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Impurity-pinned vortices contribution to the response function in randomly diluted
easy-plane ferromagnet on a square lattice
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Using spin dynamics techniques we determine the neutron scattering function Sxx(~q, ω) of the
two-dimensional classical XY-model on a square lattice containing a percentage of nonmagnetic
impurities on the magnetic sites. Dilution substantially transforms the shape and the position of
the central and spin wave peaks. Besides the spin wave peak, an additional inelastic peak arises.
We argue that the causes of this rich structure are vortex-vacancy interactions.

PACS numbers: 75.10.Hk; 75.30.Hx; 75.40.Mg

Magnetic vortices and other nonlinear magnetization
distributions have attracted much attention in physics
of low dimensional magnetism. The direct experimen-
tal visualization of these structures in nanomagnetism
has given new impulses to investigate not only the phys-
ical relevance but also the technological importance of
nonlinear excitations in magnetic materials [1–4]. Now,
even a delicate phenomenon like a shift of the vortex
center position from the center of a nanodot can be ob-
served experimentally. However, although there is a large
class of layered insulators that has been shown to exhibit
the experimental characteristic of two-dimensional (2D)
magnetism, it is not so easy to get a direct observation of
vortices in these materials. In such systems, the vortex
or soliton signature may be found in the dynamical corre-
lation functions via vortex motion or vortex-magnon (or
soliton-magnon) interactions. In fact, vortex motion may
cause a central peak in the spin-spin dynamical structure
factor [5, 6] while vortices or solitons interacting with
magnons may contribute to the electron-paramagnetic-
resonance (EPR) linewidth [7–9], which is the tempo-
ral integral of the four-spin-correlation function. Sur-
prisingly, some Monte Carlo calculations indicate that
a single vortex very seldom moves freely over a larger
distance. Normally the vortex travels only one or two
lattice spacings until it annihilates with the antivortex of
a pair which meanwhile appeared spontaneously in the
neighborhood [10, 11]. This result would be in contrast
to the phenomenological theories that predict the vor-
tex contribution to the central peak, but as pointed out
by Mertens and Bishop [12], probably only the effective
vortex motion is important for the dynamic correlation
function. This would mean that it does not matter if a
vortex is annihilated with the antivortex of a pair in the
considered time interval [0, t], because the vortex of that
pair has a motion similar to that of the original vortex.
Only effective lifetimes are seriously affected.

On the other hand, to the authors’ knowledge, there
are no experiments in easy-plane magnets to explicitly

determine the vortex signature using the EPR techniques
(EPR linewidth measurements have provided an impor-
tant indirect method to experimentally detect solitons in
two-dimensional isotropic magnetic materials [7, 8, 13]).
Therefore, since the interpretation of the central peak
in the spin-spin correlation function is not at all clear,
vortices are still objects that need to be observed (direct
or indirectly) in 2D easy-plane magnetic materials. Per-
haps, the inclusion of external factors in the system may
help vortices to manifest themselves more clearly. For ex-
ample, the introduction of an amount of nonmagnetic im-
purities into the magnetic sites of a classical magnet may
create conditions that affect the vortex dynamics. Really,
recent works [14–17] have shown that vortices are at-
tracted and pinned by nonmagnetic impurities. A bound
state vortex-impurity with the vortex center around the
impurity is then formed [14] and as a first consequence,
the mean vortex mobility should decrease. Hence, if vor-
tex motion is the cause of the central peak, this peak
should be considerably modified in diluted systems. Fol-
lowing this idea, other possibilities could also appear. For
instance, it was shown that vortices can develop an os-
cillatory motion[17] around a vacancy and this motion
could also contribute to the spin dynamics. For these
and many other motivations, it should be important to
study the spin dynamics in doped layered magnetic ma-
terials. In fact, the site dilution problem is an important
subject in modern condensed matter physics. In this let-
ter we develop some arguments based on numerical and
analytical calculations that vortex-vacancy interactions
may play a crucial role in the spin dynamics.

We consider the classical 2D XY model with a fraction
of nonmagnetic impurities to study the behavior of the
system dynamics using combined Monte-Carlo (MC) and
Spin Dynamics (SD) simulations. The spin model under
consideration may also have relevance to the study of su-
perconductivity, in particular, to the interaction between
vortices and spatial inhomogeneities. It is described by
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the following Hamiltonian

H = −J
∑

〈i,j〉
σiσj

(
Sx

i Sx
j + Sy

i Sy
j

)
, (1)

where J is the ferromagnetic exchange coupling, 〈i, j〉
indicates nearest neighbor sites of an L × L square lat-
tice and the quenched dilution factors {σi} independently
take the values 1 or 0 depending on whether the associ-
ated site is occupied by a spin or vacant. The classical
spins ~Si have three components S2

i = (Sx
i )2 + (Sy

i )2 +
(Sz

i )2 = 1. The behavior of the dynamics was analyzed
considering several values for the impurity concentra-
tion ρv and temperature T . The critical temperature
Tc of this model (we use TKT for the pure model) is
a function of the impurity concentration ρv decreasing
monotonically with increasing ρv [18, 19]. It vanishes
at the site percolation threshold ρv ≈ 0.41 for a square
lattice[18, 19].

Numerically we simulated the thermal equilibrium
spin dynamics of Hamiltonian (1) at several different
dilutions ρv on L × L square lattices (16 ≤ L ≤ 96,
in units of lattice spacing a) with periodic boundary
conditions. The number of spins in the system is
N = (1 − ρv)L2. The numerical method is a combined
MC-SD technique, which include effects due to all
thermodynamically allowed excitations available to
the microscopic spin dynamics. The techniques used
here have been described in Ref. 20 and are based on
the simulation methods developed in Refs. 5, 21, and
the MC part has been applied recently in the diluted
easy-plane Heisenberg model[19, 22]. Averages for the
diluted model were made over different realizations of
the vacancy positions (averaging over the disorder). Now
we summarize the main results. Figure 1 shows Sxx(~q, ω)
at temperature T = 0.350J , ~q = (π/4a, 0), L = 64a
for various impurity concentrations, ρv = 0.0, 0.16, 0.20.
The critical temperatures related to these impurity
concentrations are, respectively, 0.700J, 0.453J and
0.384J [19]. Note that an almost infinitesimally narrow
spike around ω = 0 takes place. This is completely
different from the pure case. In general, for T ≤ Tc, the
central peak becomes narrower as ρv increases. At the
same time the spin wave peak (SWP) moves towards
lower frequencies and becomes wider as ρv increases.
Besides the SWP, another interesting inelastic peak at
a finite frequency independent of q arises. In order to
better see this new structure, we use intermediate values
of q. For small values of momentum, the spin wave peak
is centralized at positions of low frequencies, dominating
the region where the new peak arises, and hence, small
| ~q | is not appropriate to observe it. This inelastic peak
moves slightly towards lower ω and becomes narrower
and higher as ρv increases. We also notice that this
peak moves continuously towards lower ω as the lattice
size increases (see Fig.(2)). In fact, it is observed
that ωv = C(ρv, T )/L (in units of J), where the factor

C(ρv, T ) depends on impurity concentration and temper-
ature. As ρv and T increase, the factor C(ρv, T ) tends to
decrease. The effect of ρv on C(ρv, T ) is much stronger
than that of T . Indeed, Paula et al.[16] have shown that
the presence of other vacancies decreases considerably
the vortex-on-vacancy pinning energy. In figure 3 we
plot C(ρv, T ) versus ρv for T = 0.200J . Essentially, for
a given temperature T , C(ρv, T ) decreases linearly with
ρv. It should be interesting to study the behavior of
C(ρv, T ) in the limit of very low impurity concentration
(ρv → 0). Extrapolating the results of Fig.(3) to the
limit ρv → 0, we get C(ρv, 0.200) → 12.09Ja. We also
studied the behavior of C(ρv → 0, T ) for other values of
T (not shown here). As the temperature is decreased,
C(ρv → 0, T ) increases and extrapolating the results to
the limit T → 0, we get C(ρv → 0, T → 0) ≈ 13.10Ja
leading to ωv ≈ (13.10/L)J . This result is very sugges-
tive. Indeed, Pereira et al.[17] have shown that a single
vortex can oscillate around a nonmagnetic impurity and
such motion could be characterized by some normal
modes with well defined frequencies, which have the
same behavior with the system size as the peak obtained
here. Their calculations were done for a system at zero
temperature containing only one vortex and only one
vacancy and therefore, valid in the limit ρv → 0. The
main mode of the oscillatory vortex motion was found
to have a frequency given by ω0 ≈ (13.57/L)J , which is
very close to ωv in the limit ρv → 0, T → 0. The relation
ωv(ρv → 0, T → 0) ≈ ω0 strongly suggests that the
cause of the new peak observed here is vortex-vacancy
interactions.

0.0 0.3 0.6 0.9 1.2 1.5 1.8
ω/J

0.00

0.01

0.02

0.03

0.04

0.05

S 
  (

q 
, ω

)

0.00
0.16
0.20

xx

L = 64a
T = 0.350 J
q = (π / 4a , 0)

ρ   =ν

➝

FIG. 1: The correlation function Sxx(~q, ω) versus ω for some
impurity concentrations ρv = 0 (dotted line), ρv = 0.16
(dashed line) and ρv = 0.20 (solid line). It was used ~q =
(π/4a, 0), L = 64a and temperature T = 0.350J .

As we have already seen, for a given temperature T ,
the position of the spin wave peak moves towards lower
ω as ρv increases, and the peak widens slightly. It is
somewhat similar to what happens for pure systems
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as the temperature increases, indicating that the non-
magnetic disorder is, to some extent, similar to thermal
disorder. Theoretical calculations using the spin wave
approximation show that the static spin-spin correlation
function exponent of the diluted system ηv has the same
form of the exponent η of the pure system, differing
only by a constant which renormalizes the temperature
[18]. The approximate relation between ηv and η is then
given by ηv ' η/(1 − 2ρv) [18]. Writing this expression
as ηv = 1/2πJβv, we have βv = β(1− 2ρv) and then, the
effect of vacancies is to increase the effective temperature
of the system. The substitution of η by ηv in the Villain
[23] or Nelson and Fisher [24] dynamical correlation
functions, implies that the spin wave peak must widen
as ρv increases, which is in qualitative agreement with
our simulations.

While the behavior of the spin wave peak is relatively
qualitatively well understood for the diluted problem,
the additional small inelastic structure at a frequency ωv,
not observed in pure systems, is a new and interesting
peak that needs explanation. Theoretical expectations
based on the vortex-vacancy interactions[17] may justify
this structure. A simple phenomenological model based
on oscillating vortices is developed now. Vortices are
created in pairs of vortex-antivortex and, in impu-
rity systems, it must be energetically favorable for a
pair to nucleate near a vacancy, preferentially with
one of the two vortex centers located exactly at the
vacancy center [25]. Then the system may contain
some impurity-pinned vortices (antivortices) and their
respective antivortices (vortices) in the neighborhood
(and in general, not pinned at impurities, at least for low
impurity concentrations). Considering a specific pinned
vortex, we will define its partner as the antivortex the
shortest distance away. The energy of this configuration
can be estimated as Ei

∼= E2v + Uvi, where E2v is the
pair creation energy (for a discrete lattice, Landau and
Binder[27] found E2v ≈ 6.39J) and Uvi ≈ −3.178J is
the vortex-on-vacancy pinning energy[15].
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FIG. 2: Sxx(~q, ω) versus frequency ω for some values of L.

The time-dependent spin correlation function is
obtained after the following assumptions. First we
assume that the magnetization at any point ~ri in the
lattice is from vortices located at vacant sites ~rγ with
Sx(~ri, t) =

∑
γ Sx(~ri − ~rγ , t). In reality, the respective

partners (not pinned) of each impurity-pinned vortex
(i.e., its nearest antivortex) also contribute to the
magnetization and they must also be considered. Such
a partner is localized by vectors ~rγ + ~Rγ , where ~Rγ

determines the partner position in relation to ~rγ (note
that | ~Rγ |= Rγ gives the γ-pair size). In this notation
the planar vortex-antivortex solution is written, in polar
coordinates (Φ, Θ), as Φp = arctan[(y − yγ)/(x − xγ)] −
arctan[(y− yγ − ~Rγ · ŷ)/(x− xγ − ~Rγ · x̂)], Θp = π/2. In
the simplest analysis, when not centered on an impurity,
a partner contributes only to the static structure factor
since it may not move considerably on the lattice. It
is not completely true because these structures must
affect the central peak in the sense proposed by Mertens
and Bishop [12](of course with less intensity than the
pure case). The time dependence is assumed from the
vortex oscillations around the vacancy. It has been
shown[17] that such oscillations are not so simple and
that the amplitude of oscillation is of the order of one
lattice spacing a. However, as a further simplification
we will assume a harmonic approximation writing
Sx(~ri, t) =

∑
γ Sx(~ri − ~rγ − ~aγ sin(ωvt)), where vectors

~aγ (| ~aγ |= a) indicate the direction of the oscillatory
motion (in relation to the x-axis) and ωv is the vortex
oscillation frequency. Using the above considerations,
the correlation function Sxx(~r, t) =< Sx(~r, t)Sx(~0, 0) >
is calculated as

Sxx(~r, t) ≈ nv

∫
µ(R)d2rγdR < Sx(~rγ , R, α)

×Sx(~r − ~rγ − ~aγ sin(ωvt), R, α) >α,ϑ,(2)

where nv is the impurity-pair density, µ(R) is the pair
size distribution function[26] and α, ϑ are the angles that
vectors ~Rγ and ~aγ make with the x-axis respectively. The
symbol < ... >α,ϑ represents an average over these two
angles. In the low impurity concentration and low tem-
perature regimes, we estimate the impurity-pair density
nv substituting β by βv in the Boltzmann factor, obtain-
ing nv(ρv) ≈ B(ρv) exp(−βEi), where the coefficient B
is given by B(ρv) ≈ exp(2ρvβEi). As expected, the geo-
metric (or nonmagnetic) disorder contributes to the pair
formation.

The spatial and temporal Fourier transformations of
Eq.(2) yield

Sxx(~q, ω) ≈ nvFxx(~q)
∫

< exp[−i~q · ~aγ sin(ωvt)] >ϑ

× exp(iωt)dt, (3)
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FIG. 3: The factor C(ρv, T ) versus impurity concentration ρv

for L = 96 and T = 0.200J . The dotted line is a good fit to
the data. Note that C(ρv → 0, T = 0.200J) → 12.09Ja.

where Fxx(~q) =
∫

µ(R) <| fxx(~q, R, α) |2>α dR, with

| fxx(~q, R, α) |2= 1
2
[| fx(~q, R, α) |2 + | fy(~q, R, α) |2].

(4)
The static structure factors in Eq.(4), fx(~q,R, α) =∫

cos[Φp(~q, R, α)] exp(i~q · ~r)d2r and fy(~q,R, α) =∫
sin[Φp(~q, R, α)] exp(i~q · ~r)d2r are calculated as in Ref.

9 (fx ∼ O(R2)). After averaging over ϑ, the integral in
Eq.(3) is written as
∫

[J0(qa sin(ωvt)) cos(ωt) + Hs
0(qa sin(ωvt)) sin(ωt)]dt,

(5)
where J0 and Hs

0 are the Bessel and Struve functions re-
spectively. Integration of Eq.(5) leads to two sharp peaks
at well defined frequencies ω = 0 and ω = ωv. The cen-
tral peak is much more intense and then we approximate

Sxx(~q, ω) ∼= nv(ρv)Fxx(~q)[b1δ(ω) + b2δ(ω − ωv)], (6)

where b1 and b2 are constants that give the strength
of the peaks. These simple analytical results suggest
that the pinned-vortex contributions to the correlation
function imply two infinitely high and infinitesimally
narrow peaks, which in some respects resemble results
of simulations. Of course, like the divergent spin
wave-peaks obtained theoretically[23, 24], this double
delta-function correlation is only an approximation.
This sharp spectrum may be modified by the occurrence
of other interactions, which cause a broadening of the
lineshape. The simple analytical model introduced
here reproduces the qualitative behavior of Sxx(~q, ω)
observed in simulations.

In summary, vortices interacting with vacancies in
diluted classical easy-plane 2D magnets result in an
inelastic peak in the dynamical correlation function.
Since there are several contributions to the central peak,
the mechanism proposed here may be more effective to
experimentally detect vortices in layered magnetic ma-
terials. Using typical values for ferromagnetic samples,

J ∼= 0.1eV , a ∼= 1Å and considering L as large as 1mm,
one gets the the frequency associate to the new peak as
ωv
∼= 109s−1.
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[3] M. Rahm, R. Höllinger, V. Umansky, and D. Weiss, J.
Appl. Phys. 95, 6708 (2004).

[4] A.R. Pereira, J. Appl. Phys. 97, 094303 (2005).
[5] F.G. Mertens, A.R. Bishop, G.M. Wysin, and C. Kawa-

bata, Phys. Rev. Lett. 59, 117 (1987); Phys. Rev. B 39,
591 (1989).
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