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The influence of a current’s magnetic field on a vortex pinned in a thin magnetic nanodot is
considered. Pinning due to a non-magnetic region or hole in the center of the nanodot is assumed.
Then the vortex ground state is planar and has vorticity q = +1, with a double degeneracy due to
the two opposite directions (curling or circulation) in which the spins can align around the hole.
Dipole interactions lead to a finite energy barrier between the two states. Monte Carlo relaxation
is used to study the current-induced reversal of the circulation. At least two different processes can
take place during reversal: formation of an outward moving circular domain wall, or, nucleation of
two outward moving vortices of opposite vorticity (q = +1 followed by q = −1).

VORTICITY IN A THIN CIRCULAR
NANOMAGNET

In a thin circular nanomagnet of sufficient size, it is
known that the lowest energy stable configuration of
magnetic moments forms a vortex [1, 2], rather than a
state of a single domain [3]. Such states have been ob-
served, for example, in nanodots of permalloy [4, 5], Fe
[6, 7] and Co [8, 9], and offer great possibilities for high-
density and high-speed magnetic storage [10].

It is usual to expect that the spins interact via
isotropic short-range ferromagnetic exchange interac-
tions, together with long-range but weaker dipole-dipole
interactions. The spins become mostly confined within
the (xy) plane of the material, due to dipole-dipole inter-
actions which act equivalent to an easy-plane anisotropy
[11] which even varies with position in the nanomagnet
[12]. Additionally, the dipole interactions cause the spins
to lie parallel to the circular boundary at the edge, lead-
ing to a vortex state with either a clockwise (CW, nega-
tive) or counterclockwise (CCW, positive) curling or cir-
culation of the spins around the circle. At the center,
however, to reduce their exchange energy, the vortex core
spins must tilt out of the xy-plane (out-of-plane vortex),
acquiring either a positive or negative out-of-plane mag-
netization, Mz (positive/negative vortex polarity). This
concentrated region of nonzero Mz has been used to lo-
cate the vortex [13]. The core out-of-plane tilting is simi-
lar to that found in easy-plane magnetic vortices [14–16],
which exhibit a critical anisotropy strength above which
the spins become confined in the easy plane [16–18].

Thus, in a uniform circular system, there are actually
four different types of out-of-plane magnetic vortices that
could be the ground state (+/− circulation, with +/−
polarity). In all four of these cases, the usual quantized
vortex charge or vorticity, is q = +1, being the charge
that refers to a line integral of the gradient of in-plane
spin angle, taken around any path that encloses the vor-
tex core:

q =
1
2π

∮
�∇φ · d�r. (1)

A vortex with a negative vorticity (i.e., antivortex, q =
−1) would not have its spins follow the contour of the
boundary, and hence, would possess considerably higher
dipolar energy, but the same exchange energy.

The presence of multiple degenerate discrete ground
states, separated by energy barriers, suggests using vari-
ous tactics for switching between them. For example, an
out-of-plane applied magnetic field removes the polarity
degeneracy [19] and results in light and heavy vortices
[20]. Vortex polarity switching due to a magnetic field
pulse has been observed experimentally [21]. It is also
expected that application of a spin-polarized current [22]
or an in-plane magnetic field pulse [23] should switch the
vortex polarity.

The above examples were concerned with changing the
out-of-plane spin configuration. It is our intention here,
rather, to concentrate on the switching of the circulation
of a vortex pinned around a “hole” within a nanodot,
whose effect is to minimize the out-of-plane spin tilting
and eliminate the polarity. Changes in the circulation
might be detected using a nonlocal spin-valve measure-
ment [24]. We concentrate mainly on the effects caused
by the magnetic field of the switching current (Oersted
field) flowing perpendicular to the xy-plane. Miltat et al.
[25] found using micromagnetics for rectangular permal-
loy platelets, that the Oersted field can have a significant
effect on the switching of S and Leaf states. The cur-
rent’s inhomogeneous field was found to cause vortex nu-
cleation, propagation, and interaction during switching.
Here we analyze a simpler problem with higher symme-
try, and focus mostly on the effects of the Oersted field.

Switching a vortex formed around a hole. In the
study here, we consider some aspects of how an unpolar-
ized central current could affect the vortex in a nanodot.
To avoid the discussion of electron-magnetic ion scatter-
ing effects, we consider a current applied through the
center of the dot, in a small region or “hole” that is sep-
arate from the magnetic ions. It is supposed that the
current itself does not flow through the magnetic lattice.
This may be difficult to accomplish in the laboratory, but
nevertheless it is interesting to consider.

The magnetic model employed here is that for a thin
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nanomagnet: an array of spins on a two-dimensional (2D)
square lattice, in a circular system with a hole (i.e., miss-
ing magnetic ions) cut out of the center. The spins are
assumed to interact via isotropic exchange between near-
est neighbors, and long-range dipole interactions, as well
as with the circular magnetic field due to the applied cur-
rent. The interest here is in two primary effects: (i) how
the magnetic field due to the current through the vortex
center can cause reversal of vortex circulation, and (ii)
any fundamental effects initially produced on the vortex
due to the hole.

The hole effects. For two-dimensional magnets
with easy-plane anisotropy, analytical calculations and
Monte Carlo simulations [26–29] predicted that vortices
would be attracted and pinned by nonmagnetic impuri-
ties, which has been confirmed by experiment [30, 31].
The vortex energy is lowered when pinned at a non-
magnetic site, resulting in greater preference of single
vortex [32] and vortex-pair [33] formation there. Monte
Carlo calculations show that vortices preferentially form
in equilibrium around nonmagnetic sites [34], causing
the Berezinskii-Kosterlitz-Thouless transition to move to
zero temperature when the impurity density reaches the
percolation limit [35, 36].

The motion of a vortex pinned by a defect has been
measured using time-resolved Kerr microscopy; high
enough excitation amplitude can free the vortex [13].
Pinned vortices in nanoparticles are expected to affect
the hysteresis curves [37] and can be manipulated by ap-
plied magnetic fields [13, 38].

An additional effect is that even on a single miss-
ing magnetic site, the strength of easy-plane anisotropy
needed to stabilize a vortex in the planar form (Mz = 0
everywhere, resulting in zero polarity) is reduced com-
pared to the pure system [39]. Taking this a step further,
vortex stability calculations for a continuum system show
that as the nonmagnetic region (or hole) is increased in
radius, eventually any vortex pinned around that region
will be forced to be planar [40]. This means that even for
a model with isotropic exchange, such as in a nanodot,
there is no stable out-of-plane vortex around a hole. Once
dipolar interactions are included together with (isotropic)
exchange, the tendency is even stronger for spins to re-
main within the plane of the nanomagnet. Because the
singular core of the vortex is now removed by the pres-
ence of the hole, there is no need for spins to tilt out of the
xy-plane. Thus, in this situation (and with low enough
temperature), the spin dynamics of such a pinned vortex
will be predominantly confined within the xy-plane, with
only smaller dynamic out-of-plane motions. That only
leaves the vortex circulation as a candidate for reversal.

Energy barrier and current effects. Clearly the
presence of a current through the hole on which a vortex
is centered will give an energetic preference for the vortex
circulation having the same sense as the current’s mag-
netic field. Then we are primarily interested in how the

vortex circulation can be switched from its current state
by a current whose field is in the opposite sense. The
goal of the calculations here is to explore different pos-
sible paths that the spin configurations can follow when
reversing the circulation.

Naturally, during the reversal, the spin system must
have at least some of its members point against the mag-
netic field. There must be an energy barrier ∆ over
which the spin configuration’s internal energy must pass,
to get to the preferred state. This barrier would van-
ish in the limit of vanishing dipole coupling, because all
spins could rotate together to their preferred direction,
with no change in exchange energy. With dipolar inter-
actions present, the barrier must increase. But if the
spins reverse their alignment (and circulation) in well-
defined groupings or processes, the time evolution of the
system’s internal energy will be subsequently affected.
Therefore, the switching might possibly proceed along
different paths in the configuration space, depending on
the relative strengths of the dipole couplings compared
to the applied current. Here we make some estimates
of the possibilities, using a Monte Carlo (MC) approach
that includes thermal fluctuations.

THE MODEL AND ENERGY BARRIERS

For a thin nanomagnet, rough estimates can be ob-
tained by using a 2D model, taking classical spins of
length S and magnetic moment gµBS, located on sites
of a square lattice in the xy-plane. The system is a circle
of radius R, with a hole cut out of the center, of radius
Rh, and the origin of coordinates is at the center of the
hole. Any point in the system can be specified either by
its Cartesian coordinates (x, y) or equivalently, by radius
and azimuthal angle, (r, φ). We assume nearest neighbor
isotropic ferromagnetic exchange coupling, J , together
with long-range dipolar interactions, the interaction with
the field of a central current I, and thermal fluctuations
via Monte Carlo.

The exchange hamiltonian between spins �Si is

Hex = −J
∑
(i,j)

�Si · �Sj (2)

where (i, j) indicates summing over all nearest neighbor
pairs, with i and j denoting lattice sites. Any magnetic
moment �mi = gµB

�Si generates a dipole field at position
�r measured away from that spin’s site, according to

�Bi(�r) =
(µ0

4π

) 3(�mi · r̂)r̂ − �mi

r3
(3)

Any pair of spins �Si and �Sj separated by a displacement
�rij = �rj − �ri, contributes a dipolar interaction, Ui,j =
− �Bi·�mj . Then the total dipolar interaction in the system
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is

Hdd = −
(µ0

4π

) ∑
i>j

[3(�mi · r̂ij)(�mj · r̂ij) − �mi · �mj ]
r3
ij

, (4)

where r̂ij is the unit vector pointing from site i towards
site j. The sum with i > j avoids double counting the
interactions.

It is convenient to work the calculations in terms of
unit length spins, σ̂i ≡ �Si/S, and additionally, scale out
the lattice constant a to give dimensionless distances.
Then the exchange terms are proportional to the energy
unit JS2, whereas, the dipole interaction is proportional
to the energy parameter,

D =
(µ0

4π

) (gµBS)2

a3
. (5)

In terms of D we have a form more convenient for nu-
merical calculations,

Hdd = −D
∑
i>j

[3(σ̂i · r̂ij)(σ̂j · r̂ij) − σ̂i · σ̂j ]
(rij/a)3

. (6)

Taking the exchange as the basic energy unit, the ra-
tio δ ≡ D/JS2 will indicate the relative dipole coupling
strength. Exchange and dipole terms form the intrinsic
or internal system energy,

Hint = Hex + Hdd. (7)

One of our primary interests will be in the evolution of
Hint over any barrier during a switching process.

Additionally, the central current I (along ẑ, positive
when out of the xy-plane) will be the driving force for
evolution over a barrier. It produces a magnetic field with
only an azimuthal component, along the local azimuthal
axis φ̂i,

�B(�ri) =
µ0I

2πri
φ̂i, (8)

leading to the interaction,

HB = −
∑

i

�mi · �B(ri). (9)

Writing this in scaled form,

HB = −(gµBS)
µ0I

2πa

∑
i

σ̂i · φ̂i

(ri/a)
(10)

Then we define the effective energy scale of the current,

K = (gµBS)
µ0I

2πa
, (11)

and the dimensionless ratio, κ ≡ K/JS2 gives its relative
importance compared to the exchange forces. In general,
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FIG. 1: Planar vortex internal energy Eint(φ0) for a system
of radius R = 40a with a hole of radius Rh = 4a, at the scaled
dipole strengths δ = D/JS2 indicated. The vortex circulation
is C = sin φ0, where φ0 is the global rotation of the spins away
from the radial direction.

then, we have the parameters δ, κ and scaled temperature
τ = kBT/JS2 to describe the couplings.

Planar vortex, circulation, and energy barriers.
Next we do a simple evaluation of the changes that could
be expected in the intrinsic system energy when a planar
vortex reverses its circulation. We can consider only in-
plane spin components, because we assume an adequate
sized hole or sufficient dipole strength such that the pre-
ferred alignments are within the xy-plane.

A q = +1 in=plane vortex structure can be defined
by giving the in-plane spin angles, Φi ≡ tan−1(Sy

i /Sx
i )

(with all Sz = 0),

Φi = φi + φ0, (12)

where φi = tan−1(yi/xi) is the usual azimuthal posi-
tion of a site i (angle measured from the +x-axis). The
adjustable parameter φ0 gives a global rotation of all
the spins starting from an initial radial direction. Thus,
φ0 = 0 simply gives all spins pointing radially outward
from the system center, whereas, φ0 = 90◦ produces a
vortex with all spins directed counterclockwise around
its center, following the system boundary. Similarly,
φ0 = −90◦ directs all spins in the opposite sense, clock-
wise around the system, but again following the system
boundary. The choices φ0 = ±90◦ give two degenerate
vortices, for which we say the circulation is C = ±1,
respectively. Of course, letting φ0 = 0 still produces a
q = +1 vortex, but we could say its circulation is C = 0.
In the presence of a current through the system’s center,
it is clear that the vortex with C = +1 will be preferred
if the current is along ẑ, and the vortex with C = −1 is
preferred when the current is along −ẑ.

More generally, in the presence of thermal fluctuations
and even for states not containing a vortex, the circula-



4

0 10 20 30 40 50 60 70 80
R

h

0

10

20

30

40

50

60

70

80
∆
/J

S2

R=20

R=40

R=60

R=80

FIG. 2: Estimated energy barriers ∆ = Eint(0
◦) − Eint(90

◦),
for reversal of circulation of a planar vortex, assuming a co-
herent rotation of spins, for relative dipole strength D/JS2 =
0.02 . The system radius R and hole radius Rh are given in
units of the lattice constant a. The barrier is directly propor-
tional to the dipole coupling D.

tion (or curling) of any spin configuration can be defined
according to a general expression

C =
1
N

∑
i

σ̂i · φ̂i. (13)

where again, φ̂i is the azimuthal unit vector at a site.
Each term in the sum ranges from −1 to +1, which is then
normalized by the total number of spins, N . Hence, the
circulation falls in the continuous range −1 ≤ C ≤ +1,
and how closely it approaches the limits gives a sense of
the alignment of the spins around the circular bound-
ary. For the planar vortex (12), it is obvious that the
circulation is C = sin φ0. Clearly, larger absolute values
of C should be more greatly favored at stronger dipole
coupling, δ.

Initially, it is interesting to observe the change in vor-
tex internal energy Eint as a function of φ0, or equiv-
alently, as a function of C. The expression (12) will
be close to the actual vortex structure on the square
lattice because the dipolar and discreteness effects only
make minor modifications. Typical results for Eint(φ0)
are close to sinusoidal, as shown in Fig. 1.

Assuming a vortex could reverse its circulation via a
coherent rotation of all spins, just by slowly changing φ0,
results in an obvious energy barrier. It is clear that the
barrier, ∆ = Eint(0◦)−Eint(90◦), is zero when D = 0 and
must be proportional to D otherwise. Also, the barrier
changes slowly as the hole size increases, but it increases
with increasing system size R, as shown in Fig. 2.

When a current I is turned on, the magnetic energy
effect [hamiltonian (9)] for this planar vortex can be es-

timated quickly by a continuum integral:

EB = −K

∫
d2r

a2

σ̂ · φ̂
(r/a)

= −2πK
(R − Rh)

a
sin φ0. (14)

If the current’s magnetic field has the opposite sense as
C = sin φ0, then the energy shifts upward by 2πK(R −
Rh)/a compared to the situation without a current. Then
roughly one could expect that a reversal must become
easy when the extra magnetic energy lifts the system
over the barrier, or 2πK(R−Rh)/a ≈ ∆. This last rela-
tion can be considered to define a critical current level for
switching, which is tested in the MC simulations. Specif-
ically, it suggests that the critical current could decrease
as the effective “system radius” R−Rh is increased (but
only if ∆ does not change with R − Rh). Of course, all
of this is only an upper limit, because the barrier found
assumes all spins rotate in unison. If the system reverses
circulation by other paths (such as a circular domain wall
around the system), then the barrier that is surpassed
could be smaller. This possibility is tested by using a
Monte Carlo scheme to watch the relaxation after turn-
ing on a current in the “wrong” direction (i.e., a reversing
current whose field is opposite to C).

MONTE CARLO RELAXATION

A Monte Carlo approach is useful for investigating vor-
tex relaxation and stability, because it realistically in-
cludes thermal fluctuations. It also will take into account
the dynamically important out-of-plane motions.

To test these ideas, we applied a standard Metropo-
lis algorithm using single spin flip moves, as developed
in many references [41–45], and applied to easy-plane
Heisenberg models with vacancies in Ref. 34. For a cho-
sen temperature T , the total hamiltonian E = Hex +
Hdd +HB for a system of N spins is employed. A Monte
Carlo step (MCS) is defined by making trial spin moves
on all N spins, chosen in a random sequence. A cho-
sen spin σi is changed by adding a small increment in a
random three-dimensional direction, and then renormal-
izing the spin to unit length, accepting or rejecting each
change according to the Metropolis algorithm: Changes
that reduce the total system energy are always accepted,
whereas, changes that increase the system energy are ac-
cepted only with a probability of exp(−∆E/kBT ). The
spin increments are dynamically adjusted in length so
that the acceptance rate falls between 30% and 60%.
Tables of inter-spin distances (and their powers) were
determined once and then re-used to speed the dipole
energy evaluation. Although the sequence of MC states
is not a real time evolution, it gives a good idea of what
could happen in the presence of thermal fluctuations and
is an interesting alternative to the usual micromagnetic
simulations.
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MC experiments: In a typical simulation, the pla-
nar vortex (12) with C = +1 is the initial state, but
its perfect order can be present only at zero tempera-
ture. Therefore, before turning on a reversing current,
a number of MC steps (about 1000–2000 MCS) are per-
formed to equilibrate the system for the chosen tempera-
ture. The thermal fluctuations substantially increase the
exchange energy, have a lesser effect on the dipolar en-
ergy, and cause the circulation to acquire a magnitude
less than one. Then the desired current is switched on
suddenly, causing an energy increase due to the magnetic
field energy EB, close to the value in equation (14). Then
the subsequent evolution of spins is tracked. In partic-
ular, the internal energy is monitored to watch the size
of barrier it must pass over. Full reversal of the vortex
can be detected after C changes sign and acquires the
magnitude it had before the current was turned on.

REVERSAL PROCESSES

The MC experiments just described were carried out
for small systems at different relative dipole coupling
δ = D/JS2 and current κ = K/JS2. The dipole in-
teractions relative to exchange define a physical length
scale for the problem, the magnetic exchange length,

l = a
√

JS2

4πD . Caputo et al. [12] showed that in a thin sys-
tem without a hole, the vortex state (an out-of-plane one)
is the ground state provided the system is large enough,
2R > 30l. Otherwise, the ground state would be of ho-
mogeneous in-plane magnetization. For instance, relative
dipole strength δ = 0.08 gives l ≈ a, which is the limit
at which discreteness of the lattice becomes important
(i.e., at δ > 0.08, or weak exchange). Here, with the hole
present, the vortex state is more greatly preferred, even
for smaller systems, although we have not carried out a
full analysis of the necessary conditions on R, Rh and l.
Based on the discreteness limit, we tested some δ both
above and below 0.08, keeping in mind that the higher
values of δ relate to larger energy barriers for reversal,
whereas, the lower values give a more continuum model.

We used many simulations on a small system (R = 20,
Rhole = 2.0, τ = 0.1), at δ = 0.02, 0.04, 0.08, 0.12, and
various other simulations on larger systems. We found
general trends for reversal as follows.

At very low reversing current κ, there is no reversal.
The system stays in the original vortex of positive circu-
lation, as can be expected. Clearly, there is a minimum
current needed to supersede the minimum energy barrier
to arrive at the opposite circulation.

As κ is increased beyond that minimum, reversal be-
gins to be possible, and it can take place by at least
two different processes. The first is via formation of a
circular domain wall (CDW). The spins start to rotate
together only in the region just outside the hole, where

δ=0.08, κ=-0.9, τ=0.1,    R=20a, Rh=2a
circular

domain
wall

mcs=1800, C= +0.28,  F=6.76  

FIG. 3: An example of how a circular domain wall reverses
the circulation, for a system with parameters indicated. The
reversing current (into the page) was turned on after 1000
MCS. Projections of the spins on the xy-plane are shown.

the current’s magnetic field is strongest. These central
spins are the first to rotate sufficiently until they have
aligned with the magnetic field. In the meantime, a cir-
cular 180◦ domain wall propagates outward toward the
system boundary, reversing the spins at larger radius as
it moves outward (see Fig. 3). Eventually the CDW exits
the system, leaving behind the vortex still pinned around
the hole, but with reversed circulation.

We can define an additional quantity that we used
to identify this kind of reversal. Presence of a circular
domain wall forces some spins to point either radially
inward or outward, hence it is helpful to compute the
average of the radial spin components, weighted by the
radius,

F =
1
N

∑
i

σ̂i · �ri. (15)

This quantity is somewhat like a flux and we will refer to
it by this name, because it acquires larger absolute values
only when there is a net outward or inward organization
in the spin configuration. In particular, it tends to be
large when the circulation is changing rapidly, hence C
and F carry complementary information.

An example of the behavior of C and F during reversal
is shown in Fig. 4, for a system of radius 40a, hole radius
4a. A reversing current κ = −0.3 was used for dipole
strength δ = 0.02, corresponding to magnetic exchange
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FIG. 4: For a system with R = 40a, Rh = 4a, D = 0.02JS2 ,
the circulation C and flux F during reversal via formation
of a circular domain wall. The reversing current was turned
on after 2005 MCS. The large values of F are due to large
numbers of spins pointing radially outward as the CDW moves
outward through the system.
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FIG. 5: For a system with R = 40a, Rh = 4a, D = 0.02JS2 ,
the internal energy and total energy (Eint + EB) during the
reversal via formation of a circular domain wall of Fig. 4. ∆ is
a rough estimate of the actual energy barrier surpassed during
the process.

length l ≈ 2a. The system was initially thermalized for
2005 MCS before turning on the current. It is seen that
C makes a smooth transition from near +1 to near -1,
while F also smoothly rises to large values, until falling
back towards smaller values when the CDW leaves the
system. The associated internal energy and total energy
(Eint + EB) are shown in Fig. 5. The internal energy
passes over an obvious barrier, estimated around 40JS2

for this system. Somewhat surprisingly, this is slightly
larger than the barrier estimated from a uniform global
rotation of the vortex angle φ0 of Eq. (12) [seen in Fig.
1 or Fig. 2, ∆ = 33.2JS2 at these parameters]. This is
probably due to the extra exchange energy of the CDW,
that was not included in the global rotation calculation.

δ=0.08, κ=-0.6, τ=0.1,    R=20a, Rh=2a
emerging

vortex

mcs=3400 C= +0.62,  F=0.87  

FIG. 6: The spin structure caused by a vortex that forms near
the hole, moving outward and eventually reversing the circu-
lation. The system parameters are indicated. The reversing
current (into the page) was turned on after 1000 MCS.

A second type of reversal process is via formation and
propagation of vortices out of the system. Initially, a
q = +1 vortex can form within the spins, near the hole.
The vortex finds it energetically favorable to move out-
ward (see Fig. 6), until it leaves the system. This then
results in there being no net vorticity [Eq. (1)] in the
system, however, a radial 180◦ domain wall (RDW) can
form, connecting the hole to the outer edge, as in Fig.
7. If the domain wall remains, the reversal of circulation
is incomplete, which sometimes occurs if the reversing
current is too weak. In that case, the circulation may
not approach very close to -1, becoming “stuck” near a
value around -2/3, although the net vorticity of the sys-
tem would still be zero. To finish the reversal process, a
q = −1 (anti) vortex must also form near the hole, and
propagate outward through the system, typically moving
along the domain wall. Once that has taken place, the
final state is that of a q = +1 vortex pinned around the
hole, with reversed circulation near -1.

Generally, but not universally, reversal via vortices
seems to be favored as the reversing current is increased.
It is interesting to contrast reversal via vortices with re-
versal via a CDW, changing only the current. For the
same system parameters that gave CDW reversal above
(R = 40a, Rh = 4a, δ = 0.02, Figs. 4 & 5), and even us-
ing the same random seed and same thermalized state
(at 2005 MCS), the reversing current was doubled to
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δ=0.08, κ=-0.6, τ=0.1,    R=20a, Rh=2a
radial

domain
wall

mcs=9600 C= -0.75,  F=0.29  

FIG. 7: A radial domain wall spin structure that results after
a positive vortex (the one in Fig. 6) has left the system, for the
parameters indicated. This structure is metastable. Complete
reversal of the circulation from here is possible only if a q =
−1 vortex can form near the hole and leave the system.

κ = −0.6. What resulted was an emerging vortex, which
was joined shortly by an emerging antivortex (q = −1)
on the opposite side of the system. The vortex positions
were tracked. Their radial positions versus MC-steps are
plotted in Fig. 8. Both eventually leave the system and
facilitate the reversal. These movements result in the cir-
culation and flux as shown in Fig. 9, and corresponding
energy plot in Fig. 10. The presence of the vortices causes
changes in F , but not as great as during reversal with a
CDW. Even more interesting, is that the energy barrier
now surpassed is somewhat larger, about ∆ ≈ 60JS2, al-
though it is the same system that could give reversal by
CDW at a lower current. The other difference is that the
reversal now proceeds at a higher rate with the higher
current.

Fig. 10 also displays another effect. It can be seen that
the internal energy before and after the reversal do not
match exactly. After the reversal, the internal energy is
slightly lower, but this could be expected, because there
was no current before reversal, whereas, after reversal,
the reversing current is still being applied. This slight
difference can be traced primarily to the exchange en-
ergy: the continued application of the current and its
magnetic field keeps the spins more organized, reducing
their fluctuations and exchange energy. The dipolar en-
ergy before and after reversal is nearly unchanged, hence
the internal energy is reduced after the reversal in this
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(vortex pair reversal)

FIG. 8: The radial distances from the center of the hole for
a vortex (q = +1) and antivortex (q = −1) that form during
a reversal process, for the parameters indicated. The revers-
ing current was switched on at 2005 MCS. Once their radial
positions reach 40a, vortices have left the system. (See also
Figs. 9 and 10)
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FIG. 9: The circulation and flux during a vortex pair reversal
process (see Figs. 8 and 10), for the parameters indicated.

simulation.

Near the weakest current that causes reversal, it seems
that either CDW or vortex formation may take place.
But when the reversing current is set to larger values,
the reversal tends to take place more rapidly, and tends
to do so via vortex formation. In the typical reversal via
vortex formation, first a vortex emerges, followed by for-
mation of a radial DW, and then followed by emergence
of an antivortex to complete the reversal. At high enough
current, as seen above, it is possible to skip the interme-
diate RDW step, with the system generating the q = −1
vortex before the q = +1 vortex has left the system. This
type of reversal appears to be the fastest.
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FIG. 10: The internal energy and total system energy (in-
cludes EB) vs. Monte Carlo steps during the vortex pair
reversal process of Fig. 8, for the parameters indicated. ∆ is
a rough estimate of the energy barrier surpassed.

DISCUSSION AND CONCLUSIONS

These results do not include a precise determination of
the actual sizes of energy barriers that need to be crossed,
in general, nor of the critical currents for reversal. Also,
the temperature was fixed at τ = 0.1, and used simply
to include the typical thermodynamic fluctuations.

Roughly speaking, however, there seems to be no re-
versal at all unless the magnetic field energy (EB , due to
the current) is at least about 30% of the dipolar energy
(Edd) in the system. Surprisingly, the surpassed barriers
are somewhat larger than the barriers calculated for a
uniform rotation of all spins, as appears in Eint(φ0) for
the ideal vortex. Of course, that idealized calculation
refers to a zero-temperature limit, and does not include
any exchange energy. Furthermore, the global uniform
rotation is thermodynamically unlikely, and the reversal
must be dominated by other more probable (i.e., higher
entropy) paths. The processes found here effectively ro-
tate smaller groups of spins at any time (localized vortex
or DWs), which requires extra exchange energy with the
neighbors of those spins, hence the actual barriers are
higher than expected from Eint(φ0) for an ideal vortex.

In summary, we found that a central reversing current
passing through a hole in a thin circular nanomagnet
can cause the vortex circulation to reverse by different
processes. Near the minimum current that causes rever-
sal, it appears to be more likely to see reversal proceed
through formation of a circular domain wall that forms
at the hole, and moves outward. Higher reversal current,
however, leads to formation of an emergent q = +1 vor-
tex, which leaves the system, followed by formation of a
radial domain wall, with reversal finally completed if a
q = −1 vortex can form and emerge from the system. In
fact, at moderate to higher currents, the reversal almost

always takes place via vortex formation; it was very diffi-
cult to see the reversal proceed due to a circular domain
wall. At still higher current, the system might not form
an intermediate state with a radial domain wall, because
the reversal can even take place with both the q = +1
and q = −1 vortices emerging from the system together.
Possibly, the different processes could be distinguished
experimentally using methods such as a nonlocal spin-
valve measurement [24].

In some instances, at moderate current, the reversal
becomes “stuck” at the radial domain wall stage, after a
vortex has already emerged. The system’s final state has
a circulation near -2/3, F ≈ 0, and no net vorticity. The
direction of the RDW was random, but once formed, it
preserved its azimuthal position. This is also an interest-
ing metastable state; control of the direction of the RDW
could be a future challenge.

The formation of propagating vortices during reversal
is consistent with micromagnetics simulations for rectan-
gular permalloy platelets that included the Oersted field
[25]. Certainly there are other more complex spin states
present during reversal of the circular nanodot, that will
deserve further study. Especially in larger systems, the
dipole interactions begin to favor a complex set of do-
mains, whose reversal must take even more complicated
paths than discussed here.
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[31] M. Rahm, R. Höllinger, V. Umansky, and D. Weiss, J.
Appl. Phys. 95, 6708 (2004).

[32] G.M. Wysin, Phys. Rev. B 68, 184411 (2003).
[33] A.R. Pereira, J.Magn. Magn. Mater. 279, 396 (2004).
[34] G.M. Wysin, Phys. Rev. B 71, 094423 (2005).
[35] B. Berche, A.I. Farinas-Sanches, Y. Holovatch, and R.

Paredes, Eur. Phys. J. B 36, 91 (2003).
[36] G.M. Wysin, A.R. Pereira, I.A. Marques, S.A. Leonel,

and P.Z. Coura, Phys. Rev. B 72, 094418 (2005).
[37] A.R. Pereira, J. Appl. Phys. 97, 094303 (2005).
[38] A.R. Pereira, Phys. Rev. B 71, 224404 (2005).
[39] C.E. Zaspel, C.M. McKennan, and S.R. Snaric, Phys.

Rev. B 53, 11317 (1996).
[40] A.R. Pereira and G.M. Wysin, Phys. Rev. B 73, 214402

(2006).
[41] C. Kawabata, M. Takeuchi and A.R. Bishop, J. Magn.

Magn. Mater. 54–57, 871 (1986).
[42] C. Kawabata, M. Takeuchi and A.R. Bishop, J. Stat.

Phys. 43, 869 (1986).
[43] G.M. Wysin and A.R. Bishop, Phys. Rev. B 42, 810

(1990).
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