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Theory of Modeling Faraday Rotation 
 
The Faraday rotation1 in a medium is due to the difference of propagation of right and left 
circularly polarized light through it, when a magnetic field is applied along the propagation 
direction (z).  The theory is closely related to that for optical rotation.2  The dielectric 
permittivities 

! 

"
R
 and 

! 

"
L
 for the two polarizations will be slightly different, causing one 

polarization to be phase shifted relative to the other, after the light propagates some distance z. 
Once these permittivities are known for the composite medium made of core/shell particles in 
water, the Faraday rotation can be found.  
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The diagonal elements are 
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Each polarization propagates independently with a wave vector, 

! 

k
R ,L

=
"

c
#
R ,L

. Then the 

Faraday rotation of linearly polarized light after propagating a distance z is found to be 
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The ellipticity angle produced by the difference in extinction of the two polarizations is given 
instead by using the imaginary part.  The Verdet constant 

! 

"  is 

! 

"  normalized per applied 
magnetic induction 

! 

B and unit distance,  
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As 

! 

"xy  is proportional to 

! 

B except at very high fields, 

! 

"  does not depend on 

! 

B. We use this 
approach here to get 

! 

" , based on finding the effective dielectric functions for right/left 
polarizations of the composite water-nanoparticle medium using a Drude model. 
 
 
 



Dielectric Properties 
The Drude model for the electron response can be used to estimate the absorption and Faraday 
rotation effects, due to both the Fe2O3 core and the gold shell.  Both of these are closely related. 
A resonance in the absorption will correspond to a similar resonance effect in the Faraday 
rotation.  We take the approach of finding an accurate description of the dielectric functions 

! 

"(#) , based on experimental measurements of absorption in solutions of nanoparticles.  Once 

! 

"(#)  is known separately for both the core and the shell materials, the resulting Faraday rotation 
of core/shell nanoparticles in solution can be calculated as described below 

The frequency-dependent relative dielectric permittivity of a medium, due to bound 
electrons at a single resonance 
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0
 combined with free electrons of plasma frequency 
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" p , is taken 
as4 5 
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For the bound electrons, 

! 

"
0
 is the binding frequency, 

! 

g
0
 is the oscillator strength, and 

! 

"
0
 is the 

damping frequency. The last term in (5) represents the free electrons, with plasma frequency 

! 

" p  
and damping frequency 

! 

" p . The applied magnetic field (along z) responsible for the Faraday 
rotation enters into both terms, in the cyclotron frequency, 

! 

"
B

= eB
z
m
* . The helicity is 

! 

" = +1/#1 for left/right circular polarization.  That term, due to the Lorentz force, leads to 
Faraday rotation, applying expression (5) separately for both polarizations. 

For the gold shell, we assume that the free electron plasma is the main contribution to

! 

", 
although a contribution from bound electrons 6 must also be included to move the plasmon 
frequency of gold nanoparticles into the visible.  For the free electrons, we use the bulk value 
plasma frequency, 

! 

" p
=1.37 x 1016 rad/s (

! 

"=138.5 nm), and a scattering time 

! 

" =9.1 fs, effective 
mass 

! 

m
*

= m
e
, and damping frequency that includes scattering from the shell surfaces, 7 

according to  
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1

#
+
vF

d
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The Fermi velocity is 

! 

v
F
=1.40 x 106 m/s and d is the thickness of the gold shell. For the bound 

electrons, we do not use a limiting dielectric constant like 

! 

"# $10 , as in Ref. 7 to get the plasmon 
resonance for spherical gold particles near 530 nm. Instead, the average effect of the bound 
electrons is represented approximately by a single resonance term proportional to 

! 

g
0

2  as in Eq. 
(5). This makes the inclusion of Faraday effects rather simple, compared to a more correct 
treatment of the interband transitions. The parameters have been fitted from the absorption 
spectrum of a solution of 17 nm diameter (average) gold nanoparticles in water (similar to that 
explained for 

! 

" -Fe2O3 parameter fitting in the following paragraph).  For description of the 
absorption, especially near the plasmon resonance, the fitting parameters are found to be 

! 

g
0

= 4.43"10
15

 rad/s , 

! 

"
0

= 3.86 #10
15

 rad/s (

! 

"
0

=488 nm), and 

! 

"
0

= 6.22 #10
15

 rad/s (scattering 
time 

! 

"
0

=1/#
0

=1.61 fs).  This fit is shown in Figure 1; the fit is close to the experimental data 
around the plasmon resonance, and somewhat overestimates the absorption at longer 
wavelengths, but the model should not be taken seriously in the ultraviolet.  This, however, is not 



a problem, because it is the change in the frequency of the plasmon resonance with changing 
gold shell thickness that is responsible for many of the interesting plasmonic effects.  As long as 
this model gives a reasonable description of that resonance, it should be able to suggest how the 
absorption and Faraday rotation vary with gold shell modifications.  

Describing the maghemite core [

! 

" -Fe2O3] is complex, because it has several different 
absorption resonances.  There is at least one strong resonant absorption in the ultraviolet that is 
responsible for Faraday rotation.8 Its tail produces the leading contribution to the absorption 

! 

"(#)  in the visible.  The absorption spectrum of 

! 

" -Fe2O3 particles over 350 nm < lambda < 700 
nm, not including the weaker absorption band from 460 nm -- 560 nm, was fit by using the above 
expression (5), see Figure 2.   For a volume fraction f of spherical particles of dielectric constant 

! 

" in water (the host medium, with 

! 

"
a
=1.777), the absorption is 

! 

" = 2
#

c
Im $

eff{ } , where 

! 

"
eff

 

results from the Maxwell Garnett effective medium theory9  (MG equation), 
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Assuming only bound electrons (

! 

" p = 0) we found that 

! 

g
0
=5.20 x 1015 rad/s, 

! 

"
0
=5.06 x 1015 

rad/s (

! 

"
0

=372 nm), and 

! 

"
0
=2.89 x 1015 rad/s (

! 

"
0

=1 #
0
=0.347 fs) describes the underlying 

absorption curve of Fe2O3 (Figure 2).7 
The other parameters needed to describe the maghemite core are its domain saturation 

magnetization M = 414 kA/m, and its anisotropy constant K = 4700 J/m3.8   The cores have 
average radius b=4.85 nm, volume 

! 

V = 4"b3 /3 = 478 nm3, and magnetic moment 

! 

m = MV , and 
are super-paramagnetic, as can be seen by the ratio of magnetic anisotropy energy 

! 

KV = 14 meV 
to the thermal energy 

! 

k
B
T  = 26 meV (at 300 K).  Their average magnetic moment in an 

externally applied magnetic induction 

! 

B follows the classical Langevin function, 
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For the permanent magnetization in these single domain particles, the internal magnetic field is 

! 

H
in

= " 1

3
M  and the internal magnetic induction is 

! 

Bin = µ0(H in + M) = 2

3
µ0M . The component 

along z is 

! 

B
in,z

= B
in
cos" = 2

3
µ
0
M x

3
= 2

9
µ
0
VM

2
k
B
T( )B . This internal magnetic induction is 

amplified by the factor 

! 

2

9
µ
0
VM

2
k
B
T( ) = 5.5, which helps to enhance the Faraday rotation 

compared to that in a non-magnetized medium. 
For pure particles of either gold or maghemite in a water solution, the MG theory (7) can 

be applied to calculate the Faraday rotation.  Figure 3 indicates how the plasmon peak in 

! 

"(#)  
for gold is accompanied by a similar peak in the Verdet function,

! 

"(#).  Further, the plasmon 
width increases for smaller particles, due to the enhanced surface scattering term. 
 
Core/shell particle's permittivity 

! 

"
s
 

The individual particles are assumed to be spherical, with a maghemite core (

! 

"
c
) of radius 

! 

b, 
surrounded by a shell of gold (

! 

"
b
) to outer radius 

! 

a , much less than the wavelength of light being 
considered.  The particle is immersed in a medium (water) with dielectric constant 

! 

"
a
.  From 



their separate frequency-dependent permittivities, we require first the effective permittivity of 
one spherical particle, 

! 

"
s
.  This can be found equivalently either by (1) finding the effective 

polarization and average internal electric field using electrostatics, or (2) applying Maxwell 
Garnett theory9, 10 to a single particle, taking the Fe2O3 core as an inclusion of internal volume 
fraction 

! 

fc = b a( )
3  within the gold shell "host" medium.  The composite particle's dielectric 

function 

! 

"
s
 is found to be 

 

! 

"s = "b
1+ 2#c

1$#c

, #c = fc
"c $"b
"c + 2"b

, fc = b a( )
3.  (9, Solution of MG equation.) 

 
This effective permittivity is also expressed as 
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s
= "
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s
, where the susceptibility and 

internal field per applied field of a spherical particle surrounded by a host medium 

! 

"
a
 are found 

via electrostatics as 
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Effective Composite Medium 

These particles are dispersed into water with a volume fraction 

! 

fs = nsVs , where 

! 

n
s
" 3.5 #10

18
/m

3  is their number density and 

! 

V
s
= 4"a3 /3 is their volume that depends on the 

outer radius of the gold shell. We consider two different ways to determine the effective 
permittivity of the solution: (1) Maxwell Garnett effective medium theory, assuming that the 
spheres are well separated and scatter light independently; (2) Bruggeman theory,9, 10 supposing 
that the spheres combine into clusters composed from hundreds to thousands of the core/shell 
particles in a closed packed arrangement with a volume fraction 

! 

f
Br
" 0.74  . 

In the MG theory the effective permittivity of the composite can be expressed as  

! 

"eff = "a + f s# s 1$ fs(1$ Fs)[ ]    or as    

! 

"
eff

= "a
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. (11) 

 
This expression is evaluated separately for left/right polarizations, from which the Faraday 
rotation can be found using (2) and (3).  Some results for absorption and Faraday rotation due to 
core/shell particles are shown in Figure 4.  The important aspect of the results is that the plasmon 
resonance starts at long wavelengths for very thin gold shells, and moves towards about 520 nm 
with increasing shell thickness. Note that the volume fraction 

! 

fs  increases with thickness of the 
gold shell, as the number density of particles was nearly constant in experiments.  

To include the clustering effects via the Bruggeman theory, we first find the effective 
permittivity of a cluster, 

! 

"
cl

, composed from volume fraction 

! 

f
Br

 of core/shell spheres 
surrounded by volume fraction 

! 

1" f
Br

 of water host (

! 

"
a
).  The cluster effective permittivity 

! 

"
cl

 
solves the Bruggeman equation,   
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f
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"s #"cl
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+ (1# f
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)
"a #"cl

"a + 2"cl
= 0 ,      (12) 

 



where the first term represents the contribution of the spheres surrounded by averaged cluster, 
and the second term represents the water surrounded by averaged cluster. The solution for the 
effective permittivity of a cluster is found to be 
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It is interesting to note that the limit 

! 

f
Br

=1 of this Bruggeman cluster effect just recovers the 
simpler MG result (i.e., Eq. (12) gives 

! 

"
cl

= "
s
). Both theories predict the blue shift of the 

plasmon resonance in the absortion spectrum with increasing gold shell thickness (Figures 4 and 
5). 

Once 

! 

"
cl

 is found, we again apply MG theory to get 

! 

"
eff

 due to these clusters dispersed at 
a low volume fraction 

! 

f
cl
 in the water (for both left/right polarizations).  [Note: At low volume 

fraction, the MG and Bruggeman theories give the same effective permittivity.]  The number 
density of clusters in the water is 

! 

n
cl

= n
s
N

s
, where 

! 

Ns = f
Br
V
cluster

Vs  is the number of core/shell 
spheres in a cluster.  Then the volume fraction of clusters in the water is 

! 

f
cl

= n
cl
V
cluster

= f s f
Br

.  
This does not depend on the size of the cluster, just on its packing density.  The final application 
of the MG theory gives the effective permittivity of the composite medium, 
 

! 

"
eff

= "a
1+ 2#cl
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This is used in Eqs. (2) and (3) to get the Faraday rotation, including the clustering effects. 
Although the clusters have typical sizes from 80 nm to 160 nm across, only their internal packing 
fraction was needed in the theory, not their size.  

Figure 5 shows the results of using a cluster packing fraction 

! 

fBr =0.7, close to the hard 
sphere value.  Although clustering effects are probably important, such a large value of packing 
fraction does not fit the peak in the absorption very well, as seen in Figure 6; both the absorption 
and Faraday rotation plasmon peaks fall at a wavelength that is too long.  In fact the absorption 
peak’s position with shell thickness is better fitted using 

! 

f
Br
"0.035 as seen in Fig. 6.  Further, 

the net Faraday rotation [Eq. (3)] and Verdet constant [Eq. (4)] are proportional to the particle 
volume fraction, 

! 

fs , when 

! 

fs <<1.   Thus, some results are presented for the Verdet constant 
normalized by volume fraction, 

! 

" / fs , as shown in Fig. 7.  The experimentally measured Faraday 
rotation seems to be more consistent with the clustering model at a fairly large packing fraction 
like 70%.  However, probably a more complete description of nanoparticle interactions is needed 
to consistently describe both the absorption and Faraday rotation spectra of these nanoparticle 
solutions simultaneously.    

Nevertheless, this calculation shows that the blue-shifting of the gold plasmon peak with 
increasing gold shell thickness is reflected in the Faraday rotation spectrum, as seen in the 
downward peak in Figure 7.  The strength of the clustering or other interparticle interactions or 
interference terms can be expected to modify the magnitude and width of this downward peak, 
but regardless of these details, it is ultimately linked to the blue-shifting of the gold plasmon 
mode. 
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Figure 1.  Fit of experimentally measured absorption of gold nanoparticle solution to model 
dielectric function including both free and bound electrons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 2.  Fit of absorption spectrum of maghemite nanoparticles in water solution for 
determining its dielectric function.  The real and imaginary parts of the resulting 

! 

"(#)  are also 
shown. 



 

 
Figure 3a.  Absorption (a) and Faraday rotation or Verdet constant (b) calculated for 
nanoparticles indicated, in water solution, using the Maxwell Garnett theory at a volume fraction 

! 

fs =1.67 "10
#6 .  The plasmon resonance appears clearly in both quantities, and is wider for 

smaller particles. 



 

 
Figure 3b.  Absorption (a) and Faraday rotation or Verdet constant (b) calculated for 
nanoparticles indicated, in water solution, using the Maxwell Garnett theory at a volume fraction 

! 

fs =1.67 "10
#6 .  The plasmon resonance appears clearly in both quantities, and is wider for 

smaller particles. 
 



 

 
Figure 4a. Absorption (a) and Faraday rotation (b) for core/shell nanoparticles in water, showing 
the variations with increasing gold shell thickness.  Notably, the plasmon peak moves towards 
shorter wavelength with increasing shell thickness. 
 



 

 
Figure 4b. Absorption (a) and Faraday rotation (b) for core/shell nanoparticles in water, showing 
the variations with increasing gold shell thickness.  Notably, the plasmon peak moves towards 
shorter wavelength with increasing shell thickness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 5a. Absorption (a) and Faraday rotation (b) for core/shell particle solutions in water, 
including strong clustering effects via the Bruggeman theory.  The peaks below 450 nm are 
artifacts due to the single resonance assumed for bound gold electrons.  The plasmon peak is 
slightly higher than that found without clustering effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 5b. Absorption (a) and Faraday rotation (b) for core/shell particle solutions in water, 
including strong clustering effects via the Bruggeman theory.  The peaks below 450 nm are 
artifacts due to the single resonance assumed for bound gold electrons.  The plasmon peak is 
slightly higher than that found without clustering effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Figure 6a.  Comparison of different clustering levels, showing (a) the position of the gold 
plasmon absorption peak and (b) the absorption of nanoparticle solution at 633 nm with 
increasing gold shell thickness.  The Maxwell Garnett theory does not include clustering effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Figure 6b.  Comparison of different clustering levels, showing (a) the position of the gold 
plasmon absorption peak and (b) the absorption of nanoparticle solution at 633 nm with 
increasing gold shell thickness.  The Maxwell Garnett theory does not include clustering effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure 7a.  Effect of clustering strength on Faraday rotation at 633 nm, using the Bruggeman 
theory.  Part (a) shows the Verdet constant with increasing gold shell thickness. Part (b) shows 
the Verdet constant normalized by the volume fraction of spherical nanoparticles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Figure 7b.  Effect of clustering strength on Faraday rotation at 633 nm, using the Bruggeman 
theory.  Part (a) shows the Verdet constant with increasing gold shell thickness. Part (b) shows 
the Verdet constant normalized by the volume fraction of spherical nanoparticles. 


