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We apply the self-consistent harmonic approximation (SCHA) to study static and dynamic
properties of the two-dimensional classical Heisenberg model with easy-axis anisotropy. The
static properties obtained are magnetization and spin wave energy as functions of temper-
ature, and the critical temperature as a function of the easy-axis anisotropy. We also
calculate the dynamic correlation functions using the SCHA renormalized spin wave energy.
Our analytical results, for both static properties and dynamic correlation functions, are
compared to numerical simulation data combining cluster-Monte Carlo algorithms and Spin
Dynamics. The comparison allows us to conclude that far below the transition temperature,
where the SCHA is valid, spin waves are responsible for all relevant features observed in the
numerical simulation data; topological excitations do not seem to contribute appreciably.
For temperatures closer to the transition temperature, there are differences between the
dynamic correlation functions from SCHA theory and Spin Dynamics; these may be due to
the presence of domain walls and solitons.

PACS numbers: 75.10.Hk; 75.40.Cx

I. INTRODUCTION

Low-dimensional magnets have been extensively inves-
tigated by many theorists and experimentalists in the
last three decades. More recently, the interest on the
properties of two-dimensional(2D) Heisenberg magnets
has been greatly revived since the discovery of high-Tc

superconductivity: it is now well known1 that the un-
doped, insulating La2CuO4 has a quasi-two-dimensional
antiferromagnetic behavior. However, most quasi-two-
dimensional magnetic real materials exhibit some kind
of anisotropy: the anisotropic properties often arise not
so much from an anisotropy in the interaction mechanism
(which can be wholly isotropic) but from other sources,
such as the presence of a crystal field that couples the
spins to a certain direction in the crystal. Then, at least
from a theoretical point of view, a large amount of mag-
netic materials fits (under certain circumstances like tem-
perature range) into one of the two groups: easy-plane
or easy-axis models. Easy-plane 2D magnets have de-
served a lot of attention due to their possibility of show-
ing the topological Kosterlitz-Thouless phase transition.2

The interest devoted to easy-axis magnetic systems has
been considerably smaller, specially concerning the study
of its dynamical properties. It is our aim to address to
this topic in this paper.

It must be emphasized that, although we shall be con-
cerned only with magnetic systems in this paper, many
of the magnetic Hamiltonians also allow for an interpre-
tation other than a magnetic one. Most physical prob-
lems concerning mutually interacting elements that form
a spatial array can be mapped into a magnetic Hamil-

tonian by describing it within a pseudo spin formalism.
The advantage of studying a general physical problem
in its magnetic form is clearly that in magnetism sev-
eral experimental techniques are available to study the
fundamental properties of a system.3

The analysis of the general Ising-Heisenberg model is of
interest because, from the experimental point of view, the
presence of some degree of anisotropy in the interaction
is to be expected in nearly all cases. In addition, recently
there has been a growing interest in the study of topolog-
ical excitations in the classical two-dimensional easy-axis
model.4 Having finite excitation energy, the population of
topological objects should be quite small at low tempera-
tures. Therefore, before taking into account the effect of
topological excitations (solitons or similar objects) on the
thermodynamics and dynamics of a system, we should
consider the contribution of anisotropic spin waves. So
we might ask: can spin waves explain experimental data
or, in the absence of experiments, computer simulation
data at low temperatures? This is the spirit and aim of
this paper.

Here we consider the classical Heisenberg ferromag-
net in two dimensions (2D) with easy-axis exchange
anisotropy

H = −J
∑

n,a

Sn · Sn+a − K
∑

n,a

Sz
nSz

n+a (1)

where the summations run over all distinct couples of spin
sites n and its nearest neighbors a. As the anisotropy pa-
rameter K ranges from 0 to ∞, we go from the isotropic
Heisenberg model to an Ising like model in which the
spins tend to be confined along the ±z−direction. How-
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ever, the resemblance to the Ising behavior can only hold
for T � K: we find that, for Hamiltonian (1), Tc ≈ K
for large K. This contrasts with Tc ≈ 2.27K for the 2D
single-component Ising model.

In addition to the usual domain walls we expect that
there can be localized soliton-like excitations that can
connect a small circular domain of positive Sz to a sur-
rounding region with negative Sz. A spatial “width”
of these objects (bubbles or droplets) can be estimated

as approximately
√

J/K. For intermediate values of
√

J/K, i.e., between a lattice constant and the system
size, these excitations can be important on a finite dis-
crete system. These objects can also have a topological
charge or winding number of the spin field. There was
some indication in earlier Monte Carlo (MC) simulations5

that they may play a role in the phase transition in
this model; their density was found to increase strongly
passing through the transition temperature. However,
in a continuum static description they are found to be
energetically unstable, according to the Derrick-Hobart
theorem.6 Thus it makes sense to investigate whether it is
necessary to be aware of their presence in static and dy-
namic properties of this model, or whether a description
based on anisotropic spin waves is sufficient.

To this end we study the low temperature thermody-
namics and dynamics of this model using a self consistent
harmonic approximation theory (SCHA) to treat spin
waves. As is well known, the SCHA is a reasonable ap-
proximation to calculate the transition temperature and
low temperature (T < Tc) properties of a system but
it is of limited value in estimating critical properties.
Therefore, in our work, we did not attempt to do any
calculation for critical exponents and related aspects of a
phase transition. We compare the predictions of SCHA
theory to numerical simulations on several L × L square
lattices (L = 16, 32, 64, 128) using Monte-Carlo and spin-
dynamics (SD) simulations, which include effects due to
all thermodynamically allowed excitations. We present
the thermodynamic results in Section II, and in Section
III, the calculation of the dynamical correlation function.
The simulation procedures are discussed in Sections II B
and III B, and their comparison with the SCHA theo-
retical calculations is given in Section IV. Finally, our
conclusions are given in Section V.

II. STATIC PROPERTIES

A. Self-Consistent Harmonic Approximation

Since its original derivation by Bloch,7 the self con-
sistent harmonic approximation has been found to ac-
count for the low temperature dependence of various
properties of several magnetic insulators, which seem
to be fairly well-described by the Heisenberg model.8–10

Its usefulness stems mainly from the way it takes into
account a substantial part of the interactions among

spin waves, being characterized by simple temperature-
dependent renormalization factors for the unperturbed
spin wave energy.

We start by writing the spin components using the
Dyson-Maleev representation of spin operators

Sx
n =

√
2S

2
(an + a†

n) − 1

2
√

8S

(

a†
nanan + a†

na†
nan

)

Sy
n =

√
2S

2i
(an − a†

n) − 1

2i
√

8S

(

a†
nanan − a†

na†
nan

)

(2)

Sz
n = S − a†

nan

where a†
n and an are the Bose spin operators on site n.

The harmonic spin wave Hamiltonian obtained from (1)
is given by

H0 =
∑

q

ωqa†
qaq (3)

where a†
q and aq are the Fourier transforms of a†

n and an

respectively, and

ωq = 4JS[1 − γ(q)] + 4KS (4)

with γ(q) = 1

2
[cos qx + cos qy]. The spin wave approxi-

mation will be reasonable when 〈a†
nan〉 � S, so it ought

to be fairly good for anisotropies satisfying the relation
T � 4KS2.

Now we simplify the general model by reducing
Hamiltonian (1) to an effective harmonic problem with
the effect of anharmonicity embodied in temperature-
dependent renormalized parameters. This means that
the couplings of the model are replaced by quadratic in-
teractions whose strength is then optimized. Details of
this method may be found in the literature7,9 and we
give here only an outline of those steps pertinent to our
present calculation.

We assume as effective Hamiltonian the appropriate
form for a noninteracting gas of Bose excitations

H̃0 =
∑

q

Eqa†
qaq . (5)

The spin wave energy is obtained by a variational proce-
dure based on the inequality for the Free energy F

F ≤ F̃0 + 〈H − H̃0〉0 , (6)

where the brackets indicate the thermal average. Traces
should be taken only over the physical states, that is,
states with no more than 2S spin deviations on a single
site. The minimization of (5) with respect to Eq deter-
mines the spin wave energies. We obtain, in the classical
limit, following Rastelli et al,9

Eq(T ) = 4JS (1 − γ(q))
[

1 − β̃(T ) + η̃(T )
]

+ 4KS
[

1 − β̃(T ) − γ(q)η̃(T)
]

(7)
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where

β̃(T ) =
T

NS

∑

q

1

Eq

, (8)

η̃(T ) =
T

NS

∑

q

γ(q)

Eq

, (9)

where N is the number of sites. Eqs. (7), (8), and (9)
are coupled equations which we solved self consistently
by an iterative method. These coupled equations have
a double-valued solution below Tc and no real solution
above Tc: this is the typical behavior for self consistent
harmonic approximations and allows for easy determina-
tion of Tc. The lower branch (for T < Tc) has an unphys-
ical temperature dependence and may be discarded as a
spurious mathematical solution that is physically unsta-
ble. In Figure 1 the spin wave energy for K/J = 0.05
is given for two temperatures well below Tc ≈ 0.75J :
T = 0.3J , and T = 0.6J . The circles and stars shown in
Figure 1 were taken from our numerical simulation data
(to be described in Section III B). As can be seen, the
comparison between the SCHA and numerical results is
remarkably good: the SCHA describes well the decrease
of energy with increasing temperature (and, also, the en-
ergy dependence with the wavevector).

The reduced spontaneous magnetization along the z-
axis is given by

Mz(T )

Mz(0)
= 1 − β̃(T ) . (10)

In Figure 2, we present results obtained from Eq. (10) for
K/J = 0.05 and compare to our Monte Carlo (MC) data
(obtained as described in Section II B). The slight over-
estimate of Tc from SCHA clearly is due to the fact that
it does not include all possible modes of fluctuations, that
are included in the MC calculations. The SCHA theory
has no built-in requirement to make the magnetization
null at the critical temperature Tc, and consequently, we
find, as Figure 2 shows, a nonzero value for Mz(Tc). This
is typical of SCHA approaches: the theory applies only
below Tc, and for temperatures T ≥ Tc the magnetization
is taken as zero, implying a discontinuous jump at Tc. In
fact, the scaling of the MC data for Mz(T ) with system
size L strongly suggests the presence of a discontinuous
jump.

B. Monte Carlo

In order to evaluate the accuracy of the above the-
ory, we calculated Tc and the magnetization and other
thermodynamic quantities using a hybrid classical Monte
Carlo approach on periodic L×L square lattices. We ap-
plied a combination of Metropolis single-spin moves and

over-relaxation moves that modify all three spin compo-
nents, and in addition, Wolff single-cluster operations11

that modify only the Sz components. The over-
relaxation and cluster moves are necessary to avoid crit-
ical slowing down near Tc, which is tending to freeze
the Sz components. The single spin and over-relaxation
moves are standard, here we give only a few details about
the cluster algorithm. In the Wolff single-cluster algo-
rithm, the cluster-flip operation we used only reverses
the sign of Sz for all sites that have been included into
the cluster. This is reminiscent of the Swendsen-Wang
algorithm12 for Ising models, but we only build one clus-
ter at a time as in the Wolff algorithm. The cluster moves
cannot be used alone because they do not change the
magnitudes of Sz spin components.

A cluster is built up starting from a randomly cho-
sen seed site n, immediately inverting its Sz component:
Sz

n → −Sz
n, and then including neighboring sites n + a

with a probability,

pbond = max
[

0, 1 − e−β∆En,n+a

]

. (11)

Here ∆En,n+a is the energy change involved if site n + a

is not flipped:

∆En,n+a = −2(J + K)Sz
nSz

n+a. (12)

Note that in this formula site n was already included
into the cluster and Sz

n was already inverted. Eq. (11)
represents the cluster growth as essentially a sequence of
Metropolis decisions, according to whether ∆En,n+a is
less than or greater than zero. Newly included sites then
have their neighbors tested for inclusion until the cluster
is done growing, at which point all included sites have
already been modified.

We define one cluster sweep as building enough sin-
gle clusters until the number of sites included into clus-
ters is one quarter of the total number of sites in the
system. Then we defined one hybrid Monte Carlo step
as one over-relaxation sweep followed by one Metropo-
lis single spin sweep followed by one Wolff cluster sweep.
Equilibrium data shown here are averages over 105 to
4 × 105 Monte Carlo steps. The critical temperature
was determined from the change in the distribution of
z-component of total magnetization, which is easily char-
acterized by Binder’s fourth cumulant ratio,13

UL = 1 − 〈M4
z 〉

3〈M2
z 〉2

. (13)

The crossing point of curves of UL(T ) for different system
sizes gives a good estimate of Tc. All calculations were
made for square lattices of size L × L, using unit spins
S = 1 and fixing J = 1 while allowing K to be varied.

C. Static Results

The critical temperature from the SCHA as a function
of anisotropy parameter K/J is shown in Figure 3 and
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compared with numerical MC estimates for a set of spe-
cific values of K/J ranging from 0.05 to 10.0. Generally,
the SCHA overestimates Tc when compared to the MC
results, because it does not fully take into account all pos-
sible fluctuations that are taking part in the transition.
Notice that, as K increases, the dependence of Tc on K/J
becomes linear. For K/J � 1, we recover a continuous
spin Ising Hamiltonian: Eq. (1) can be approximated as

H ≈ J(1 + K/J)Sz
nSz

n+a = K̃Sz
nSz

n+a. Figure 3 shows
that, for K/J > 1.0, the results follow a straight line with
slope ≈ 1.0. We remark again that, strictly speaking, the
analogy between Hamiltonian (1) and the continuous spin
Ising model can only be expected to hold for T � K. For
moderate and high temperatures, model (1) still exhibits
the full entropy effects of a three-component spin model,
resulting in a much lower transition temperature than a
one-component Ising model. For this reason we cannot
expect to compare our results to the ones obtained for
the usual 2D Ising model.

Some of the drawbacks of the SCHA are well known:
(i) it does not take into account strong coupling effects
which are important at high temperatures and at short
wavelengths; (ii) it also neglects the kinematical interac-
tion and gives a first-order phase transition to the para-
magnetic phase (where the true phase transition should
be of second order). Notwithstanding this, we see that
the theory gives results which compare quite well with
the MC data we obtained.

This good agreement cannot be used to conclude that
solitons do not have an important contribution to the
properties of our model. As is well known, in the one
dimensional easy-axis ferromagnet, the soliton connects
two distinct ground states and has, therefore, a global ef-
fect in the system.14 As a consequence, a pure spin wave
calculation does not predict correctly all thermodynamic
quantities. For instance, spin waves give a linear be-
havior with temperature T (for T → 0) for the corre-
lation length, while the soliton model predicts correctly
an exponential behavior. In two dimensions, however,
the soliton has only a local effect and its contribution to
thermodynamic quantities should be small. The reason-
able agreement of the SCHA calculation with the Monte
Carlo data is not, per se, an indication that we should
rule out topological effects. The signature of topological
solitons is best analyzed in the dynamics where it should
manifest as a central peak. This topic will be discussed
in the following Sections.

III. DYNAMIC CORRELATION FUNCTIONS

A. SCHA

From Hamiltonian (1) and using Eqs. (2), we obtain
the time dependent correlation functions

〈Sx
q(t)Sx

−q〉 =
S

2
〈[aq(t) + a†

q(t)][a−q + a†
−q]〉 ,

〈Sy
q(t)Sy

−q〉 =
S

2
〈[aq(t) − a†

q(t)][a−q − a†
−q]〉 ,

〈Sz
q(t)Sz

−q〉 = δq,0〈S − (a†
l al)〉2 (14)

+ 〈δSz
q(t)δSz

−q〉 ,

where

δSz
q(t) =

1

N1/2

∑

l

eiq·l(a†
l (t)al(t) − 〈a†

l (t)al(t)〉). (15)

The averages are readily evaluated, and give the xx- and
yy- dynamical correlation functions:

〈Sx
q(t)Sx

−q〉 = 〈Sy
q(t)Sy

−q〉 (16)

=
S

2

[

nqeiEqt + (nq + 1)e−iEqt
]

,

where nq is the Bose occupation number and Eq is the
self-consistent spinwave frequency of Eq. (5). Eq. (16)
leads to pure spin wave peaks for the spectral function:15

Sxx(q, ω) =
S

2(2π)2
[nqδ(ω − Eq) + (nq + 1)δ(ω + Eq)] .

(17)

The comparison between these SCHA results for Sxx and
those obtained by spin dynamics simulation (Sec. III B)
are shown in Figures 1 and 4. These are discussed in
more detail in Sec. IV.B below.

The zz- correlation contains, in addition to the Bragg
scattering at q = 0, a term describing correlations in the
fluctuations of the spin’s z component. Evaluating the
averages, we obtain

〈δSz
q(t)δSz

−q〉 =
1

2N

∑

k

[

eiΩt
(

1 + n q

2
−k

)

n q

2
+k

+ e−iΩt
(

1 + n q

2
+k

)

n q

2
−k

]

(18)

where

Ω = Eq

2
+k − Eq

2
−k . (19)

Eq. (18) corresponds to the various two-spin-wave scat-
tering terms. It is interesting to notice that, to this order,
only difference processes contribute to the dynamics. The
time Fourier transform of (18), together with the thermo-
dynamic limit L → ∞, gives us the response function15

Szz(q, ω) =
1

2(2π)4

∫

dk
[

n q

2
+k

(

1 + n q

2
−k

)

δ(ω − Ω)

+ n q

2
−k

(

1 + n q

2
+k

)

δ(ω + Ω)
]

. (20)

Using the delta functions we obtain integrals on the con-
tours C± defined by ω = ±Ω: the first integral is

1

2(2π)4

∫

C+

dlkn q

2
+k

(

1 + n q

2
−k

)

| ∇kΩ |−1
, (21)
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where dlk is the contour element and | ∇kΩ | designates
the Jacobian of the involved transformation. There is
a singularity in these integrands for every minimum or
maximum of Ω and the spectrum is in general quite com-
plicated. We emphasize that, here, we have also used the
self-consistent result obtained in Section II for the spin
wave energies. Results for the spectral functions obtained
from (20) will be compared with those from MC-SD sim-
ulations below in Section IV.

B. Spin Dynamics Simulations

The spin dynamics simulation is standard.16–18 Here
we summarize the method and describe the particular nu-
merical parameters used. For a given temperature, a set
of 200 initial states was taken from the Monte Carlo simu-
lation to serve as initial conditions for the spin-dynamics
time integration. The nonlinear equations of motion as-
sociated with Hamiltonian (1) are

dSn

dt
= Sn ×

[

J̃
∑

a

Sn+a

]

, (22)

where J̃ is the diagonal matrix of exchange couplings,

J̃ =





J 0 0
0 J 0
0 0 J + K



 (23)

These were integrated forward in time using a standard
fourth order Runge-Kutta scheme with time step h =
0.035/J (for small K/J). By saving data for time Fourier
transforms at intervals dt = 6h, allows for measuring
S(q, ω) out to ωmax = 2π/dt ≈ 30J . We saved a total
of Nt = 211 samples in time, integrating out to final
time tmax = Ntdt ≈ 430/J , giving a frequency resolution
of δω = 2π/tmax ≈ 0.015J . The space and time Fourier-
transformed spin-spin correlations were averaged over the
200 initial states to get S(q, ω), for both in-plane and
out-of-plane spin components.

IV. DYNAMIC CORRELATIONS: RESULTS

A. Small Lattices (L ≤ 64)

At low temperatures T � Tc, we especially expect that
the SCHA should give good agreement with the spin-
dynamics simulation. We had noticed, however, that
spin dynamics for small lattices gives an interesting set
of unevenly spaced peaks in Szz(q, ω), in contrast to one
sharp peak at the spinwave frequency in Sxx(q, ω), and
also in contrast to the smooth behavior predicted for
Szz(q, ω) by Eq. (20). Also, an intensity maximum in
Szz(q, ω) for ω → 0 is present for wavevectors of the
form q = 2π

L (2m, 0), where m is an integer. On the other

hand, for wavevectors q = 2π
L (2m + 1, 0), there is an in-

tensity minimum in Szz(q, ω) at ω → 0. In order to see if
the SCHA theory could explain this interesting result we
re-started our calculation from (18), restricting the sums
to the discrete wavevectors k = 2π

L (m, n) of each lattice.
Also, the time integration for S(q, ω) was performed for
a finite time interval tmax,

Szz(q, ω) =
1

2π

∫ tmax/2

−tmax/2

Szz(q, t)e−iωtdt (24)

where tmax was taken to be the same as the integration
time (430/J) used in our simulations. Eq. (18) is mod-
ified for a finite time interval, and a complete analysis
leads to

Szz(q, ω) =
tmax

2N(2π)3

∑

k
{

n q

2
+k

(

1 + n q

2
−k

)

[

sin[(ω − Ω)tmax/2]

(ω − Ω)tmax/2

]2

+ n q

2
−k

(

1 + n q

2
+k

)

[

sin[(ω + Ω)tmax/2]

(ω + Ω)tmax/2

]2
}

. (25)

The expression can be thought to represent S(q, ω) as a
sum over a set of narrow peaks of width approximately
2/tmax, centered at frequencies Ω, determined by choos-
ing k such that both q

2
+ k and q

2
− k in Eq. (19) are

allowed discrete wavevectors. Besides restricting the sum
in (25) to the discrete set of lattice wavevectors, the fi-
nite time integration tmax implies discrete frequency in-
crements δω = 2π/tmax ≈ 0.015J , the same as in our
spin dynamics simulation.

Examination of (19) and (25) allows us to conclude
that a nonzero intensity in Szz(q, ω → 0) can exist
for all wavevectors and not only for those of the form
q = 2π

L (2m, 0). However, a little consideration shows
that if q/2 does not fall on a reciprocal lattice vector,
then it is impossible to choose a value of k in Eq. (19) to
give Ω = 0. Therefore, for wavevectors q = 2π

L (2m+1, 0),
none of the multiple peaks in (25) will be centered at
zero frequency, and Szz(q, ω → 0) is a local minimum.
Although no peak is centered at zero, the tails can con-
tribute there. On the other hand, for wavevectors such
as q = 2π

L (2m, 0), and q = 2π
L (m, m), we see that q

2
falls

on a highly symmetric point in the reciprocal lattice, and
it is always possible to choose k to get Ω = 0 in Eq. (19).
Then for these cases, there is a peak at zero frequency,
and Szz(q, ω → 0) is a local maximum.

The overall behavior of Szz(q, ω) with the lattice size
obtained either by numerical simulation (Fig. 5) or by the
calculation of Eq. (25) (Fig. 6) agree very well. In or-
der to make this comparison, because the spin-dynamics
simulations are purely classical, it is necessary to replace
all factors of (1 + nq) in the SCHA expressions by nq.
Also, these occupation numbers were evaluated by their
classical limit, nq = T/Eq, consistently with the static
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calculations in Sec. II. Figures 5 and 6 were obtained
for K/J = 0.05 (where Tc ≈ 0.75J), q = (0.393, 0), and
T = 0.3J for lattice sizes L = 16, 32, and 64.

Comparing the several peaks shown in Figures 5 and 6,
for a specific value of L, we see that they are positioned
around the same frequencies. The important feature is
that as the system size is increased, the spacing between
the multiple peaks in Szz(q, ω) becomes smaller as 1

L . In
addition, for a longer time integration tmax, the widths
of the peaks will be narrower, and therefore they will be-
come more distinct. As far as we aware, this strong finite-
size effect in low-temperature spin-dynamics simulations
is a feature that has been previously ignored. It is very
likely, however, that it appears in any related models.
For example, finite-size effects most likely explain simi-
lar low-temperature multiple-peak features that have ap-
peared in S(q, ω) calculated for the 2D Heisenberg model
with easy-plane anisotropy.18,19

B. Large Lattices (L ≥ 128)

The SCHA calculation [Eq. (17)] and the MC-SD
simulations both give single narrow spinwave peaks in
Sxx(q, ω), regardless of lattice size. The MC-SD peak po-
sitions for L = 128 have been compared with the SHCA
results in Fig. 1, and agree very well for the temperatures
studied. The SCHA theory gives peaks of zero width,
thus it makes sense to compare the integrated intensities

for the positive frequency peak, Ixx =
∫ +∞

0
dwSxx(q, ω).

These are shown in Fig. 4, where the MC-SD results
are compared to those obtained from Eq. 17, Ixx =
Snq/(8π2). For the lower temperature, T = 0.3J , there
is very good agreement. The good low-T agreement, with
no adjusted parameters, shows that the approximations
made in the SHCA theory are reasonable where we ex-
pect this simple theory to work. For T = 0.6J , how-
ever, the MC-SD result is suppressed compared to the
SCHA prediction. Currently we cannot say whether this
suppression should be better described by spinwave in-
teraction terms or possibly by nonlinear excitations such
as solitons or domain walls. Clearly, both effects could
become more important as the critical temperature is ap-
proached.

For Szz(q, ω), the widths of the multiple peaks are de-
termined both by the intrinsic width due to temperature,
and the width 2π/tmax inherent in the spin-dynamics
simulation. For larger lattices, or higher temperatures,
the spacing of the multiple peaks in Szz(q, ω) becomes
smaller than their measured widths, the peaks merge and
the curve is much smoother. Thus in our simulations the
finite-size effects are quite well smoothed out for lattices
L > 128 and/or for high temperatures. In Figures 7-10,
for K = 0.05J , several q values, and L = 128 we see that
the simulation data for the higher temperature T = 0.6J
are smooth while the data for T = 0.3J still show sharp
peaks.

Using the “discrete” equation (25) for obtaining
Szz(q, ω) for lattice size L = 128 we do not get rid of
the multiple peak structure even for T = 0.6J . This
can be seen in Fig. 11 where the three types of calcula-
tions — numerical simulation, discrete summation (25)
and continuum limit (20) — we used to obtain Szz(q, ω)
are shown for K = 0.05, T = 0.6J and q = (1.03,0).
Typically, the discrete SCHA summation results in an
Szz(q, ω) curve with very strong multiple peak struc-
ture. In order to smooth out the structure obtained
from (25) it is necessary to consider much larger lattices
(L > 500). It is natural to expect that it is more diffi-
cult to smooth out the spectra obtained by (25) than the
one obtained via spin dynamic simulation. Clearly the
MC-SD calculation contains more fluctuations and there-
fore greater peak widths, especially as T approaches Tc,
whereas in expression (25) all spinwave peaks have very
narrow widths determined only by the integration time.
Instead of trying to smooth the SCHA spectra by consid-
ering larger and larger lattices for the calculation of (25)
— which requires extra computational effort — we can
go to the continuum approximation limit built in (20). In
fact, most real systems contain a large number N of spins
(N → ∞) and effects due to the discreteness of the lat-
tice are not important. These macroscopic systems will
be better represented by the continuous approximation
built in (20). Figures 7-10 show the spectral functions
obtained by numerically evaluating (20) for K = 0.05,
T = 0.3J , and T = 0.6J , for the following wavevec-
tors: q = (0.393, 0), (1.473, 0), (2.50, 0) and (1.03, 1.03).
These are compared with the corresponding MC-SD cal-
culations for 128 × 128 lattices.

Obviously, considering the dynamical simulation, it is
not possible to go to the N → ∞ limit: the computa-
tional cost in simulations increases tremendously with N .
Nevertheless, we can remark on interesting features con-
cerning the results obtained from the SCHA calculation
and from numerical simulation procedures. First, the
“cutoff frequency” or upper frequency limit below which
Szz(q, ω) has appreciable intensity does not depend on
the lattice size and on the kind of calculation performed
to obtain Szz(q, ω). This can be observed in Figs. 5, 6
and 7, which correspond to the three different ways we
have used to obtain the spectral function for different
lattice sizes but for the same wavevector q = (0.393, 0).

In Fig. 12 we show the comparison of the cutoff fre-
quency ∆ω of the obtained spectral functions in the
whole | q | range for wavevectors like q = (q, 0): the data
were obtained for K = 0.05J and T = 0.3J . The compar-
ison is remarkably good (a similar agreement is obtained
for T = 0.6J). We see that, for small | q |, the frequency
limit ∆ω increases linearly with the wavevector. A trivial
analysis of (20) leads us to the conclusion that ∆ω must
be related to the maximum value Ω can have for each q.
From (19) we easily obtain that Ωmax = B(T ) sin | q | /2
where B(T ) = εJS[1 − β(T ) + η(T )(1 + K)] and ε = 1
for q = (q, 0) wavevectors and ε = 2 for q = (qx, qx). For
comparison, we show, in Fig. 12 a curve (dashed line)
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corresponding to Ωmax.
Second, the SCHA curves corresponding to wavevec-

tors of the form q = (q, 0) or (0, q) ( Figures 7-9 ) show a
sharp peak at higher frequencies, just before the spectral
function vanishes. For wavevectors like q = (q, q), this
sharp peak is only observed near the point (π, π), and not
for smaller |q|, as can be seen in Fig. 10. The appearance
or not of these peaks in the SCHA calculation depends
on the behavior of the density of states | ∇Ω |−1 in Eq.
(21). Figures 13 and 14 show contours of Ω(q,k) in the
k-plane, for q = (0, 0.393) and q = (1.03, 1.03), respec-
tively, for T = 0.3J . For q in the (10) or (01) directions,
the contours are straight lines (Fig. 13). They become
very widely spaced near kx = π/2, or near kx = π/2,
where Ω approaches Ωmax, and | ∇Ω |−1 becomes very
large along the whole straight contour. The integration
along the contour in Eq. (21) then leads to the sharp
peaks at ω → Ωmax seen in Szz(q, ω). For q along the
(11) direction, the contours are curves (Fig. 14). For
moderate values of | q |, the higher contours (near Ωmax)
approximate small circles, having limited total length and
thus creating no sharp peak in Szz(q, ω). Only for q very
close to the point (π, π) is the effect due to the divergence
of | ∇Ω |−1 more important than the contour length, and
there a sharp peak at ω → Ωmax does occur.

It is interesting to notice that this peak is also present
in the data obtained from the discrete spin wave calcu-
lation (Figure 11) although the density of states does
not appear explicitly in (25). Nevertheless, the two spin
wave calculations must, in fact, give similar results be-
cause (20) or (21) correspond to the tmax → ∞, and
N → ∞ limits of (25). For small wavevectors, this sharp
high frequency peak is not seen in the simulation data
suggesting that inclusion of higher order terms in the
spin wave theory would probably lead to the attenuation
of this peak in the SCHA results. As the wavevector
| q | increases, a lateral shoulder develops in the spectra
obtained from both numerical simulation and SCHA cal-
culations; it is already well defined for q ∼ 0.50. For very
large wavevectors, as in Figure 9, the lateral shoulder for
the MC-SD data occurs in the frequency region affected
by the increase of | ∇Ω |−1. This shoulder seems to be a
characteristic of two-spin-wave processes because it has
been observed in other systems20.

As the temperature increases, the width of the spec-
tral function Szz(q, ω) decreases but its height increases.
The spin wave calculation seems to agree well with the
MC-SD data for large wavevectors, even for T = 0.6J .
For small wavevectors and higher temperature, however,
Szz(q, ω) from the SCHA calculation is smaller than the
MC-SD data (Fig. 7), suggesting that at high tempera-
tures other processes could be contributing to the dynam-
ical properties of this system. For systems with easy-axis
anisotropy one can expect the formation of domains, as
in the two-dimensional Ising model, and, also, localized
solitons21. In particular, it is usually expected22 that
localized solitons would contribute to the dynamical cor-
relation function in the ω → 0 (central peak) region and,

mostly, for small wavevectors.

V. CONCLUSIONS

We have applied a self-consistent harmonic approxi-
mation to the easy-axis model, obtaining the spinwave
energies, critical temperature and dynamic correlation
functions. We also demonstrated how it is possible to
apply the Wolff cluster Monte Carlo scheme to this easy-
axis model, by having it act on only the Sz spin com-
ponents. For the critical temperature, the SCHA and
MC results agree favorably over a wide range of easy-
axis anisotropy, both giving Tc increasing linearly with
K for K � J . The spin-dynamics calculation of dy-
namic correlation functions shows interesting multiple-
peak features in Szz(q, ω), that are most easily seen in
small lattices. These finite-size dynamical features are
correctly described by the SCHA, especially for T far be-
low Tc. Similar features should appear in models with
other symmetries: there are strong evidences that these
effects were also observed in other simulations of two di-
mensional easy-plane models.18

All the dynamical calculations discussed in this work
were performed for anisotropy parameter K = 0.05,
which corresponds to a transition temperature Tc =
0.75J . For this anisotropy, two temperatures were an-
alyzed: T = 0.3J � Tc, and T = 0.6J . We could
not expect that the spinwave calculation performed here,
which neglects higher order terms in the spin interactions,
would reproduce exactly the simulation data. However,
the agreement for the lowest temperature, T = 0.3J , is
very good. It is also surprisingly good for T = 0.6J , a
relatively high temperature, and large wavevectors where
a lateral peak is seen to develop. At T = 0.6J , for
small wavevectors and small frequencies, the SCHA func-
tion for Szz shows a central peak with height smaller

than the one obtained from MC-SD simulation. On the
other hand, the SCHA prediction for the integrated in-
tensity Ixx for the in-plane correlations lies above the
MC-SD data for T = 0.6J . These features may suggest
that other excitations, like localized solitons and domain
walls, may contribute to the dynamical correlation func-
tion as the temperature approaches the critical temper-
ature. It was shown5 that the density of these local-
ized solitons increases exponentially with T as T → Tc

and, then, one should expect that their contribution to
the dynamics of the system becomes more important for
temperatures T ∼ Tc. To stress this conclusion, we re-
mark that Sxx(q, ω) obtained by MC-SD simulation for
T > Tc (not shown here because SCHA cannot be com-
pared in this temperature regime) does show a central
peak (ω ∼ 0) that increases with T . Its properties will
be analyzed in a future work.

We conclude by saying that the two-spin wave cal-
culation can explain the main features obtained from
Monte-Carlo-spin-dynamics simulation at very low tem-
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peratures. As T → Tc, the comparison between SCHA
spin-wave calculation and the numerical simulation data
suggests that other excitations may contribute to the dy-
namic properties of the model. However, a better under-
standing concerning the contributions these excitations
might give to the dynamic spectral functions requires
some theory which takes into account the existence of
such objects. To our knowledge, such theory for easy-
axis anisotropy two-dimensional systems is not available
in the literature.
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FIG. 1. The curves correspond to the spin wave energy
(from (7)) for T = 0.3J (continuous), and T = 0.6J (dashed)
for K = 0.05J . The circles and stars correspond to the val-
ues extracted from our numerical simulations; error bars are
smaller than the symbols.
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FIG. 2. Magnetization as a function of temperature for
K = 0.05J . Solid curve is the SCHA theory. Various symbols
correspond to MC simulation for indicated system sizes; error
bars are smaller than the symbols.
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FIG. 3. Critical temperature as a function of the anisotropy
parameter K/J . The symbols correspond to the values ob-
tained in our MC calculation (as described in Section II B);
error bars are smaller than the symbols.

0.0 1.0 2.0 3.0 4.0

|q|

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Ix

x

SCHA, T=0.6J

q=(q,0), T=0.6J

q=(q,q), T=0.6J

SCHA, T=0.3J

q=(q,0), T=0.3J

q=(q,q), T=0.3J

K=0.05J

FIG. 4. In-plane integrated intensity Ixx versus wavevec-
tor, from SCHA (curves) compared with MC-SD (symbols)
for K = 0.05J , L = 128.
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FIG. 5. Szz(q, ω) obtained from numerical simulation for
K = 0.05J , T = 0.3J , and L = 16, 32, 64, and wavevector
q = (0.393, 0).
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FIG. 6. Szz(q, ω) obtained from discrete summation (25)
for K = 0.05J , T = 0.3J , and L = 16, 32, 64, and wavevector
q = (0.393, 0).
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FIG. 7. Szz(q, ω) from (continuous line) continuum limit
(20) and from (circles and triangles) numerical simulation
for K = 0.05J , T = 0.3J , and T = 0.6J , and wavevector
q = (0.393, 0).
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FIG. 8. Szz(q, ω) from (continuous line) continuum limit
(20) and from (circles and triangles) numerical simulation
for K = 0.05J , T = 0.3J , and T = 0.6J , and wavevector
q = (1.473, 0).
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FIG. 9. Szz(q, ω) obtained from (continuous line) contin-
uum limit (20) and from (circles and triangles) numerical
simulation for K = 0.05J , T = 0.3J , and T = 0.6J , and
wavevector q = (2.503, 0).
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FIG. 10. Szz(q, ω) obtained from (continuous line) con-
tinuum limit (20) and from (circles and triangles) numerical
simulation for K = 0.05J , T = 0.3J , and T = 0.6J , and
wavevector q = (1.03, 1.03).
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FIG. 11. Szz(q, ω) obtained from numerical simulation
(filled circles), discrete summation (empty circles) and from
continuum limit (line) for K = 0.05J , T = 0.6J , L = 128,
and wavevector q = (1.03, 0).
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FIG. 12. Cutoff frequency of Szz(q, ω) as a function of q
for K = 0.05J and T = 0.3J .
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FIG. 13. Contours of difference frequency Ω(q,k) for
T = 0.3J and q = (0, 0.393) as function of k.

FIG. 14. Contours of difference frequency Ω(q,k) for
T = 0.3J and q = (1.03, 1.03) as function of k.
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