulties in
the interpretation of experiments on tetramethyl ammonium manganese trichloride
(TMMC) in terms of classical soliton theory. For example, for fields from approxi-
mately 20 kG to 80 kG, the low velocity XY collisions generally result in pair annihi-
lation to spin waves. For fields less than 20 kG, however, the low velocity KK XY
pair transmits. Experimental results for TMMC are discussed in the light of these

features.



1. Introduction: Solitons in One-Dimensional Magnets

There are a number of unresolved questions concerning the theoretical description
of magnetic chain materials. In particular we consider those expected to support sine-
Gordon soliton-like excitations (which we refer to here as kinks). Typical examples of
these materials include easy-plane ferromagnets (EPF’s) CsNiF; (spin S=1),
(CgHyjNH3)CuBrs, or "CHAB" (S=1/2), and the easy-plane antiferromagnet (EPA)
(CD3)sNMnCl3, or TMMC (S=5/2). In the presence of an applied magnetic field
within the easy plane, a classical mechanics description using a nearest neighbour
Hamiltonian with either exchange or single ion anisotropy leads approximately to a
sine-Gordon (SG) equation of motion for the in-plane spin angle ¢ (Mikeska
1978,1980). This approximate aguatinn of motion requires the assumptions of slow
spatial variations in the spin fields or sublattice spin fields for the antiferromagnet
(continuum limit), small out-of-easy-plane spin motions, and of course supposes classi-
cal mechanics to be adequate. Generally, for small enough applied ficld and velocity,
the predicted kink width will be small enough so that the continuum limit is a good
approximation. While the out-of-plane angle 8 may be fairly small for some slowly
moving kinks, it nevertheless introduces terms in the equations of motion ignored in
the SG treatment (beyond terms linear in 8), which typically cannot be neglected for

an accurate evaluation of the energy-velocity dispersion E(v).

In fact, these terms can have a dramatic effect, changing the solutions qualita-
tively from the SG limit. For sufficiently large applied fields, greater than an
anisotropy-dependent critical field B, (Kumar 1982, see also Harada et al 1981), the

casy-plane SG-like kinks acquire a negative effective mass, regardless of whether the
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continuum limit was used (Wysin er a/ 1984,1986). For ferromagnetic (FM) cou-
pling, these high field kinks have been shown numerically to reflect as a result of KK
collisions-- i.e., collisions of kink-antikink pairs of equal but opposite velocity (Wysin
er al 1984). At fields below the critical field, the FM K K pair can either transmit (at
the smallest fields), annihilate (at intermediate fields), or reflect (at fields just below the
critical field). This behaviour would not be expected in a pure SG system--only
transmission of the pair could occur if the SG dynamics were a good approximation to
the dynamics of the original complete Hamiltonian. These discrepancies can be traced
to the terms in the magnetic Hamiltonian which are inherently nonlinear degrees of
freedom (the out-of-plane angles), but which are approximated as linear degrees of
freedom to obtain the SG Hamiltonian. The SG equation of motion includes the non-
linear dynamics of the in-plam,: angle ¢, while the out-of-plane angle © essentially
becomes its conjugate momentum (ie. 8=¢), an approximation which generally turns
out to be inaccurate. These additional terms in the Hamiltonian also introduce non-zero
frequency bound states in the kink spectrum which are responsible for the non-SG

behaviour of the collisions.

A study of KK collisions in the easy-plane anrif erromagnet (AFM) is a natural
extension of the above mentioned work. This study is similar to that for the fer-
romagnet, with the major difference being the need to include kinks from both the X¥
and YZ regimes of the dispersion curve (Fliggen and Mikeska 1983). We accom-
plished this in a natural way by employing a previously introduced Ansatz for the kink
profile as the initial condition for the numerical integration (Wysin 1985, Wysin er al

1986). The kink changes smoothly from XY in character (small z spin components) to
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YZ (small x spin components) as a variational parameter 8, (which measures the out-

of-plane tipping) is increased from zero towards /2.

A priori it was not at all clear whether AFM KK scattering should resemble KK
scattering in the FM. Here we have found some similarities between the two, espe-
cially if one considers the XY AFM kinks to be analogous to the FM kinks. The anal-
ogy can also be seen in the dispersion relationships for isolated kinks, Here we will

review the single kink dispersions and present new KK data to support this view.

We do not address the question of the adequacy of a classical mechanics vs.
quantum mechanics description. Certainly if these spin systems are strongly quantum
mechanical, then it is necessary to re-examine what is meant by "quantum soliton",
especially since the SG soliton limit for these one-dimensional (1D) magnets is derived
from a classical analysis. Quantum aspects of this problem have been partially studied
in other articles. For example, Mikeska and Frahm (1986) and Fogedby er al (1986)
have applied the semiclassical approximation for large spin to the quantum specific
heat problem. The quantum corrections to the classical SG model have been reviewed
by Johnson and Wright (1985); they point out that for the specific heat of CHAB and
TMMC these corrections increase the disagreement of the theory with experiment, and
cause only a slight improvement in the decription of the specific heat of CsNiF;. On
the other hand, classical calculations using the full magnetic Hamiltonian for CsNiF;
(e.g. transfer matrix calculation of Pini and Rettori 1984) or for TMMC (e.g. Monte
Carlo calculation of Jensen er al 1985) have demonstrated difficulties also in a classi-
cal description of these materials. Generally these classical calculations overestimate

the magnitude of specific heat peaks when compared to experiment. It seems likely
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that quantum effects restrict the spin motions more strongly than expected to the easy
plane, thereby reducing the effective number of degrees of freedom, and making classi-
cal SG theory more appropriate than the full magnetic Hamiltonian theory. Emerging
"numerically exact”" quantum transfer matrix calculations for S=1/2 (Wysin and Bishop
1986) also show this reduction in the effective number of degrees of freedom-- quan-
tum transfer matrix specific heat peaks have close to the same magnitude as experi-
ment and classical SG theory for CHAB. Since this question is not completely
resolved even for static (thermodynamic) properties, especially for $=52 TMMC,

investigation of classical AFM KK dynamics clearly is a useful tool.

The stability properties of the XY and YZ kinks are relevant for determining the
allowed initial conditions. These stability regimes have already been established,
partly numerically and partly by a linear stability analysis (Wysin er al 1986, see also
Lemmens er al 1986 for an alternative view). These will be reviewed below in Sec-
tion 2, along with the dispersion relations. In Section 3A we shall give a brief
description of the numerical method and analysis, and a review of the FM KK resuls.
In Section 3B we present the new AFM KK results, in terms of the three regimes
labeled on dispersion curves and on a final state output "phase diagram". The similari-
ties to FM KK collisions will be noted, and the relevance of these results to TMMC

experiments will be discussed in Section 4.



2. Review of Single Kink Dynamics

The nearest-neighbour Hamiltonian under consideration here includes an applied

easy-plane field B=B,, and single ion anisotropy A >0;

H= 3178, Sy + AP~ gpB757) 0
where J :: 0 is the nearest-neighbour exchange (J =6.5 K and A/J =0.04 for TMMC,
Regnault er al 1982), n labels the lattice sites, and pp is the Bohr magneton, and the
xy plane is the easy plane. The continuum limit SG equations of motion derived from
this Hamiltonian were given originally by Mikeska (1980), and Fliiggen and Mikeska
(1983). Later they were re-analyzed by Wysin er al (1986), who found that using a
coordinate system with the x axis as the polar axis allows a more natural description
of YZ kinks, while at the same time simplifying their stability analysis. Note that for
the numerical integration presented here, it is most convenient to apply the discrete
equations of motion in terms of xyz spin components rather than angles, i.e.,

S =8, X[~/ (S,_1+Sp,1)+g iy B—24572], @)
since this allows for integration of the 3N equations of motion without the evaluation
of any trigonometric functions. In this way spin length and energy conservation both
serve as checks of the numerical accuracy. (Note that there is no damping in this simu-

lation.)
The energy-velocity dispersion relation for isolated kinks has been determined by
three different methods:
i) approximately from the SG limits, both XY and YZ:

ii) by numerical integration of the discrete equations of motion, using an appropriate
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initial condition (either SG-like or from the Ansatz, below), combined with a time
averaging procedure to remove spin waves;

iii) by applying a variational Ansatz, that assumes simple profiles for the spins on
both the even and odd sub-lattices, as being SG profiles in tilted spin-space coordinates
(Wysin er al 1986).

These all give similar qualitative results for the XY and YZ branches, however, the
latter two show that the XY branch terminates where it meets the ¥Z branch, an
important detail which is lost in the SG approach. Furthermore, the SG limit drasti-

cally overestimates the effective mass for XY kinks.

The numerical method directly gives stability information (Wysin et al 1986).
Combined with a linear stability analysis for ¥Z kinks, it has been demonstrated that
YZ kinks have a limited range ;:f stability. At fields less than the critical field B,
only ¥Z kinks with velocities greater than some minimum value v* will be dynami-
cally stable. If the field is equal to B,, the minimum velocity v* approaches zero.
For fields greater than the critical field, v* becomes negative. This is shown more
clearly in Fig. 1; also see Wysin ez al (1986) for a further explanation of YZ kink sta-
bility. At the same time, as the applied field is varied from below to above B., the
XY branch continuously diminishes to a point (for B =B, ), and re-emerges with
downward curvature (implying negative effective mass) for fields greater than B_.
These negative effective mass XY kinks are also dynamically stable, as demonstrated

in these numerical integrations.
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The limited extent of the XY branch could be interpreted to mean that SG-like
XY kinks with larger (absolute value) velocities are dynamically unstable. Note that it
is possible to estimate the stability limit for the XY kinks from the linear stability
analysis for YZ kinks, since the two dispersion curves end where they intersect. A
lincar stability analysis can be performed for moving as well as stationary SG-like
YZ kinks: First order perturbation theory for the moving YZ kink linear stability prob-

lem estimates the velocity v* at which the XY branch meets the ¥Z branch, as (Wysin

et al 1986)
2 B, B .»
* o i s e
i e [Hﬂc )R (3a)
where
co=2JSHi , (3b)

and the critical field is

B, =[8AJ5%]"1(g up). 4)
The lattice spacing is used as the unit of length here. Note that for B <B,, when
v¥>0, the XY effective mass is positive, while for B >B,, when v*<0, the XY
effective mass is negative. Equation (3a) is an approximate expression which is most
accurate for B near B.. Also note that one cannot determine v* by equating the
predicted SG XY and YZ energies for a given field; the SG Lh;::ury predicts that the
branches do not cross except for B very near B.. The non sine-Gordon behaviour

manifests itself by strongly changing the effective masses of the X¥ kinks.

The XY kinks are in many ways analogous to the kinks of the easy-plane fer-

romagnet. The EPF kink's effective mass changes sign at a corresponding critical
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field, the absolute values of the effective masses are much smaller than predicted by
SG theory, and they are also dynamically stable even for fields greater than the critical
field. And while the XY kinks obey dynamics very different from SG-like, the ¥Z
kinks, on the other hand, can be described quite accurately using SG dynamics outside
of the unstable regimes mentioned. The EPA YZ kinks have no natural analogue in

the ferromagnet.

With the above points in mind, we can hope that these EPA K K numerical colli-
sion experiments will answer the following questions:
i) Generally, what outcomes are possible for EPA KK collisions, of either XY or ¥Z
type?
ii) Is the behaviour of X¥ KK collisions similar to that of the KK collisions of the
EPF?

iii) How do we characterize the behaviour of ¥Z KK collisions?

To prepare for the presentation of our results, we first review the EPF K K scenario.
3. Kink-Antikink Collisions
3A. Ferromagnetic K K Method and Results

The main features of EPF KK collisions have been given earlier (Wysin et al
1984). The numerical method used for either ferro- or antiferro-magnetic coupling is
essentially the same. The method used for the ferromagnet will be reviewed next, and

modifications necessary to study the antiferromagnet will be described later.

The discrete equations of motion for the EPF were integrated numerically on a

lattice of 80 to 180 spins, a larger number being necessary for kinks of greater width
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(where the kink width w =\[JS/gugB ). The initial condition was taken to be a single
SG kink profile, corresponding to an SG velocity vsg. By using Neumann boundary
conditions for the xyz components, the kink interacts with its mirror image opposite
velocity antikink at the boundary. In this way we need only half as many lattice
points as compared to using a SG KK profile on a lattice with periodic boundary con-
ditions, in addition to saving a factor of two in CPU time. The Numerical method was
a standard fourth order Adams-Bashforth-Moulion predictor-corrector scheme with
mop-up. (For example, see Ceschino and Kuntzmann 1966.) The profile was allowed
to evolve until approximately twice the time for the kink to reach the boundary. By
viewing the time evolution of the profile and spatial averages (denoted with < >) of
the in-plane and out-of-plane angles, it was possible to classify the final state accord-
ing to whether the KK pair undl;nv:nt

i) 8G-like transmission, with monotonically increasing or monotonically decreasing
<¢>(r); or

ii) reflection, with a reversal of the slope of <¢>(r); or

iii) breather formation or annihilation, with oscillatory <é>(r).

The final state was found to be dependent on both the initial SG velocity vg; and the
applied field (for a fixed value of anisotropy ratic A/J). Results are summarized in
Figure 4 of Wysin er al (1984), in terms of an output state phase diagram with four
different regimes. The SG-like transmission regime covers only a small portion of the
diagram--generally the collision behaviour is unlike sine-Gordon dynamics. Regimes
III and IV in the figure both involve KK reflection. However, in regime IV negative

effective mass kinks reflect with no change in velocity, while in regime III positive
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effective mass kinks reflect, with a velocity change (but no change in energy; there are
two types of regime IIT kinks with equal energy but different velocity). Also, a detail
not illustrated in the breather formation regime of Figure 4 (Wysin er al 1984) is the
existence of at least one SG-like transmission window. With such a rich variety of
non-SG behaviour for these equal but opposite velocity collisions, we also expect a
similar variety for unequal velocity KK pairs.
3B. EPA KK Collisions

For this case we used 101 to 501 lattice sites, with the kink width varying as
w =2JS/(gugB) for XY kinks and as w =VJ/(24) for ¥Z kinks. Using a fixed ratio
2A(J=0.04, the field ranged from B/B_=0.10 to B/B,=1.50. For TMMC, this
corresponds to 9.0 kG<B <140 kG, with B, =90 kG. The initial condition was an
Ansatz profile for some sPe-ciﬁm;I value of a parameter 84, where 8, determines the
tilt of the spins out of the easy plane on the A-sublattice (Wysin er al 1986). The
resulting profile could correspond to either an XY or ¥YZ kink, depending on whether
64 was near zero or m/2. At some intermediate value of 8, the Ansatz kink switched
from the XY branch to the ¥Z branch. A given combination of 64 and B/B, then

determined the initial velocity, energy, and width of the kink.

Neumann boundary conditions were applied to the xyz spin components, but now
the spatial derivatives on each sublattice were separately set to zero at the boundaries.
Integration proceeded until about twice the time necessary for the kink to interact with
its mirror image antikink at the boundary. Classification of the type of collision was
based on viewing the time evolution of the spin profile and the spatial averages of in-

plane and out-of-plane angles. The tilt of the two spins at the center of one kink, one
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on each sublattice, measured from the easy plane, provided another diagnostic.

Possible outcomes of collisions include SG-like transmission, annihilation, and
reflection. Typical cases of each of these are shown in Figures 2-6. The profiles are
viewed in either z-polar or x-polar spherical coordinates, depending on which was
visually more convenient. These results are summarized in Figures 7,8 and 9, as indi-
cated on the single kink dispersion curves. An alternative representation of the sum-

marized data is the final state phase diagram of Figure 10.

The results for low velocity XY kinks are similar to those for ferromagnetic
kinks. Generally, for low fields B <0.2B_ there is SG-like transmission. At higher
fields but still with B <B, the low velocity pairs annihilate, or possibly form breathers,
and the higher velocity XY kinks undergo SG-like transmission. For B >B., the nega-
tive effective mass XY kinks reflect, as in the ferromagnet. Most of the cases tested
for YZ KK pairs resulted in transmission, consistent with their nearer to SG
behaviour. The exceptions included some cases at small velocity for B-::-B,, where
annihilation occurs. Other annihilation cases, at the XY to ¥Z boundaries for B >B.
may be artifacts of the Ansatz initial condition.

4. Discussion

Typically the dynamic behaviour of isolated kinks in cuy-plﬁu magnets has been
seen to be only poorly described by a sine-Gordon equation. Generally the effective
kink mass is modified by additional terms in the eguations of motion not included in

the simplified SG picture. These additional terms also are responsible for introducing

internal bound states in the kink spectrum which are very important for collisions. In
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the extreme case of applied fields greater than the critical field, the effective mass can
be negative, a result of an instability that changes the character of the kink but does
not destabilize it. The collisions of equal but opposite velocity ferromagnetic X K
pairs has been seen to be drastically different from simple SG transmission. Outcomes
can additionally include annihilation and reflection. These statements also apply to the
easy-plane antiferromagnet, especially for the XY kinks, which in some ways are
analogous to the EPF kinks. For both the EPF and EPA KK collisions, low field
nearly planar kinks (xy-like) undergo transmission, while for larger fields the

behaviour generally changes from annihilation to reflection as the field increases.

The existence of large ranges of applied field for which annihilation occurs may
raise a problematic issue for the interpretation of neutron scattering experiments on
TMMC (Boucher et al 1983). If KK collisions in the sample in thermodynamic
equilibrium tend towards annihilation, then the previously assumed noninteracting
kinks no longer can be considered as stable fundamental excitations of the system.
Rather, spin waves and multi spin waves would predominate and determine the spectra
and thermodynamic properties. However, the classical SG theory agrees well with
neutron scattering data for TMMC---no sign of a collisional kink instability is indi-
cated. In light of the results presented here, and similarly for CsNiF;, this is a confus-
ing point-- clearly, we need to better understand the thermal distribution of XY and YZ
kinks.

It is possible that such a good fit to SG theory is primarily a consequence of
quantum effects. A quantum approach may show that the spins are strongly restricted

to the easy plane, more so than in the classical theory, making SG theory a reasonable
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approach. Indeed, there is already indirect support for this view (Tinus et al
1985,1986, also see Wysin and Bishop 1986) in the EPF CHAB and possibly also in
CsNiF;. Quantum restriction to the easy plane is indicated even in the semiclassical
calculations for EPF's of Mikeska ard Frahm (1986) and Fogedby er al (1986),
although these do not completely bring theory into agreement with experiment. Exact
quantum calculations, for both thermodynamics and statistical mechanics, will most

likely be necessary to clarify the theory for TMMC just as for EPFs,
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Figure Captions

Fig. 1. Some typical EPA kink energy-velocity dispersion relationships, at three
different fields. The data points were obtained from numerical integrations with
A/J=0.02, and B/B, = 0.75 (), 1.0 (A), and 1.25 (x). The curves are the correspond-
ing results from a variational Ansatz calculation. The energy is measured in units of
JS2, and the velocity in units of JS/#.

Fig. 2. KK collision of an X¥-like pair, resulting in SG-like transmission; at
field B/B.=0.25, with initial ﬁlccity vg=1.4 (or 8,=0.180243). The angle ¢ within
the easy plane (on one sublattice) is shown in (a), and the associated out of easy plane
angle O is shown in (b). The time evolution of the spatial average of the in-plane
angle, <¢>(1), is shown in (c). Theta-A and theta-B in (d) are the out of easy plane
tilting of the two spins, one on :;ch sublattice, at the center of the kink vs. time. Note

that in this case theta-A and theta-B interchange during the collision.

Fig. 3. KK collision of an XY-like pair resulting in annihilation; at field
B/B.=0.25, with initial velocity v¢=0.37 (or 8,=0.024673). Parts (a) through (d) are
as described in Fig. 2. Note the oscillations, suggestive of formation of a breather-like
bound state.

Fig. 4. KK collision of an XY-like pair resulting in reflection; for B/B,=0.75,
with v¢=0.59 (0,=0.932563). Parts (a) through (d) are as described in Fig. 2. Note
that theta-A and theta-B change sign during the collision, as does the slope of <¢>(1).

Fig. 5. KK collision of an XY-like pair also resulting in reflection, but for

B/B.=1.075, with vg=0.06 (0,.0.364563), Parts (a) through (d) are as described in
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Fig. 2. Again theta-A and theta-B change sign during the collision, but one passes
through zero and the other passes through & in the process.

Fig. 6. KK collision of a YZ-like pair, resulting in SG-like transmission, for
BB =0.75, with v¢=0.73, (8,=1.59537). In this figure, ¢ and © in parts (a) and (b)
are the angles within the yz-plane and out of the yz-plane respectively, for one sublat-
tice. In (c), <¢> is the spatial average of ¢ in the yz-plane. In (d), however, theta-A
and theta-B are the out of easy plane tilting for the two spins at the center of the kink,

one for each sublattice, as in Figures 2-5.

Fig. 7. KK output states in an energy (in units of JS2) vs, velocity (in units of
JS /ft) representation, for A/J/=0.02, and applied fields B/B.=0.10 (solid curve), 0.175
(dashed curve), 0.25 (dotted curve) and 0.375 (chain-dot curve). The data symbols
refer to individual KX simulations resulting in SG-like transmission (A) or annihilation
().

Fig. 8. KK output states in the energy-velocity representation, for A /J=0.02, and
applied fields B/B.=0.5 (solid), 0.625 (dashed), 0.75 (dotted) and 0.925 (chain-
dotted). The symbols refer to transmission (A), annihilation (x) and reflection (w).

Fig. 9. KK output states in the energy-velocity representation, as in Fig. 8, for (a)
B/B,=10, (b) B/B.=1.075, (c) B/B.=1.25, and (d) B/B,=1.375. The backwards
branch, negative effective mass XY kinks always reflect; the ¥Z kinks generally

transmit.

Fig. 10. An output state "phase diagram" in terms of the applied field BB, and

the Ansatz parameter 8, (approximately equal to the tilt of the spins out of the easy
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plane at the kink center). The symbols refer to transmission (A), annihilation (x) and

reflection (e).
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