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We investigate the linear spin wave spectrum of 2d easy-plane classical Heisenberg ferromagnets
in the presence of a vortex, using numerical diagonalization on small systems. The spectra of
normal modes for both in-plane and out-of-plane vortices are determined, for square, triangular and
hexagonal lattices. Some of the modes show a strong localization of their amplitudes near the center
of the vortex. Moreover, we investigate a particular mode that drives the crossover in the static
vortex structure from purely in-plane to a vortex with well-localized out-of-plane component as the
easy-plane character of the system is reduced below a certain threshold.

PACS numbers: 75.10.Hk, 75.30.Ds, 75.40.Gb, 75.40.Mg

I. INTRODUCTION: VORTEX INSTABILITY

In classical models for quasi-two-dimensional magnetic materials1, it has been found that vortex nonlinear exci-
tations play an active role in phase transitions,2,3 and are expected to be important in the spin dynamics.4–6 The
vortices are topologically stable excitations, carry effective charges, are created in particle-antiparticle pairs, and are
expected to make contributions to correlation functions, especially, to central peak intensity in the dynamic structure
function5 S(q, ω). In particular, in models of three-component classical spins with easy-plane (XY) anisotropy, there
are two types of vortices possible,7,8 known as “in-plane” and “out-of-plane” vortices, depending on whether the
static vortex has zero or nonzero out-of-easy-plane spin components, respectively. For ferro- and antiferro-magnets,
the static structure of the in-plane vortex is known exactly, while the static structure of the out-of-plane vortex is
only known approximately (or numerically). Approximate results are also known for the modification of these spin
structures for slowly moving vortices.8,9 Furthermore, the dynamics of pairs of vortices has received some study; for
pairs of out-of-plane vortices, there are interesting orbital and translational relative motions with faster cyclotron-like
oscillations superimposed.9–11

Some attempts have been made to describe these motions as found from numerical simulations by effective equations
of motion for the vortex centers,4,12,13 including effective masses and charges11,14,15 that determine the dynamics
(collective coordinates.16) However, these approaches have assumed that a vortex has no internal dynamics, that a
moving vortex consists of a uniformly translating spin profile of fixed shape, with no internal oscillations or other
intrinsic time dependence. However, it is expected that the vortex spin profile can have some kind of internal
oscillation, perhaps even when it is stationary (i.e., not translating), in analogy with the internal modes of nonlinear
excitations in one dimension.17 Little is known about such dynamic modes of individual vortices. A description of
their properties could be valuable in application to the collective coordinate theory18 and in calculations of dynamic
response functions. These modes can be determined, however, by evaluating through numerical diagonalization the
small amplitude normal modes of oscillation of the spin field about a single vortex. The resulting spinwave spectrum
may contain particular modes that are strongly associated with the presence of the vortex itself, and otherwise absent
if the vortex is absent. It is likely that these modes would be localized on the vortex. In addition, the spectrum will
contain other modes that are extended over the entire system, and possibly only modified slightly by the presence of
the vortex. Those modes, however, will contain information about the interaction of the spinwaves with the vortex.
For these reasons, we investigate numerically the spinwave modes of a system containing an individual vortex, and
analyze one particular spinwave mode that is responsible for an intrinsic instability8,19 of the in-plane vortex towards
developing large out-of-plane spin components and becoming an out-of-plane vortex as the easy-plane anisotropy is
reduced.

Specifially, we consider a set of classical spin variables on a two-dimensional (2D) lattice, interacting with easy-plane
anisotropic near neighbor exchange. The easy-plane anisotropy will be described by the parameter λ (0 ≤ λ < 1) in
the following Hamiltonian:

H = −J
∑

(n,a)

(Sx
n
Sx

n+a
+ Sy

n
Sy

n+a
+ λSz

n
Sz

n+a
). (1.1)
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The sum is over nearest neighbor pairs of spins S on a 2D lattice with sites {n}, and the set of displacements to the
nearest neighbors is {a}.

Much of the theory for magnetic vortices in this model has been developed in continuum limits. In the present
context, Costa et al.20 and Pereira et al.21 have considered the spinwave modes about single vortices and vortex-
antivortex pairs22 in the XY model (λ = 0), using a continuum limit description of the lattice. However, a continuum
description of a magnetic vortex on a lattice presents difficulties, because the spin field varies rapidly from one lattice
site to the next in the core region of the vortex, violating the usual continuum assumptions. Also, the short distance
cutoff (for example, in energy integrals) in the continuum theory is not well-prescribed, whereas these difficulties do
not appear if one solves for the spinwave modes in the original lattice model. For these reasons, we consider vortices
in this model on a lattice, where the discrete lattice effects, that are most influential in the core of the vortex, can be
correctly accounted for.

It is well-established that for this model with a specified strength of easy-plane anisotropy, only one of the vortex
types is numerically stable when placed on a lattice.8,19 Numerical simulations have led to the conclusion that static
in-plane vortices are stable only when λ is less than a critical value λc. On the other hand, static out-of-plane vortices
are stable only when λ is greater than λc. To say that one type is unstable means that it will evolve into the other
type. The critical value λc was found to have a substantial lattice-dependence; λc is approximately 0.62, 0.70, 0.84,
for triangular, square, and hexagonal lattices, respectively (for ferromagnets). This strong lattice dependence is due
partly to the discreteness effects near the vortex core, for which the usual continuum limit theories are likely to be
inadequate.

This instability or crossover has been found to be driven by a particular dynamic mode of the in-plane vortex,23

whose frequency goes to zero as λ approaches λc. Preliminary numerical diagonalizations were made for the spinwave
modes of a 10 × 10 square lattice system containing one vortex, with a free boundary condition.9,24 A mode that
became soft was found to have its amplitude concentrated near the center of the vortex, suggesting that it is a localized
mode associated with the presence of the vortex, as opposed to an extended continuum spinwave mode of the entire
system. More recently, an Ansatz was made for the structure of a vortex on a lattice,23 in order to explain the lattice
dependence of λc. In this Ansatz, it was assumed that only a small set of spins near the core of the vortex could
have nonzero out-of-plane spin components, while all other spins farther out from the core were held fixed in the easy
plane. The out-of-plane spin components were assumed to depend only on the radial distance from the vortex center.
The analysis was used to determine very accurately the values of λc for the different lattices mentioned above. More
importantly, it also was used to make estimates of the frequency of the dynamic mode responsible for the in-plane
to out-of-plane vortex crossover. However, it is clear that a more complete analysis of the spinwave modes about a
static vortex is needed, especially including an understanding of how that eigenfrequency depends on the system size.

Therefore, we have made a set of numerical diagonalizations for finite systems, to obtain the normal modes (i.e.,
spinwaves) in the presence of a single in-plane vortex for λ < λc, and in the presence of a single out-of-plane vortex
for λ > λc. The calculations described here are semiclassical; the spin equations of motion have been linearized about
a numerically-determined static vortex solution, using local Cartesian spin components with different local spin axes
at each site. The notation for the calculation is described in the following section. Approximately circular systems on
triangular, square, and hexagonal lattices were used. A set of calculations was performed for each lattice, with a range
of system sizes. For each system used, the dependence of the eigenspectrum on the anisotropy λ was determined.
This includes measuring the rms “sizes” of the wavefunctions associated with the modes, and comparing to the size
of the finite system that was used, to decide which modes are localized and which are extended. The mode whose
frequency approaches zero as λ approaches λc has occupied much of our attention. We give substantial analysis of its
dependence on λ, the type of lattice, and the system size.

II. PERTURBATION ABOUT A STATIC VORTEX

We begin by describing how the numerical diagonalization problem for the normal modes of spinwave motion about
a static vortex was set up. For classical states we can parameterize the spins in terms of an in-plane angle φn and an
out-of-plane angle θn, (or spin component), where sin θn ≡ Sz

n
/S, i.e.,

Sn = S(cos θn cosφn, cos θn sin φn, sin θn) (2.1)

For in-plane vortices, the low energy static states of this model will have all Sz
n

= θn = 0, and then the equation to
determine the in-plane angles becomes

Hred = −JS2
∑

(n,a)

cos(φn − φn+a) (2.2)
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∑

a

sin(φn − φn+a) = 0. (2.3)

Only when the vortex center (x0, y0) is at a point of high symmetry, such as the center of a unit cell of the lattice,
or directly on a lattice site (with the spin at that lattice site set perpendicular to the easy-plane) is a simple analytic
solution of Eq. (2.3) known, namely

φn = q arctan(
yn − y0

xn − x0
), (2.4)

where the vorticity q is an integer. For out-of-plane vortices, the in-plane angles are given by Eq. (2.4), while there
are nonzero Sz

n
components. In general, for a given value of anisotropy λ, we have used a numerical relaxation

procedure to determine the static vortex structure, for either in-plane or out-of-plane vortices. We start with an
in-plane vortex, but perturb the spins in the unit cell containing the vortex core by giving only those sites small
positive Sz components. Then every spin in the lattice is re-directed to point along the direction of the effective field
Fn due to its neighbors, as determined from the Hamiltonian above:

Fn = J
∑

a

[Sx
n+a

ex + Sy
n+a

ey + λSz
n+a

ez]. (2.5)

The set {a} includes only the displacements to the neighbors of site n. Sites on the boundary of the finite system will
tend to have weaker effective fields because of their smaller number of nearest neighbors in this sum. Upon iteration,
this procedure relaxes the spins quickly into a static energy minimum vortex (in-plane or out-of-plane vortex) that is
stable for the given value of anisotropy λ. This is because the spin equations of motion can be written in the form,
Ṡn = Sn ×Fn; the time derivatives vanish when the spins are aligned with the effective fields of their neighbors. The
relaxed vortex configuration, S0

n
= (Sx 0

n
, Sy 0

n
, Sz 0

n
) can then be used to obtain the in-plane and out-of-plane angles

of the static vortex, (φ0
n
, θ0

n
), using the definition in Eq. (2.1). Some typical profiles of Sz 0

n
so obtained for various

values of λ > λc ≈ 0.70 for a circular system on a square lattice are shown in Fig. 1.

FIG. 1. Profiles of Sz vs. distance r from the vortex cen-
ter, for single static out-of-plane vortices at the center of
a circular system with 180 sites on a square lattice. The
curves are labelled by the different values of λ. These re-
sults were obtained by the relaxation procedure described
in the text (Sec. II), using a fixed boundary condition as
described in Sec. IV.

Now the approach is to make the spinwave perturbation calculation using the directions, S0
n
, as the different local

quantization axes for each site. This is similar in spirit to a spinwave calculation for an antiferromagnet,25 in which
the classical ground state can have sets of spins on the different sublattices aligned along different directions, and the
perturbation analysis uses different coordinate systems for different sublattices. Usually, to determine the spinwave
spectrum for some system, the small amplitude spin deviations are assumed to be relative to the local classical ground
state directions. In the case here, the spin deviations are taken to be relative to a state with one vortex, which is
not the ground state, but is a local energy minimum. Thus we rotate locally into new coordinates at each site, where
the new axes for quantization of each site (z̃-axis) are along the spin directions for the relaxed vortex, while the new
x̃-axis lies in the original xy-plane [See Fig. (2)]:

Sx
n

= −Sx̃
n

sin φ0
n
− S ỹ

n
sin θ0

n
cosφ0

n
+ S z̃

n
cos θ0

n
cosφ0

n

Sy
n

= Sx̃
n

cosφ0
n
− S ỹ

n
sin θ0

n
sin φ0

n
+ S z̃

n
cos θ0

n
sin φ0

n

Sz
n

= S ỹ
n

cos θ0
n

+ S z̃
n

sin θ0
n

(2.6)
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FIG. 2. Diagram showing the relation between
the original xyz-coordinate system, and the local
coordinates, x̃ỹz̃, where the z̃-axis lies along the
direction of the spin at a particular site in the
unperturbed vortex, and the x̃-axis lies in the xy-
plane.

To simplify the notation that follows, we write

m0
n

= sin θ0
n
, p0

n
= cos θ0

n
(2.7)

With this transformation, the Hamiltonian in the tilde coordinate system is

H = −J
∑

n

∑

m=n+a

{Sx̃
n
Sx̃

m
cos(φ0

n
− φ0

m
)

+S ỹ
n
S ỹ

m
[m0

n
m0

m
cos(φ0

n
− φ0

m
) + λp0

n
p0
m

]

+S z̃
n
S z̃

m
[p0

n
p0
m

cos(φ0
n
− φ0

m
) + λm0

n
m0

m
]

+[Sx̃
n
S ỹ

m
m0

m
− S ỹ

n
Sx̃

m
m0

n

−Sx̃
n
S z̃

m
p0
m

+ S z̃
n
Sx̃

m
p0
n
] sin(φ0

n
− φ0

m
)

+S ỹ
n
S z̃

m
[−m0

n
p0
m

cos(φ0
n
− φ0

m
) + λp0

n
m0

m
]

+S z̃
n
S ỹ

m
[−p0

n
m0

m
cos(φ0

n
− φ0

m
) + λm0

n
p0
m

]} (2.8)

The sums are over each bond in the lattice once. Sites on the edge of a finite system will contribute less, due to the
smaller number of neighbors for those sites.

In what follows we impose semiclassical quantization by considering the operators Sx̃
n
, S ỹ

n
, S z̃

n
to be quantum oper-

ators, satisfying the Heisenberg equations of motion:

ih̄Ṡn = [Sn, H ], (2.9)

with the standard canonical commutators,

[

Sx̃
n
, S ỹ

m

]

= ih̄S z̃
n
δn,m, (2.10)

and its cyclic permutations. Because we are studying the small amplitude deviations from the static vortex configu-
ration, we need the equations of motion linearized in Sx̃

n
and S ỹ

n
, with S z̃

n
≈ S. Doing so, we obtain

Ṡx̃
n

= JS
∑

m=n+a

{m0
n

sin(φ0
n
− φ0

m
)Sx̃

m

+[p0
n
p0
m

cos(φ0
n
− φ0

m
) + λm0

n
m0

m
]S ỹ

n

−[m0
n
m0

m
cos(φ0

n
− φ0

m
) + λp0

n
p0
m

]S ỹ
m
} (2.11a)

Ṡ ỹ
n

= JS
∑

m=n+a

{m0
m

sin(φ0
n
− φ0

m
)S ỹ

m

−[p0
n
p0
m

cos(φ0
n
− φ0

m
) + λm0

n
m0

m
]Sx̃

n

+ cos(φ0
n
− φ0

m
)Sx̃

m
} (2.11b)

Now we look for eigenstates or normal modes, in the sense that we try to find operators which are linear combinations
of the Sx̃

n
and S ỹ

n
operators, with a single-frequency time dependence. Or, in quantum language, we look for creation

and annihilation operators B†
k and Bk in which the Hamiltonian will be a sum of terms in the simple diagonal form

B†
kBk, where k is an index that distinguishes the different modes making up a complete set. While the equations

are solved for finite systems, the usual momentum is not a good quantum number, due to the lack of translational
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invariance. But the modes will be distinguished by the effective wavelengths of the standing waves present, and by
the locations of nodes and antinodes in the wavefunctions or their squares. In any case, we suppose the modes are
ordered in some way, perhaps from largest to smallest frequency, and notated by an index k. Some modes may be
energetically degenerate, in which case k must denote more than just the frequency. It is clear that this type of

problem will produce pairs of conjugate modes, Bk and B†
k, and we suppose these unknown operators are the linear

combinations,

B†
k =

∑

n

(w1
k,nSx̃

n
+ w2

k,nS ỹ
n
) (2.12a)

together with the conjugate definition,

Bk =
∑

n

(w1 ∗
k,nSx̃

n
+ w2 ∗

k,nS ỹ
n
) (2.12b)

where the complex expansion coefficients w1
k,n and w2

k,n are to be determined. (This being a linear problem, there

should be no confusion that the superscripts “1” and “2” are not powers.) With the requirement of exp iωkt time

dependence, where ωk is the unknown eigenfrequency to be determined, B†
k must satisfy

Ḃ†
k = iωkB†

k. (2.13)

Using Eqs. (2.12) and (2.11) in Eq. (2.13) leads to the following matrix equation for the coefficients:

iωkw1
k,n = JS

∑

m=n+a

{−m0
m

sin(φ0
n
− φ0

m
)w1

k,m

+ cos(φ0
n
− φ0

m
)w2

k,m

−[p0
n
p0
m

cos(φ0
n
− φ0

m
) + λm0

n
m0

m
]w2

k,n} (2.14a)

iωkw2
k,n = JS

∑

m=n+a

{−m0
n

sin(φ0
n
− φ0

m
)w2

k,m

−[m0
n
m0

m
cos(φ0

n
− φ0

m
) + λp0

n
p0
m

]w1
k,m

+[p0
n
p0
m

cos(φ0
n
− φ0

m
) + λm0

n
m0

m
]w1

k,n} (2.14b)

For numerical diagonalization, the lattice sites are numbered in some arbitrary order, and then a vector can be formed
out of the w1

k,n and w2
k,n variables as

(w1
1
, w2

1
, w1

2
, w2

2
, w1

3
, w2

3
, . . .) (2.15)

This will allow Eqs. (2.14) to be solved numerically for the eigenvalues ωk and their respective eigenvectors, given in
terms of the coefficients w1

n
and w2

n
. In this notation, the matrix to be diagonalized is real, but not Hermitian.

Once we have the complete set of these normal modes and their eigenfrequencies, the Hamiltonian will be expressed
in the diagonal form;

Hsw =
∑

k

h̄ωkB†
kBk, (2.16)

where Bk and B†
k have equal frequencies, but with opposite signs.

III. NORMALIZATION, SPIN EXPECTATIONS AND FLUCTUATIONS

The complete eigenspectrum will contain all the information needed to determine the expectation values and
fluctuations of the individual spins in the system, either for a single spinwave mode, or, for the system in thermal
equilibrium. To determine expectation values of the spin components or their squares, we need to know Sx̃

n
and S ỹ

n

in terms of the normal modes Bk and B†
k. This means we need to invert the defining relations (2.12). First of all,

the overall normalization of Bk and B†
k must be chosen so that their commutator is unity, [Bk, B†

k′ ] = δk,k′ . From the
definitions, we must require
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[Bk, B†
k] = h̄S

∑

n

[(iw1 ∗
k,nw2

k,n) + (iw1 ∗
k,nw2

k,n)∗] = 1. (3.1)

where S z̃
n
→ S was used. We assume in what follows that the w1

n
and w2

n
coefficients are now rescaled to give the unit

normalization and unit commutator of Bk with B†
k in Eq. (3.1). Then, the following inverse expressions are assumed,

Sx̃
n

=
∑

k

(e1
n,kBk + e2

n,kB†
k) (3.2a)

S ỹ
n

=
∑

k

(e3
n,kBk + e4

n,kB†
k). (3.2b)

To determine the new coefficients e1
n,k and e2

n,k in terms of the w1
k,n and w2

k,n coefficients, one can form the commutator

of Bk or B†
k [Eqs. (2.12)] with Sx̃

n
and with S ỹ

n
, giving

[B†
k, Sx̃

n
] = −ih̄w2

k,nS z̃
n
≈ −ih̄Sw2

k,n, (3.3a)

[Bk, Sx̃
n
] = −ih̄w2 ∗

k,nS z̃
n
≈ −ih̄Sw2 ∗

k,n (3.3b)

[B†
k, S ỹ

n
] = ih̄w1

k,nS z̃
n
≈ ih̄Sw1

k,n, (3.3c)

[Bk, S ỹ
n
] = ih̄w1 ∗

k,nS z̃
n
≈ ih̄Sw1 ∗

k,n (3.3d)

On the other hand, forming the commutator of Bk and B†
k with Sx̃

n
and S ỹ

n
[Eq. (3.2)] leads to equivalent results,

[B†
k, Sx̃

n
] = −e1

n,k, [Bk, Sx̃
n
] = e2

n,k (3.4a)

[B†
k, S ỹ

n
] = −e3

n,k, [Bk, S ỹ
n
] = e4

n,k. (3.4b)

Thus there is the conversion between the coefficients;

e1
n,k = ih̄Sw2

k,n, e2
n,k = e1 ∗

n,k (3.5a)

e3
n,k = −ih̄Sw1

k,n, e4
n,k = e3 ∗

n,k (3.5b)

As an application of these results, we can determine the local magnetization for a site by finding an expectation
value of the original lab frame spin components, to quadratic order in the creation and annihilation operators. In
order to do this, we first need expectation values of the spin components in the tilde coordinate system. From their

definitions, < Sx̃
n

> = < S ỹ
n

> = 0, because these are linear in Bk and B†
k. However, the z̃ component will be

reduced slightly below S due to spin fluctuations of the modes. In order to preserve the overall spin length and the
commutation relations of Sx̃

n
and S ỹ

n
with S z̃

n
, it is necessary to use the following expression for S z̃

n
(as in the standard

Holstein-Primakoff26 transformation):

S z̃
n

= S −
1

2S
(Sx̃

n
− iS ỹ

n
)(Sx̃

n
+ iS ỹ

n
), (3.6)

where the latter terms are the spin lowering and raising operators. Using Eq. (3.2) and Eq. (3.5), the expectation
value of this expression is

< S z̃
n

> = S −
S

2

∑

k

{|w1
k,n + iw2

k,n|
2 < B†

kBk >

+|w1
k,n − iw2

k,n|
2 < BkB†

k >}, (3.7)
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where terms linear in the Bk and B†
k operators and terms like < BkBq > and < B†

kB†
q > are zero in the unperturbed

(single-vortex) state and in single-quantum states and therefore do not appear here. The expectation values of the

Bk and B†
k operators will be determined by the type of state, whether it be a state with one mode excited or a

thermodynamic ensemble of states (equilibrium state). For example, if the state that we are perturbing from (single
vortex) is denoted |0 >, then single-quantum excited states are denoted, |k >,

|k >= B†
k|0 > . (3.8)

The fundamental expectation values are < 0|B†
kBk|0 >= 0, and < 0|BkB†

k|0 >= 1. On the other hand, if the interest

is in a thermal ensemble, then the expectation value required will be the Bose-Einstein occupation, < B†
kBk >=

[exp (βh̄ωk) − 1]−1, where β = kBT is the inverse temperature. It is clear that the expectation values of the S z̃

components will be less than S as a result of fluctuations, while the expectation values of Sx̃ and S ỹ will be zero. As
a result, it is straightforward to use Eq. (3.7) in the coordinate transformation Eq. (2.6) to obtain the expectation
values in the original lab coordinates, i.e., the spin is just reduced in effective length,

< Sn > = < S z̃
n

> (cos θ0
n

cosφ0
n
, cos θ0

n
sinφ0

n
, sin θ0

n
)

= < S z̃
n

> S0
n
/S (3.9)

We also want to know the spin fluctuations associated with some state. The spin fluctuations will be defined in
terms of squares of Cartesian spin components, relative to the vortex state. For instance, the in-plane and out-of-plane
spin fluctuations are described by

< (δSin
n

)
2

> = < (Sx
n
− < Sx

n
>)

2
+ (Sy

n
− < Sy

n
>)

2
>,

< (δSout
n

)
2

> = < (Sz
n
− < Sz

n
>)

2
> . (3.10)

Using the definitions of the tilde coordinates, Eq. (2.6), these are equivalent to

< (δSin
n

)
2

> = < Sx̃
n

2
> + < S ỹ

n

2
> sin2 θ0

n
(3.11a)

< (δSout
n

)
2

> = < S ỹ
n

2
> cos2 θ0

n
(3.11b)

Making use of the expansion of spin components in the operators Bk and B†
k, Eq. (3.2), together with Eq. (3.5), one

can write the fluctuations in the tilde coordinates,

< Sx̃
n

2
>= (h̄S)2

∑

k

|w2
k,n|

2
< 2B†

kBk + 1 >, (3.12a)

< S ỹ
n

2
>= (h̄S)

2
∑

k

|w1
k,n|

2
< 2B†

kBk + 1 > . (3.12b)

Finally, the resulting in-plane and out-of-plane fluctuations are:

< (δSin
n

)
2

> = (h̄S)
2
∑

k

(

|w2
k,n|

2
+ |w1

k,n|
2
sin2 θ0

n

)

× < 2B†
kBk + 1 > (3.13a)

< (δSout
n

)
2

> = (h̄S)
2
∑

k

|w1
k,n|

2
cos2 θ0

n

× < 2B†
kBk + 1 > (3.13b)
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IV. NUMERICAL APPLICATION

First, for a given value of λ, the static vortex structure was found using the relaxation procedure described in
Section II. This static structure acquires nonzero out-of-plane spin components for λ > λc. Then, the eigenvalue
problem [Eq. (2.14)] was solved numerically for the eigenvectors and corresponding eigenvalues, for systems with
hundreds of sites. Because there are two variables per site, the size of the matrix to diagonalize is 2N × 2N , where
N is the number of sites in the lattice. Calculations were performed for approximately circular shaped systems, with
the vortex centered in the system. For these finite systems, there is a choice of either a free boundary condition or a
fixed boundary condition. For the free boundary condition, the lattice is cut off along a circular boundary, and then
the sites on the edge of the system simply have a lower coordination number than those in the interior, and have a
lower effective stiffness as a result. For the fixed boundary condition, the set of spins on the boundary of the system is
coupled to an extra set of spins that are outside the system, still on the same lattice, but held fixed in the directions
that the static in-plane vortex would give them. In this way, even the spins at the edge of the system have the same
coordination number as those in the interior, however, they are coupled to spins that do not move that are outside
the system. Therefore, this fixed boundary condition, which is stiffer than the free boundary condition, tends to give
higher eigenfrequencies. Additionally, the fixed boundary condition results in values for λc that converge faster to
a limit with increasing system size, and for this reason, most of the results reported here were produced with fixed
boundary conditions.

For a given system, the eigenspectrum was determined for a sequence of closely spaced values of λ between 0 and 1.
An eigenvector for one value of λ was projected onto the eigenvectors for the previous value of λ, and then identified
with the one with which the overlap was the greatest. This allowed the eigenfrequencies for the different modes to

be tracked as a function of λ. For a system with N sites, N modes of positive frequency, corresponding to the B†
k

operators, resulted, along with an equivalent set of N modes of negative frequency, corresponding to the conjugate
Bk operators. Double precision was used so that degenerate pairs of eigenmodes could be unambiguously identified,
a necessity for performing the eigenvector overlaps.

V. RESULTS: SQUARE LATTICE

Calculations on systems with 4 ≤ N ≤ 492 were made. For the fixed boundary condition used, the lowest frequency
mode is the mode which becomes soft at some λc < 1. On the other hand, when free boundary conditions are
used, there are also a few modes that can lie below the soft mode, reflecting the greater freedom of movement of the
boundary spins; the lowest mode is at ω = 0, corresponding to a uniform rotation of all the spins in the easy-plane,

a motion that is frozen out by the fixed boundary condition. Some typical spectra (ωk for B†
k) for the two different

boundary conditions are shown in Fig. 3 for a 180 site system. For both types of boundary conditions in Fig. 3,
out-of-plane spin components are present in the static vortex for λ > 0.70 ≈ λc.

FIG. 3. Comparison of the lowest 19 modes in the spinwave spectrum for a square lattice circular
system with 180 sites, containing an in-plane vortex at its center, with (a) free boundary conditions,
and (b) fixed boundary conditions. Degenerate modes are marked with solid circles. The solid and
dotted lines are used only to distinguish nearby modes.
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There are some striking features of these results, which are typical of all the eigenspectrum results for different sized
systems and lattices. Consider the fixed boundary condition (Fig. 3b). One mode of the in-plane vortex (the lowest
mode) comes close to zero frequency as λ approaches λc from below. This mode is still present for λ > λc, with the
out-of-plane vortex as static structure, and its frequency again rises away from zero. The spectrum suggests that this
mode can be considered as a soft mode that is responsible for the energetic instability of an in-plane vortex to become
an out-of-plane vortex, and vice-versa, as |λ−λc| → 0. The other obvious feature of the spectrum is that modes that
are degenerate (solid circles) for the in-plane vortex become split for the out-of-plane vortex. This change also occurs
for λ near λc. It is likely that the degeneracy for λ < λc for the in-plane vortex comes about because these modes
have an Sz component that can be essentially “up” or “’down”. On the other hand, for the out-of-plane vortex, this
up-down symmetry is certainly violated, because the static spin configuration already possesses a nonzero Sz profile.
Also, one of the modes that comes out of the lowest degenerate pair goes very close to zero frequency for λ near 0.9 .

There are some differences for the free boundary condition, Fig. 3a. Here the “soft mode” that bears the most
resemblance to that for the fixed boundary condition reaches a downward cusp at λc, but does not go below ω/JS ≈
0.15 . On the other hand, this is the value of λ above which the lowest degenerate mode becomes nondegenerate, one
component of which does go very close to zero frequency near λ = 0.84 , and then rises up again. For both boundary
conditions, there are actually several modes higher up in the spectra that also come to downward cusps near λc, while
other modes show no particular features near λc.

FIG. 4. Comparison of the lowest 19 modes in the spinwave spectrum for a square lattice circular
system with 492 sites, with fixed boundary conditions, (a) containing an in-plane vortex at its center,
and (b) no vortex (spinwave modes about ferromagnetically aligned state). The solid and dotted
lines are used only to distinguish nearby modes.

We can also consider how the size of the system affects the low-frequency spectrum. For example, the lower part of
the spectrum for a system with 492 sites is shown in Fig. 4a. In general the low-frequency modes found for the 180-site
system are also seen in the 492-site system, but slightly shifted in frequency. The same sets of two-fold degeneracies
are also found, which are again related to a symmetry in Sz for these modes of the in-plane vortex. And, once again,
there are modes higher up in the spectrum with downward cusps at λ = λc.

In Fig. 4b, the low-frequency spectrum for the 492-site system without a vortex is shown. The sites were initially
aligned in the xy-plane ferromagnetically. We find more or less the same sequence of nondegenerate and degenerate
modes, which do not split at any λ. There is no mode that goes soft, as expected, since the ferromagnetic state is a
stable energy minimum for 0 ≤ λ < 1, and there are no cusps.
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FIG. 5. Asymptotic least square fits (solid curves) of the
frequency of the soft mode (data points) for square lat-
tice circular systems with 12, 68, and 492 spins, using the
functional form ω = ω̂(1 − λ/λc)

1/2. Only the data with
λ very close to λc were used to obtain the fitted curves.
This functional form fits well over the full range of λ only
for small systems (N ≤ 24).

For fixed boundary conditions, the soft mode for λ < λc has been fit to the following functional form, as suggested
through the simple Ansatz by Wysin23;

ω = ω̂
√

1 − λ/λc, (5.1)

where ω̂ and λc are the fitting parameters. Generally, if all the data where ω > 0 are used in the fit, this functional
form produces an accurate fit only for the smaller systems, up to about 24 spins. More generally, we can use only
a limited number of the data points nearest to the zero frequency point, and apply this form there to estimate λc.
Some typical asymptotic fits are shown in Fig. 5, for systems with 12, 68, and 492 spins. The values of λc determined
this way converge to a limit near λc ≈ 0.70 for the infinite sized system. The frequency of the soft mode at λ = 0,
ωo ≡ ω(λ = 0), gives an indication of the overall frequency scale for this mode, and is shown in Fig. 6, versus
system size (numbers not obtained from any fitting). The result is compared with an asymptotic fit to the function,
ωo = 6.92N−0.475. This is close to a linear dependence on inverse system length.

FIG. 6. Size dependence of the soft mode for
square lattice circular systems with N sites, us-
ing fixed boundary conditions. The frequency ωo

of the soft mode at λ = 0 is shown on a log-log
plot, and compared with an asymptotic fit to the
function, ωo = 6.92N−0.475. This is close to a
linear dependence on inverse system diameter.

The above results show how there is one particular mode that goes soft for λ → λc. To get a better idea of the
physical structure of this mode or any of the modes, it is necessary to look at the associated wavefunctions. Also, it
is important to measure the spread of the wavefunctions, to understand whether a particular mode is localized on the
vortex or extended throughout the system. For a system with 180 spins, the wavefunctions of the six lowest energy
modes are shown in Figs. 7, 8, 9 , for λ = 0, λ = 0.69, and λ = 0.76, corresponding to well below λc, just below λc,
and slightly above λc.
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FIG. 7. Maps of the spin fluctuations in a square lattice system with 180 sites, for the six lowest
frequency modes when λ = 0.0. Out-of-plane fluctuations < (δSout

n
)2 > (Eq. 3.13b) are proportional

to the areas of the solid squares. In-plane fluctuations < (δSin
n

)2 > (Eq. 3.13a) are proportional
to the white area within the larger squares. The total in-plane plus out-of-plane fluctuations are
proportional to the areas of the larger squares. Part (a) shows the soft mode, while (b1) and (b2)
are a degenerate pair, and (c), (d) and (e) are the next higher frequency modes.

In these diagrams, two squares representing the squared wavefunction are plotted at each lattice site, in order to
present both the in-plane and out-of-plane fluctuations for the selected mode on one diagram. The area of the inner
solid square is proportional to the out-of-plane spin fluctuations for that site, as in Eq. (3.13b). The area of the larger
open square is proportional to the total in-plane plus out-of-plane spin fluctuations, as in Eq. (3.13). The difference of
the two areas (the white area outside the solid square, and inside the open square) is proportional to the in-plane spin
fluctuations, as in Eq. (3.13a). For the soft mode (a), there is a substantial increase in the out-of-plane fluctuations
as λ approaches λc, while the relative size of the in-plane fluctuations diminishes. For the other lowest modes, there
are only minor changes in the fluctuations with λ. The mode labeled (b) is doubly degenerate, while (b1) and (b2)
are its two components that are split above λc [Fig. 9]. Also note that the orientation of the two components of this
mode is rather arbitrary, because there is an arbitrary phase between the two modes involved. This is the cause for
the oblique angle of the line of nodes in mode (b1) in Figures 7 and 10.
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FIG. 8. Maps of the spin fluctuations in the square lattice system as in Fig. 7, but for λ = 0.69,
just below the transition to an out-of-plane vortex. In (a), the soft mode’s intensity concentrates
itself more near the vortex core, and is strongly out-of-plane, while the higher modes in (b) through
(e) have much smaller changes from their λ = 0.0 forms.

For comparison, Fig. 10 shows the lowest modes on the 180-site system in the absence of the vortex, at λ = 0,
starting instead from a ferromagnetically aligned state. Some modes, including the one that most resembles the soft
mode when the vortex is present, do not appear very different whether the vortex is present or absent (for this value
of λ far from λc). On the other hand, some modes, such as (b) and (d), clearly have amplitude at the vortex core
that is not present when the vortex is removed.
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FIG. 9. Maps of the spin fluctuations in the square lattice system as in Fig. 7, but for λ = 0.76,
above λc. The soft mode in (a) is strongly out-of-plane, with intensity concentrated near the vortex
core, while mode (b)’s degeneracy is now split.
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FIG. 10. Maps of the spin fluctuations in a square lattice system as in Fig. 7, but without a vortex
present, for λ = 0. In comparing with Fig. 7, modes (b1), (b2), and (d) there have extra fluctuations
present due to the vortex, at its core, not seen here in the absence of the vortex.

To study the tendency of the vortex to concentrate a mode near its core, we define the rms spread Rrms of a
wavefunction using the total in-plane plus out-of-plane fluctuations as a weighting factor, as follows;

R2
rms =

∑

n
(|w1

k,n|
2

+ |w2
k,n|

2
)[(xn − x0)2 + (yn − y0)2]

∑

n
(|w1

k,n|
2

+ |w2
k,n|

2
)

. (5.2)

In a similar way, the rms spread of the system itself can be evaluated by using a constant weighting factor. For the
system with 180 sites that is discussed in Figs. 7, 8, and 9, the rms spread of the system is 5.355 lattice constants.
The rms spreads of the lowest frequency wavefunctions are shown in Fig. 11. There is a substantial reduction in Rrms

for the soft mode as λ → λc, while for the other modes there tends to be less drastic changes. Only mode (b1), which
crosses the soft mode (a) slightly above λc, shows a similar sized change. Because the soft mode has an rms spread
much smaller than the rms spread of the system for λ near λc, we interpret this to mean that the soft mode is a mode
localized on the vortex, while the other lowest modes are more extended over the whole system. It is possible that
there could be other modes higher up in the spectrum which are also localized in this sense, but it could be difficult
to detect them because of the limited size of the systems that can be easily solved numerically.
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FIG. 11. The rms spreads of the 6 lowest frequency wave-
functions for the square lattice system with 180 sites, ver-
sus anisotropy parameter λ. The letters refer to the modes
shown in Figs. 4–6. For the lattice itself, Rrms = 5.355,
while the radius of the system is about 8 lattice constants.

VI. RESULTS: TRIANGULAR AND HEXAGONAL LATTICES

For comparison, we have also calculated the spectra for finite circular systems on triangular and hexagonal lattices.
The same methods as described above for the square lattice were used, in which the primary physical difference is the
coordination number z = 6 for the triangular lattice, and z = 3 for the hexagonal lattice. This leads to the different
values of λc ≈ 0.62 for the triangular lattice, and λc ≈ 0.84 for the hexagonal lattice, as seen in the spectra shown in
Fig. 12. These results are completely consistent with the Ansatz calculation for this mode.23 There are substantial
similarities in the spectra for the different lattices, including the splitting of the degeneracies for λ > λc, the modes
with downward cusps at λ = λc, and the one component of the lowest degenerate pair coming close to zero frequency
somewhat above λc. On the other hand, the symmetries of the lattices lead to small differences in the wavefunctions
(not shown here).

FIG. 12. Normal mode spectra (lowest 19 modes) of circular systems containing a vortex at the
center, with fixed boundary conditions, for (a) triangular lattice with 174 sites; (b) hexagonal lattice
with 192 sites. While many features of these results also appear in Fig. 2, the different values of λc

are notable.
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VII. DISCUSSION AND CONCLUSIONS

Through numerical diagonalization of the spin equations of motion linearized about a non-uniformly magnetized
state, we have found the spinwave spectrum for finite circular systems containing a single vortex at the center. The
spectrum shows some important dynamical properties of individual magnetic vortices. The most significant feature
is the presence of a particular mode [mode (a) in the Figures] whose frequency comes close to zero near λc, and
whose rms radius comes close to one lattice constant at the same time. For λ just below λc, such a localized mode
has a time-dependent spin structure with radial dependence of its amplitude very similar to the static out-of-plane
vortex structure present for λ just above λc. This is suggested by comparing the mode (a) in Fig. 8 and the lowest
curve (λ = 0.71) in Fig. 1. Thus, this mode is the precursor to the instability of an in-plane vortex to become an
out-of-plane vortex. This idea is further supported by the fact that the rms radius of mode (a) becomes comparable
to the “vortex core” radius of an out-of-plane vortex for λ = 0.70, defined by,8

rv =
1

2

(

λ

1 − λ

)1/2

. (7.1)

On the other hand, for λ far below λc, mode (a) bears a lot of similarity to the lowest mode when there is no vortex
present. This can be seen by comparing Fig. 7a and Fig. 10a. However, in the absence of the vortex, this lowest
mode undergoes no substantial changes as λ is increased, even through λc.

We have found that some of the higher modes also have strong changes associated with the vortex instability; partial
evidence is the downward cusps in the spectrum.27 Additional evidence appears in the wavefunctions themselves. For
example, mode (c) (third lowest in Fig. 3b) is one of the modes with a cusp, and for λ = 0, there is not too much
difference in this mode’s structure, regardless of the presence or absence of the vortex [compare Fig. 7c and Fig. 10c],
except that the mode is more concentrated at the system center when the vortex is present. However, this mode
also concentrates itself additionally onto the vortex core for λ near λc, just as mode (a) does, as seen in Fig. 8c.
Presumably, the other modes higher up in the spectrum that possess downward cusps in their λ-dependences are also
strongly affected by the vortex instability.

The crossover from in-plane to out-of-plane vortices exhibits itself in an even more obvious way. A significant
fraction of the modes are degenerate for λ < λc, but all of these degeneracies split for λ > λc. These degeneracies
must be associated with a symmetry of the in-plane vortex, that is broken in the out-of-plane vortex. For example,
consider the lowest degenerate mode, (b), in Fig. 3b, for λ < λc. We might expect that a vortex in an infinite,
continuum limit system would have a degenerate pair of zero-frequency modes associated with translation of its
position in the two lattice directions. This pair would then be shifted to finite frequency on the discrete lattice,
and when the vortex is additionally confined to a finite system as we have here, they would correspond to the two
different directions along which the vortex center position could oscillate, rather than translate. But clearly, with this
interpretation there is some problem to understand how this spatial symmetry could be broken in the out-of-plane
vortex, or why the out-of-plane vortex wouldn’t have a degenerate pair of translation modes. On the other hand, it
is known that the dynamical response of the out-of-plane vortex to an external force is substantially different from
that for the in-plane vortex. This is because the the gyrovector (vorticity times Sz at vortex core) of the in-plane
vortex is zero, but for the out-of-plane vortex it is nonzero15. However, one would still need to explain the additional
symmetries associated with the other degeneracies as well.

A simpler way to view the degeneracies is that they are most closely associated with symmetries of the in-plane
vortex in spin space, the most important of which is that it is invariant under reversal of the out-of-plane component,
because that component is zero. Then, all of the degeneracies must somehow be associated with the symmetry of those
modes under reversal of their out-of-plane spin components, Sz → −Sz. For the in-plane vortex, this is equivalent
to S ỹ → −S ỹ. Once we have an out-of-plane vortex for λ > λc, the static vortex structure has all Sz

n
either greater

than 0 or all Sz
n

less than 0. Then it is clear that the perturbations (specifically, S ỹ) about that static structure cost
different energies depending on whether they increase or decrease each Sz

n
, leading to a breaking of the up-down Sz

symmetry that was present in the in-plane vortex. However, thinking this way, there is still a problem to understand
which of the modes would be in degenerate pairs for λ < λc.

To obtain one more way to understand the degeneracies, we can plot the complete wavefunctions, including the
phase information. This can be done by drawing an arrow in the complex plane for each lattice site, where the length
of the arrow is proportional to |w1

k,n|, and the direction of the arrow is determined by the phase of w1
k,n. Similar arrows

can be drawn for the other component of the wavefunction, w2
k,n. For in-plane vortices, w2

k,n represents the in-plane

spin fluctuations, while w1
k,n represents the out-of-plane spin fluctuations. For out-of-plane vortices, w2

k,n represents

only a part of the in-plane spin fluctuations, while w1
k,n represents a combination of out-of-plane and in-plane spin

fluctuations, depending on the static out-of-plane spin structure. This interesting representation of the two modes
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(b1) and (b2) is shown in Fig. 13, for λ = 0.40, well below λc. Here we clearly see the distinction between these
degenenerate modes, which is made in terms of the phase of the spinwave and the way it changes around the center

position of the vortex. Mode (b2) has the phase of both components w1
k,n and w2

k,n changing in the positive sense

around the vortex center, while mode (b1) has the phase of both components changing in the negative sense around
the vortex center. Of course, this representation is not unique; we could make linear combinations of these two modes
and produce equivalent wavefunctions that do not have this “vortexlike” and “antivortex-like” appearance, but which
would produce squared wavefunctions more like those already shown for λ = 0 in Fig. 7b1 and Fig. 7b2.

FIG. 13. Wavefunctions for the lowest degenerate modes (b1) and (b2) in the 180 site square lattice
system with a vortex at the center, at λ = 0.40, well below λc. The line-head arrows are the complex
amplitudes w1

k,n, and the hollow-head arrows are the complex amplitudes w2
k,n. The relative sizes

and phases of these amplitudes are preserved in these diagrams. w1
k,n relates to the out-of-plane

spin fluctuations, and w2
k,n relates to the in-plane spin fluctuations. The frequency of these modes

is ω/JS=0.6776 .

FIG. 14. Wavefunctions for the modes (b1) and (b2) in the 180 site system with a vortex at the
center, as in Fig. 13, but for λ = 0.71, just above λc, where they are now nondegenerate. Mode
(b1) has frequency ωb1/JS = 0.4293, and mode (b2) has frequency ωb2/JS = 0.5062 .
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This representation has the great advantage that it contains the physical explanation of how the symmetry is broken;
for λ > λc, once there are static out-of-plane spin components, the two different senses of change in the spinwave
phase are not equivalent. Then mode (b1), with its phase changing in the negative sense around the vortex center,
falls lower than mode (b2). The two wavefunctions are shown in Fig. 14, for λ = 0.71, just above λc. Once there are
nonzero Sz spin components in the static vortex structure, this lack of equivalence for the two senses of rotation of the
phase is very reasonable. It can also explain the higher degenerate pairs, because they also have the spinwave phase
changing smoothly as one moves around the vortex center, some with higher winding numbers—the phase change of
the spinwave in these cases changes by 2πn, where n is an integer [See Fig. 15]. Furthermore, this viewpoint shows
why all of these degeneracies are split at λc, because the plus and minus senses of rotation of the phase are not
equivalent, no matter what the winding number. Conversely, the modes that do not occur as degenerate pairs do not
have a slow change in the phase around the vortex center. This new effect might be described as a coupling of the
vorticity of the original vortex to the winding number of the phase of its spinwave excitations. Further details on the
forms and characteristics of these wavefunctions will be published elsewhere.

FIG. 15. Wavefunctions for the third lowest degenerate pair of modes of the 180 site system with a
vortex at it center, as in Fig. 13, at λ = 0.40. The frequency of these modes is ω/JS = 1.267, and
they have winding numbers -3 and +3.

There are some finite size and boundary effects in these results that cannot be avoided, but that do not invalidate the
results. For example, the choice of fixed boundary conditions eliminates the Goldstone mode related to global rotation
of the spins in the XY plane that is present for free boundary conditions. However, the fixed boundary condition has
the advantage that it reduces the spin fluctuations at the boundary, whereas the free boundary condition artificially
enhances those boundary fluctuations. These are minor differences. The effect of the finite sized system, for the
most part, can be understood to produce a finite frequency spacing between the modes, that becomes smaller as the
reciprocal system length. This causes the frequency scale of the soft mode (a) at λ = 0, in Fig. 6, to go to zero for the
infinite sized system, which is partly an artifact of the calculation, because this is the lowest mode for fixed boundary
conditions. For the free boundary conditions, this soft mode lies higher up in the spectrum. In a real system of
physical interest at some temperature above the Kosterlitz-Thouless temperature, we could not consider an isolated
vortex and its normal modes, because entropic effects would always produce a length scale (i.e., correlation length)
at which the nearest neighboring vortex would be found. Thus, it may not be necessary to consider the infinite sized
system limit, because the neighboring vortices will produce an effective finite length scale over which we might think
that the vortex is restricted.

In conclusion, we have found a rich structure in the spinwave modes of an individual vortex, and have shown how
these modes are related to the instability of in-plane vortices to become out-of-plane vortices at λc. This information
can be valuable for improving the description of the dynamics of interacting vortices in terms of their positions, and,
the internal vibrational motions we have found. Because this is a zero-temperature single-vortex calculation, we can
only speculate that it might be possible for the vortex instability to affect dynamical correlation functions. If there
is an effect, it would be most prominent in the correlation function Szz(q, ω) of the out-of-plane spin components,
especially for a material whose anisotropy constant λ is near λc. It will be a future challenge to consider whether the
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frequency spectra we have found can be related to these dynamic correlations in thermal equilibrium in a quantitative
way.
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FIG. 1. Profiles of Sz vs. distance r from the vortex center, for single static out-of-plane vortices at the center of a circular
system with 180 sites on a square lattice. The curves are labelled by the different values of λ. These results were obtained by
the relaxation procedure described in the text (Sec. II), using a fixed boundary condition as described in Sec. IV.

FIG. 2. Diagram showing the relation between the original xyz-coordinate system, and the local coordinates, x̃ỹz̃, where the
z̃-axis lies along the direction of the spin at a particular site in the unperturbed vortex, and the x̃-axis lies in the xy-plane.

FIG. 3. Comparison of the lowest 19 modes in the spinwave spectrum for a square lattice circular system with 180 sites,
containing an in-plane vortex at its center, with (a) free boundary conditions, and (b) fixed boundary conditions. Degenerate
modes are marked with solid circles. The solid and dotted lines are used only to distinguish nearby modes.

FIG. 4. Comparison of the lowest 19 modes in the spinwave spectrum for a square lattice circular system with 492 sites,
with fixed boundary conditions, (a) containing an in-plane vortex at its center, and (b) no vortex (spinwave modes about
ferromagnetically aligned state). The solid and dotted lines are used only to distinguish nearby modes.

FIG. 5. Asymptotic least square fits (solid curves) of the frequency of the soft mode (data points) for square lattice circular
systems with 12, 68, and 492 spins, using the functional form ω = ω̂(1 − λ/λc)

1/2. Only the data with λ very close to λc were
used to obtain the fitted curves. This functional form fits well over the full range of λ only for small systems (N ≤ 24).

FIG. 6. Size dependence of the soft mode for square lattice circular systems with N sites, using fixed boundary conditions.
The frequency ωo of the soft mode at λ = 0 is shown on a log-log plot, and compared with an asymptotic fit to the function,
ωo = 6.92N−0.475 . This is close to a linear dependence on inverse system diameter.

FIG. 7. Maps of the spin fluctuations in a square lattice system with 180 sites, for the six lowest frequency modes when
λ = 0.0 . Out-of-plane fluctuations < (δSout

n
)2 > (Eq. 3.13b) are proportional to the areas of the solid squares. In-plane

fluctuations < (δSin

n
)2 > (Eq. 3.13a) are proportional to the white area within the larger squares. The total in-plane plus

out-of-plane fluctuations are proportional to the areas of the larger squares. Part (a) shows the soft mode, while (b1) and (b2)
are a degenerate pair, and (c), (d) and (e) are the next higher frequency modes.

FIG. 8. Maps of the spin fluctuations in the square lattice system as in Fig. 7, but for λ = 0.69, just below the transition to an
out-of-plane vortex. In (a), the soft mode’s intensity concentrates itself more near the vortex core, and is strongly out-of-plane,
while the higher modes in (b) through (e) have much smaller changes from their λ = 0.0 forms.

FIG. 9. Maps of the spin fluctuations in the square lattice system as in Fig. 7, but for λ = 0.76, above λc. The soft mode in
(a) is strongly out-of-plane, with intensity concentrated near the vortex core, while mode (b)’s degeneracy is now split.

FIG. 10. Maps of the spin fluctuations in a square lattice system as in Fig. 7, but without a vortex present. In comparing
with Fig. 7, modes (b1), (b2), and (d) there have extra fluctuations present due to the vortex, at its core, not seen in the
absence of the vortex.

FIG. 11. The rms spreads of the 6 lowest frequency wavefunctions for the square lattice system with 180 sites, versus
anisotropy parameter λ. The letters refer to the modes shown in Figs. 4–6. For the lattice itself, Rrms = 5.355, while the radius
of the system is about 8 lattice constants.

FIG. 12. Normal mode spectra (lowest 19 modes) of circular systems containing a vortex at the center, with fixed boundary
conditions, for (a) triangular lattice with 174 sites; (b) hexagonal lattice with 192 sites. While many features of these results
also appear in Fig. 2, the different values of λc are notable.
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