
Magnon modes for a circular two-dimensional easy-plane ferromagnet in the cone state

B. A. Ivanov
Institute of Magnetism, Ukrainian Academy of Science, Kiev, 254071, Ukraine

G. M. Wysin
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

November 14, 2001

We calculate the magnon modes in the presence of a vortex
in a circular easy-plane ferromagnet with a magnetic field per-
pendicular to the plane of the magnet. We also determine the
range of anisotropy and magnetic field for which the two vor-
tex branches, known as light and heavy cone state vortices,
are stable. The analysis was done by combining analytical
calculations in the continuum limit with numerical simula-
tions of small discrete systems. For large enough systems the
magnon modes are expressed by the S-matrix for magnon-
vortex scattering. For small systems the vortex structure and
consequently the magnon scattering are affected by the fi-
nite size, for which a theory designed for isotropic magnets
is extended here. The presence of magnetic field in combina-
tion with easy-plane anisotropy leads to splitting of doublets
both near small magnetic field and when the magnetic field
is comparable to the anisotropy field. Similar doublets with
splitting determined by the magnetic field may be expected
in the mode spectra of small magnetic particles.

I. INTRODUCTION

In condensed matter physics vortices appear in many
systems with continuously degenerate ground states,
whose properties are determined by some phase-like vari-
able φ, including superfluids1 and superconductors, con-
ventional ones2 as well as high-temperature ones,3 dilute
Bose-Einstein condensates,4,5 and some models of mag-
nets, see Refs. 6–8. At low temperatures vortices are
bound into pairs, forming a Berezinskii phase with ab-
sence of long range order, but with the presence of quasi-
long-range order.9 The unbinding of the vortex pairs
at high enough temperatures T > TBKT leads to the
Berezinskii - Kosterlitz - Thouless phase transition, see
Refs. 9–11. Vortices, free as well as bound into pairs, also
play an essential role in thermal and dynamical proper-
ties of 2D magnets12,13 and Helium II.2 In particular,
translational motion of vortices leads to a central peak
in dynamic correlation functions,12,13 which has been ob-
served experimentally see Refs. 14 and references therein.

In this article we analyze the vortices in an easy-plane
(EP) ferromagnet (FM) with a magnetic field H directed
along the hard axis,15 also referred to as the cone-state
model. There are many reasons for this interest. The ini-
tial xy-symmetry is not broken by the magnetic field; but

for magnetic field smaller than an anisotropy field Ha, the
magnetization in the ground state is directed along one of
the directions on the cone with the polar angle θ0 6= π/2,
and the FM is in so-called cone state, see 15. As H → Ha,
the cone angle closes, θ0 → 0, and the Landau - Lifshitz
equation for magnetization becomes equivalent to a re-
pulsive non-linear Schrodinger equation,6,7 which is in
fact the Gross-Pitaevsky (GP) equation used in the the-
ory of superfluids.16 The so-called out-of-plane vortices
for the cone-state model have two possible directions of
the magnetization at the origin, with the “polarization”,
p = mz(0) = ±1, considered as a π2 topological charge.
This charge is in addition to the usual vorticity q, which
has the sense of a π1 topological charge, where q is an
integer which determines the change of a phase-like vari-
able φ (the condensate phase, or, for EP magnets, the
azimuthal angle) along a closed contour surrounding the
vortex center, ∆φ = 2πq. At zero magnetic field, the
vortices with p = ±1 are energetically degenerate. Un-
der the presence of H > 0, the two possible states of a
cone-state vortex with different polarizations p = ±1 are
non-equivalent, and separated by a finite energy barrier.
Those with ~m(0) parallel to the magnetic field have a
lower energy (light vortices) compared to those with ~m(0)
antiparallel to the field (heavy vortices).15 We show that
the heavy vortices lose their stability for large enough
fields, and the magnetic model becomes equivalent to
the GP one. The presence of a gyroscopical (Magnus)
force is also a common feature for different vortices – in
superfluids1 and superconductors,2 for optical vortices17,
for vortices in ferromagnets see Refs. 18, 12, and for vor-
tices in EP antiferromagnets with a magnetic field.19 For
magnetic vortices the gyroforce effects are proportional
to the core out-of-plane magnetization mz(0), thus it can
be expected that light and heavy vortices may exhibit
different gyroscopic effects.

The cone-state model also can be considered as inter-
mediate between different models supporting vortices.
Consider the deviation of the amplitude-type variable
(amplitude of condensate, or out-of-plane magnetization
for EP magnets), from its equilibrium value far from the
vortex core. The radial dependence of this deviation is
different for vortices in EP magnets and in media de-
scribed by equations of GP type. The latter type (vor-
tices in superfluidity and optics) have power law decay
of this deviation far from the vortex core, in contrast
with the characteristic exponential decay for vortices in
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EP magnets.6–8 The cone-state model is intermediate be-
tween these cases, ranging from pure EP at H = 0 to GP
as H → Ha. It is natural to expect that this impor-
tant difference could produce differences in dynamical
properties, especially in scattering of linear excitations
on a vortex and in the properties of local and quasilocal
modes.

During recent years the problem of magnetic vortices
for finite size magnetic particles, especially their dynam-
ics, has become very important in connection with novel
composite magnetic materials – such as magnetic dot ar-
rays, see Refs. 20. These magnetic dots are submicron
sized islands made from soft magnetic materials on a non-
magnetic substrate. They are important from a practical
standpoint (high-density magnetic storage) and are inter-
esting as fundamentally new objects in the basic physics
of magnetism. The distribution of magnetization in such
a dot is quite nontrivial: when the dot size R is above the
critical value Rcr, an inhomogeneous state with an out-of
plane magnetic vortex occurs, stable due to competition
between exchange and dipole interactions.21 This vortex
state has been experimentally observed for disk-shaped
magnetic dots with the diameter 2R = 200 - 800 nm
and thickness L = 20 - 60 nm.22 It it is expected that
these non-uniform states will drastically change the dy-
namic and static properties of a dot in comparison with
a uniformly magnetized magnetic disk. The cone state
vortices are also important for the description of real sys-
tems of sub-micron magnetic dots, because the magnetic
dipole interaction of dots in the lattice produces a mag-
netic field perpendicular to the dots’ plane. This field
could be either parallel or antiparallel to the magnetiza-
tion of the core of the vortex of the dot, implying the
presence of both light and heavy cone-state vortices, re-
spectively.

To construct an adequate description of the vortex en-
semble and vortex contributions to the dynamical re-
sponse functions, it is necessary to investigate the dy-
namical properties of single vortices, including the trans-
lational motion as well as the properties of local and
quasilocal modes (internal modes) on the vortex. The
investigation of vortex dynamics (translational and in-
ternal) has been carried out using different methods -
numerically, for discrete models, mainly for circular sam-
ples cut from large lattice systems, see Refs. 23, 24, and
for continuum models as well, both analytically, see Refs.
25–27 and numerically, see Refs. 28, 29. A better under-
standing of this the problem of vortex dynamics in the
finite-size circular magnets was developed in Refs. 30,
29. These problems are deeply connected with the prob-
lem of scattering of linear excitations by a vortex, which
we investigate in detail here. For example, knowledge of
the S-matrix for vortex-magnon scattering gives the pos-
sibility to describe the results of numerical simulations
of the motion of the magnetic vortex, and to verify a
non-Newtonian dynamical equation for the vortex center
coordinate, see Ref. 30.

Due to the above reasons, in this article we concentrate

on developing the theory for scattering of magnons by a
cone-state vortex, determining scattering data for both
light and heavy vortices. We find particularly interesting
features, including a strongly magnetic-field-dependent
splitting of doubly degenerate modes. As part of our
calculations, we determined the stable light and heavy
vortex structures as functions of magnetic field. The
main body of the article is organized as follows. In Sec.
II we present the model, and discuss its ground state,
free magnon excitations, and the cone-phase out-of-plane
vortices. The stability of these vortices is investigated
numerically and through a variational calculation. In
Sec. III we describe the numerical calculation of modes
on a vortex, and also give the basic theory for magnon
modes on a vortex, as derived from the Landau-Lifshitz
dynamical equations. In Sec. IV we focus on analysis
and presentation of results for finite-radius circular mag-
netic particles in the cone state, where finite size effects
play a strong role. The main conclusions of our work are
summarized in Sec. V.

II. THE MODEL, GROUND STATE AND

EXCITATIONS.

We consider the classical two-dimensional (2D) model
of a Heisenberg ferromagnet (FM) in the presence of an
external magnetic field H , with the Hamiltonian

H = −J
∑

(~n,~n′)

{~S~n · ~S~n′ − (1 − λ)Sz
~nSz

~n′}

− gµBH
∑

~n

Sz
~n. (1)

Here J > 0 is the exchange integral, and 0 ≤ λ < 1 de-
scribes easy-plane anisotropy with (xy) as the easy plane.

The spins ~S are classical vectors on a square lattice with
the lattice constant a. (~n, ~n′) denotes nearest-neighbor
lattice sites, counting each bound only once. The mag-
netic field H is directed along the hard axis, because only
in this case is the initial xy-symmetry not broken by the
magnetic field; g is Lande factor, µB is the Bohr magne-
ton. Our main interest lies in the small anisotropy case,
which corresponds to 1 − λ � 1, for which a continuum
limit analysis is valid.

A continuum limit for the FM model can be derived
from (1) in the usual way, defining the unit vector of
magnetization as a function of continuous variables ~r

and t: ~m(~r, t) = ~S~n(t)/S. The dynamical equation
for ~m has the form of the well-known Landau-Lifshitz
equation, see Refs. 6, 7. In usual angular variables
[mx + imy = sin θ exp(iφ), mz = cos θ], its form is dic-
tated by the continuum energy functional E[θ, φ], accord-
ing to

S sin θ
∂φ

∂t
=

δE

δθ
, S sin θ

∂θ

∂t
= −δE

δφ
. (2)
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For the model (1), in the lowest approximation with small
parameter 1−λ and small gradients of magnetization, the
energy functional can be presented in the form

E[θ, φ] = JS2

∫

d2r
[

(∇θ)2 + (∇φ)2 sin2 θ

+
1

r2
v

(cos θ − h)2
]

. (3)

Here we introduced the characteristic length scale, rv,
which gives the vortex core size at H = 0, and the dimen-
sionless magnetic field, h, normalized by the anisotropy
field Ha, which are defined by

rv =
a

2

√

λ

1 − λ
, h =

H

Ha
, gµBHa = 4JS(1 − λ). (4)

For a material with a typical exchange interaction J ≈ 10
K, g = 2, and one-percent anisotropy, λ ≈ 0.99, this gives
an anisotropy field of Ha ≈ 0.3 Tesla and a vortex core
size rv ≈ 5a, where a is the lattice constant.

A. Ground State

For small fields h < 1 (valid for small laboratory fields
and real materials), the minimization of the energy (3)
shows that the ground state is the so-called cone state,
in which the asymptotic value of θ = θ∞ 6= π/2, is deter-
mined by the normalized magnetic field strength,

cos θ∞ = h, (5)

and the value of φ is arbitrary; see Refs. 6, 7 for details.
In this state the symmetry of the ground state is lower
than that of the model. For zero magnetic field, θ∞ =
π/2, and we have a usual easy plane ferromagnet. For
large enough fields, h ≥ 1, the collinear phase with the
magnetization parallel to the magnetic field (θ = 0) is
realized.

The dynamical equations for this model can be written
as

∇2θ − (∇φ)2 sin θ cos θ

+
1

r2
v

sin θ (cos θ − h) = +
sin θ

c0rv

∂φ

∂t
(6a)

∇(sin2 θ∇φ) = − sin θ

c0rv

∂θ

∂t
(6b)

where c0 = 2JSa
√

1 − λ is the magnon speed at H = 0.
Note that the equations (3) and (6) arise in the long-

wave approximation (a|∇~m| � 1) not only for the model
we are considering here, but for a set of discrete mod-
els, for example, on different uniaxial lattices, like trian-
gular and hexagonal. Merely the expressions for c and
rv, defined through the microscopic parameters J and λ,
change. We should point out, however, that the terms de-
scribing the inhomogeneous exchange interaction for the

model (1) read (λ sin2 θ+cos2 θ)(∇θ)2 +(∇φ)2 sin2 θ. We
work with the more symmetric form of the energy dis-
played in (3), for the following reasons. First, for small
anisotropy (λ ' 1), the theta-dependence of the mul-
tiplier before (∇θ)2 is unimportant. Second, and more
essential, Eq. (3) holds for various models, for example,
for FMs on different kinds of lattices and FMs with ad-
ditional single-ion anisotropy. For all of these models,
with small enough anisotropy (rv � a), the energy (3) is
universal in the long wavelength approximation, instead
of having different non-symmetrical generalizations like
the one presented above.

B. Free Magnons

For the homogeneous ground state (all spins are par-
allel and confined to one of the directions on the cone
cos θ = h) the 2D model has well-known magnon excita-
tions with the gapless dispersion law

ω = k · c(h)[1 + k2r2
v(h)]1/2 (7)

where k = |~k| and ~k is the magnon wave vector, and the
parameters are

c(h) = c0

√

1 − h2, (8a)

rv(h) =
a

2

√

h2(1 − λ) + λ

(1 − λ)(1 − h2)
∼= rv√

1 − h2
. (8b)

These have the same physical sense for a FM in the pres-
ence of the magnetic field as (4) and (6) for H = 0. It is
important to note that the presence of the magnetic field
increases the value of rv and makes the region of applica-
bility of the continuum model wider. For example, even
for the XY -model, which has extremely high anisotropy,
the value of rv(h) for nonzero fields is finite, and be-
comes more than the lattice constant for H ∼= Ha. On
the other hand, for some type of vortices (so-called heavy
ones, discussed below) the simplest continuum model (3)
fails, and the next powers of gradients of magnetization
have to be taken into account.

C. Cone-Phase Out-of-Plane Vortices

For the weak anisotropy considered here (λ ' 1), or for
large enough magnetic field, the stable vortex excitations
have a nonzero out-of-plane (Sz) component. These out-
of-plane (OP) vortices are described by the formulas

θ = θ0(r) , φ = qχ + φ0 (9)

where r and χ are polar coordinates in the FM’s easy
plane, and q = ±1,±2, ... is the π1− topological charge
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(vorticity). The function θ0(r) is the solution of a non-
linear ordinary differential equation,6,7 with the natural
boundary conditions, sin θ0 → 0 at r → 0, giving the
absence of a singularity at the origin, and cos θ∞ = h far
from the vortex. The value of cos θ0(0) = ±1 determines
two possible states of the vortex with given q. For the
case H = 0, the vortices with p = cos θ0(0) = ±1 corre-
spond to the mapping of the FM’s plane onto the upper
and lower half-spheres of the sphere ~m2 = 1. Thus, the
value of p = cos θ0(0) can be considered as a π2 topo-
logical charge, the so-called polarization. For zero field
the vortices with p = ±1 have the same energies, but
can be transformed into each other only by the creation
of discontinuities of the magnetization field (2D analog
of hedgehog-like singular points, which is common to in-
plane vortices), see Ref. 31. The energy barrier that has
to be overcome to reverse the vortex polarization is finite,
in contrast with the infinite energy barrier to change the
π1 topological charge vorticity. For the case h 6= 0, the
vortices with ~m(0) parallel to the magnetic field have
a lower energy (light vortices) compared to the vortices
with ~m(0) antiparallel to the field (heavy vortices). Al-
ternatively, we find it is more convenient to always put
cos θ0(0) = +1, and then allow both positive and nega-
tive values of the magnetic field. Then the case h > 0
corresponds to light vortices, and h < 0 corresponds to
heavy ones.

1. Light and Heavy Vortices: Theory

Both light and heavy vortices can be described in con-
tinuum theory. For the simplest model (3), their struc-
ture can easily be found by numerical integration of the
second order differential equation for θ0(r), which for this
model reads15

d2θ0

dx2
+

1

x

dθ0

dx
− q2

x2
sin θ0 cos θ0 + sin θ0 (cos θ0 − h) = 0,

(10)

where x = r/rv, with the boundary conditions

cos θ0(0) = 1, cos θ0(∞) = h, (11)

Only the case q2 = 1 will be discussed here. Numeri-
cal integration (also see following section) gives solutions
for all values of the magnetic fields −1 < h < 1, where
h > 0 corresponds to the light vortices, and h < 0 to
the heavy ones.15 Let us discuss briefly the vortex struc-
ture. At x → 0 the value of θ → Cx, just as for the case
h = 0, but with the constant C depending strongly on
h. Far from the vortex, the asymptotics change drasti-
cally and follow the power law, cos θ0 = h + h/x2, in-
stead of the exponential one, cos θ0 ∼ exp(−x) for h = 0.
This power law dependence is valid for both signs of the
magnetic field, e.g. for both light and heavy vortices, at
the values x � max{1, h/

√
1 − h2}. The power law de-

cay is a typical property of vortices for different media,

like those in hydrodynamics and superfluidity, whereas
the exponential dependence can be considered an excep-
tion. As we will see later, the appearance of power law
asymptotics produces very important differences in the
dynamical properties of the magnetic vortices at h = 0
and h 6= 0.

For light vortices, with growing magnetic field the am-
plitude of the function cos θ0(r) decreases and the region
of its localization ∆r ∼ rv(h) increases. On the other
hand, even for values of (1−λ) significantly different from
zero, including up to λ = 0 (XY -model), the continuum
approximation can be valid at large positive values of
h ' 1. For example, for λ = 0, we have rv(h) = 3.5a at
H = 0.99Ha and rv(h) = 11.2a at H = 0.999Ha. For fi-
nite systems, even for large system radii R � rv, the light
vortex core width rv(h) can become larger than the sys-
tem radius R at large enough fields, (1 − h) < (rv/R)2.
In this case some special approximations based on an
isotropic model must be considered, and are presented
below.

For heavy vortices the situation is opposite: at h → −1
the function cos θ0(r) becomes very sharp near the origin
and the region of the vortex core becomes very narrow,
even less than a lattice constant, see Ref. 15. Thus, if
one starts with small values of the anisotropy parameter
(1−λ), the continuum approximation fails at values of h
near −1. Note that this behavior is not connected with
the value of rv(h), which becomes large for positive and
negative fields. As was shown numerically in Ref. 15, for
large negative fields there are two different scales in the
vortex structure: the large value rv(h) determines the
asymptotics far from the vortex core, while the vortex
core width can be much smaller. This feature manifests
itself in the properties of the vortices in the finite sized
discrete model.

2. Light and Heavy Vortices: Numerical Relaxation and

Discussion

An alternative way to construct the vortex states is the
direct energy minimization of the discrete model (1), see
Ref. 28. Starting from a very rough approximation for
the vortex spin directions on a circular square lattice sys-
tem, with cone phase boundary conditions, cos θ(R) = h,
we relaxed the configuration with a method that directly
seeks the energy minimum for the given field h. We
started from zero field, relaxed the configuration, then
used that configuration as the initial state for the relax-
ation at the next field strength, and so on, thereby de-
termining the vortex structure for a sequence of positive
or negative field strengths.

Results for the spin configuration cos θ0(r) for light
vortices are shown in Fig. 1. The vortex core width w(h)
increases with applied field; the vortex becomes smoother
with increasing field strength. For λ close to 1, the results
are universal functions of r/rv(0), as expected where the
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continuum limit applies. As λ is allowed to deviate more
from 1, minor differences from the continuum results ap-
pear, especially in the core region of the vortex. In gen-
eral, however, discreteness of the lattice has a minimal
effect on the structure of the light vortices.

For heavy vortices, the lattice plays a stronger role, es-
pecially as λ deviates from 1. First, for λ = 0.999, where
rv(0) = 15.8a, discreteness effects are weak. In Fig. 2,
the resulting spin configurations are shown, where it is
seen that the vortex core width w(h) decreases strongly
at negative fields. When w(h) gets sufficiently small, the
heavy vortex becomes unstable towards conversion to a
light vortex, as seen at h = −0.9, where cos θ0(0) = −1
resulted (the core spins reversed during the relaxation,
because there is no topological constraint on them in
a discrete system). This discrete effect is stronger at
λ = 0.96, as seen in Fig. 3, where the conversion to light
vortices occurs around h ≈ −0.4. Certainly this is be-
cause the value rv(0) = 2.45a is much smaller in this case,
so the heavy vortex destabilizes at a much weaker field.
Generally, the conversion to light vortices occurs when
the field-dependent vortex core width becomes smaller
than rv(0), but is still larger than the lattice constant.
We explain this heavy vortex instability effect below.

In Fig. 4 we also show the total vortex energy E minus
the ground state energy per site in the cone state, Ec,
which has cos θ(r) = h everywhere. By this definition,
there is a logarithmic dependence of the vortex energy on
the system radius R. In Figure 4 the curves at different
λ were all calculated using the same system radius, R =
50a. The curves are of finite extent on the negative h-
axis, due to the instability of the heavy vortices there at
some critical value of the magnetic field, h = hc < 0.
This instability never appears in a continuum model.

Thus, for heavy vortices, we have a qualitative dis-
crepancy between the results of continuum and discrete
models. For the continuum model, heavy vortices are
present for all fields −1 < h < 0; for the discrete model,
some critical field appears. Note that the instability field
hc is not too close to -1 even for small anisotropies, like
λ = 0.999. We have found that to describe this inter-
esting feature, it is necessary to go beyond the simplest
continuum model (3), and take into account the higher
space derivative terms. In principle, there is no problem
to write down equations to include such terms, but it is
not customary to do so for the 3D case. The reason is as
follows: these terms have the next higher powers of the
smallest scale of the problem, the lattice constant a. If
the characteristic width of the soliton is much larger than
a, these terms are small and unimportant corrections. If
this width becomes comparable with a, it seems senseless
to limit oneself to accounting for only one more term, all
the terms might give comparable contributions. As we
will see, for 2D this is not the case, and the contributions
from derivatives higher than four are negligible. This
feature has the same origin as the observation mentioned
above, that the vortex core width at the instability point,
wc ≡ w(hc), lies between two characteristic values, rv(0)

and a.

3. Heavy vortices: discrete lattice instability

To investigate the vortex structure and stability with
fourth derivative terms, it is enough to expand the Hamil-
tonian of discrete model (1) up to higher powers of ∇~m,
so that an additional term ∆E appears in the energy,

∆E = −Ja2

24

∫

dx dy







(

∂2~S

∂x2

)2

+

(

∂2~S

∂y2

)2

− 2
∂2

∂x2

(

∂~S

∂x

)2

− 2
∂2

∂y2

(

∂~S

∂y

)2






. (12)

Note that in this expression, valid for a square lattice,
we kept the full derivative terms. They could be impor-
tant if the functions with jumps of derivatives [like (17)
below] are used. In principle, one could rewrite this term
in angular variables, and construct the corresponding La-
grange equation for this energy functional and find the
solution describing the vortex. But realization of this
program is a much more complicated task than the vor-
tex description for the simplest model (3) with ∆E = 0.
This is because, first and foremost, the terms with higher
derivatives produce fourth-order anisotropy in coordinate
space, and the simple ansatz (9) becomes invalid. Then
a general solution like θ = θ(r, χ), φ = φ(r, χ) must be
considered. Unfortunately, there are no general methods
to solve such problems, and an analysis may be carried
out only numerically with the use of different variational
methods.32

Thus, the exact solution of the set of two partial differ-
ential equations for these functions cannot be found. In
order to simplify the problem, suppose that the fourth-
order anisotropy is weak, and φ(r, χ) can be approxi-
mated by the more symmetrical form (9). Using this
approximation, we arrive at some functional involving
the angle θ(r). Minimization of this functional gives us a
fourth order ordinary differential equation for θ(r). But
even with this approximation the problem is still chal-
lenging. Note that the solutions for the second order
equation (10), as for any dynamical problem with one
degree of freedom, can easily be presented on the phase
plane. The separatrix solution can easily be constructed
numerically by use of a usual one-parameter shooting
method. The fourth order equation, however, is equiv-
alent to a much more complicated dynamical problem
with two degrees of freedom. Its solutions are trajectories
in four dimensional phase space, which could manifest
strange attractors, quasi-stochastic behavior and other
complex features. To find the separatrix solution, (it is
just an approximate solution of the original partial dif-
ferential equation) one needs to use a three-parameter
shooting scheme, and we do not know any examples of
its numerical realization.

5



In this situation we have used a simpler qualitative
analysis. Let the vortex structure be described by some
universal function θ = f(r/W ), with a characteristic vor-
tex core size W . This immediately gives the vortex en-
ergy as a function of W in the form

E

πJS2
= sin2 θ0 ln

R

W
− 1

2

( a

W

)2

A(h)

+
1

2
(1 − λ)

(

W

a

)2

B(h) + C(h), (13)

where A(h), B(h), C(h), are determined by the function
f(x), and depend only on the magnetic field, or, equiv-
alently, on the ground state value of the polar angle θ0.
Minimization of this energy with respect to W gives a
biquadratic equation for the vortex core width W , whose
solution,

W 2 =
a2

2B(1 − λ)

[

sin2 θ0 +

√

sin4 θ0 − 4(1 − λ)AB

]

,

(14)

depends primarily on the functions A(h), B(h), which are
smooth and nonzero for all −1 < h < 0, in the region
of interest, π/2 < θ0 < π. Then the features mentioned
above (heavy vortex instability) immediately become ob-
vious. It is found that the equation for W has a solution
only for h above a (negative) critical value, hc < 0. If
h < hc, where the critical value of magnetic field hc is
the solution of transcendental equation,

(1 − h2
c)

2 = 4(1 − λ)A(hc)B(hc), (15)

the minimum is absent and the heavy vortex is unstable.
At the point of instability the value of the vortex core
width Wc can be written as

Wc =
a

√

2B(hc)

√

1 − h2
c√

1 − λ
= a ·

[

A(hc)

(1 − λ)B(hc)

]1/4

. (16)

Thus, the vortex core width W (h) near the insta-
bility point hc has the order of magnitude

√
arv, and

a � W (hc) � rv. W (hc) is smaller than the character-
istic length rv, but at the same time, much larger than
the lattice constant a, This means that (i) the general-
ized macroscopic approximation including fourth deriva-
tive terms is valid down to the critical value of magnetic
field, hc < 0; (ii) terms in the energy with space deriva-
tives higher than four are unimportant. So the estimate
given here is self-consistent.

Two more results are clearly seen from Eq. (15):
(i) the critical value 1 − hc is proportional to

√
1 − λ

for extremely small anisotropies, namely, 1 − |hc| →
√

(1 − λ)A(−1)B(−1) as λ → 1, and (ii) heavy vortices
could be absent for high enough anisotropy. If the value
of 4A(0)B(0) is larger than 1 (as we will see, it is the
case), for λ = λc, where 1 − λc = 1/[4A(0)B(0)], the
value of hc becomes equal to zero, and for λ < λc, the

concept of heavy vortices loses sense. These features are
in good agreement with our numerical simulation data,
see Figs. 2 – 4.

To make concrete estimates of hc and λc, and test
the above predictions, we choose a specific one-parameter
variational function for the heavy vortex,

θ(r) = θ0
r

W
, r ≤ W, (17a)

θ(r) = θ0 r > W, (17b)

where the variational parameter W can be considered as
the vortex core size.

Due to general properties of variational methods, if the
solutions of such equations are known with the accuracy
δ � 1, the energy calculated using this approximate solu-
tion gives the vortex energy with the accuracy δ2. In par-
ticular, the corrections linear and quadratic in these small
corrections have the same order of magnitude. Thus we
believe that using even the simple function (17) could ex-
plain, at least semi-qualitatively, the features mentioned
above (i.e., unstable heavy vortices) and absent for the
simplest continuum model (3).

Inserting this trial function into the energy [including
(3) and the fourth order terms of Eq. (12)], after long
but simple algebra we arrive at a concrete form for the
coefficients A, B, C. It is convenient to write them in
terms of θ0, related to h via Eq. (11), as

A(θ0) =
sin2 θ0

3
+

θ4
0

16
− 3θ2

0

8
+

θ0

4
sin θ0 cos θ0

+
5θ2

0

8

∫ θ0

0

dx

x
sin2 x (18a)

.

B(θ0) =
2

θ2
0

[

( 1 + 2 cos2 θ0)θ
2
0 − 6θ0 sin θ0 cos θ0

− 7 cos2 θ0 + 8 cos θ0 − 1
]

. (18b)

C(θ0) = −R2h2

2r2
v

+ (θ0)
2/2 +

∫ θ0

0

dx

x
sin2 x. (18c)

Here A is presented for λ = 1; there are minor corrections
as λ deviates from 1. C(θ0) is useful for absolute compar-
ison of the variational theory with simulations. The first
term in C is the ground state energy of the cone state;
the other terms are due to the presence of the vortex.

Calculation of the integrals in A and then solving Eq.
(15) can only be done numerically, and gives us the pos-
sibility to describe the dependence hc(λ). This theo-
retical dependence is plotted and compared with esti-
mates of hc from numerical simulation of heavy vortices
in Fig. 5. The theory is in good agreement with the
critical field as found for vortices on a lattice, which is
rather surprising when we consider that we used a rather
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rough trial function. The simulation data does not fit
to any simple power law over the range of anisotropy
studied, but as λ → 1, follows approximately the form,
(1 − |hc|) ≈ 22(1 − λ)0.34.

For extremely small anisotropy (1 − λ) � 1, then
1−|hc| � 1, and one can use the limiting values: A(h →
−1) ≈ 9.9053, B(h → −1) ≈ 2.7577. These result in the
estimated asymptotic dependence, (1 − |hc|)theory ≈=

5.23
√

1 − λ, whereas the numerical data give a slightly
different power and prefactor, as mentioned above. The
discrepancy probably can be attributed to the fact that
in the numerical simulations, the lowest anisotropy val-
ues used, (1 − λ) ≈ 10−3, are not far enough into the
asymptotic regime, see inset of Fig. 5. Similarly, using
the limiting values as h → 0, we estimated the limit-
ing value of the anisotropy constant, (λc)theory ≈ 0.8,
below which heavy vortices should be absent. In the nu-
merical solution, we found stable heavy vortices down to
λ ≈ 0.72 and perhaps slightly lower, which is actually
out to the anisotropy limit where all vortices become in-
plane (where no heavy/light vortex distinction is possi-
ble). From these results using the linearized ansatz for
the vortex structure, we can conclude that both stability
limits are essentially caused by discreteness effects due to
the lattice, which are taken into account to leading order
by the fourth order derivative terms.

III. MAGNON-VORTEX SCATTERING AND

NORMAL MODES

Once the static cone-phase vortex structure has been
found, we are interested in the presence of magnons on
top of that structure. As mentioned in the Introduction,
the presence of the H-field leads to interesting new fea-
tures in the magnon spectrum, in particular, it induces a
large splitting of states that are barely split at zero field.
In this section we first present the numerical calculation
of the vortex-magnon modes, followed by a theoretical
analysis of the doublet splitting and the other new fea-
tures.

A. Numerical calculation of the modes

We consider a semiclassical calculation of the magnon
modes on top of a vortex in a finite circular system of
radius R, with the spins on an underlying square lattice.
If φ0

n
and θ0

n
represent the vortex structure on lattice sites

n, then we assume a perturbation to this structure in the
form,

φn = φ0
n

+ ϕn , θn = θ0
n

+ ϑn, (19)

where the equations of motion need to be linearized in
terms of the small fluctuations, ϕn and ϑn.

In Ref. 24, a formalism and set of coordinates were
described for finding magnon-vortex scattering on lattice

systems. For determination of the modes numerically,
local Cartesian coordinates for the spins are more conve-
nient than spherical coordinates. The unperturbed spins
of the static vortex structure, S

0
n
, are considered to de-

fine local quantization axes z̃n, different at every site,
specifically,

S
0
n

= Sz̃n. (20)

Then the perturbation of this structure involves fluc-
tuations orthogonal to the z̃n-axis, along two other lo-
cal Cartesian axes x̃n and ỹn. The x̃n-axis is taken
to be along the direction defined by the cross product
x̃n = zn × z̃n, which is within the original xy (easy)
plane. The last axis of the local coordinates for a site
is ỹn = z̃n × x̃n. Then the perturbation of the static
vortex structure can be expressed in terms of its spin
components along the new local axes:

Sn = S
0
n

+ Sx̃
n

x̃n + S ỹ
n

ỹn. (21)

A short calculation shows that these are related to the
angular perturbation coordinates by

Sx̃
n

= Sϕn sin θ0
n
, S ỹ

n
= Sϑn. (22)

The variables Sx̃
n

and ϕn relate to purely in-plane spin
motions, while S ỹ

n
and ϑn measure the change in out-of-

easy-plane tilting, relative to the local spin direction in
the unperturbed vortex.

For circular systems of radius R, we used a Gauss-
Seidel relaxation scheme33 to calculate some of the lowest
magnon modes with either a single light or heavy vortex
present in the system. We considered different values of
λ close to 1, and the applied field h was allowed to vary
between some (negative) lower critical limit hc and 1. Al-
though the continuum limit would be better represented
by using λ very close to 1, this would result in the vortex
radius rv(0) easily exceeding the system size that can be
solved numerically. Therefore, we show some results with
λ = 0.96, where rv(0) ≈ 2.45a, so even for “very light”
vortices with h = 0.99, the field dependent core radius
[Eq. (4)] is rv(h = 0.99) = 17.4a, well less than the sys-
tem size chosen, and we avoid finite size effects. Other
data are presented for λ = 0.99, for which rv(0) ≈ 4.97a,
and rv(h = 0.99) = 35.2a. In this latter case, some finite
size effects might be expected in moderate sized systems
as h → 1.

In general, a given mode has a eimχ spatial depen-
dence on the azimuthal coordinate χ, where m is some
integer. In fact, in the continuum theory [Sec. III B]
m is a good quantum number, due to rotational invari-
ance. This symmetry is weakly broken on a lattice, but
for long-wavelength modes, m can be considered a good
quantum number even on a lattice. At zero magnetic
field, the modes ±m are degenerate when the anisotropy
is strong enough to produce only stable in-plane vortices.
For the weak easy-plane anisotropy considered here, the
±m modes on the stable out-of-plane (and cone state)

7



vortices are nondegenerate. All modes can also be la-
beled by a radial quantum number n, which is the num-
ber of nodes in the radial direction, including a node at
the system boundary, due to our application of Dirichlet
boundary conditions there.

In Figs. 6, 7 and 8 we show some of the lowest mode
wavefunctions, with a single vortex present at the center
of the system, and how these wavefunctions vary with the
magnetic field. The system has R = 20a and λ = 0.99. In
these diagrams the Sx̃ (or ϕn) amplitudes (certain mag-
nitude and phase) are shown as arrows with triangular
heads, and S ỹ (or θn) amplitudes are shown as arrows
with v-heads.34 The number of rotations of the arrows as
one moves along a contour around the vortex (at center
of the system) is used to determine m. In most modes
the Sx̃ (in-plane) fluctuations dominate, except when h
approaches closer to 1.

In Fig. 9 we show the field dependence of some of the
mode frequencies, calculated for R = 30a, where h < 0
corresponds to heavy vortices and h > 0 corresponds to
light vortices. As h increases above 0, we see that the
lowest ω+2 grows while the lowest ω−2 diminishes; the
magnetic field induces a large splitting of this doublet
compared to that at h = 0. For large enough negative h
the splitting is reversed in sign. There are correspond-
ing changes in the wavefunctions: the wavefunction for
m = +2 becomes more spread out with increasing h,
while the wavefunction for m = −2 becomes more cen-
tralized with increasing h. On the other hand, the lowest
m = −1 mode becomes more spread out with increasing
h, and more importantly, as h → hc (hc ≈ −0.6), its
wavefunction is very localized on the core of the vortex.
Thus it appears that this mode could be associated with
the instability of the heavy vortices at large negative h.
Next we consider whether some of these features can be
explained on theoretical grounds.

B. Theoretical analysis of magnon-vortex scattering

For the continuum description we consider small devi-
ations ϑ, µ, from the static vortex solutions in the form

ϕ = qχ + (sin θ0)
−1µ , θ = θ0(r) + ϑ. (23)

The additional factor (sin θ0)
−1 in (23) is introduced

for convenience, making µ, ϑ, equivalent to the variables
Sx̃/S and S ỹ/S, respectively, introduced above for the
analysis of modes in a lattice system.

Substituting (23) in the Landau-Lifshitz equations (6)
and linearizing in ϑ and µ gives the following set of cou-
pled partial differential equations, symmetric in ϑ and µ,
with Schrödinger-type differential operators:

[

−∇2
x + V1(x)

]

ϑ +
2q cos θ0

x2

∂µ

∂χ
= −rv

c0

∂µ

∂t
, (24a)

[

−∇2
x + V2(x)

]

µ − 2q cos θ0

x2

∂ϑ

∂χ
= +

rv

c0

∂ϑ

∂t
. (24b)

Here x = r/rv and ∇x = rv∇, and the potentials
V1(x), V2(x) are

V1(x) =

(

q2

x2
− 1

)

cos 2θ0 + h cos θ0, (25a)

V2(x) =

(

q2

x2
− 1

)

cos2 θ0 −
(

dθ0

dx

)2

+ h cos θ0. (25b)

In order to solve (24) the following ansatz for ϑ and µ
is appropriate:30

ϑ =
∑

n

+∞
∑

m=−∞

fα(r) cos(mχ − ωαt + δm), (26a)

µ =
∑

n

+∞
∑

m=−∞

gα(r) sin(mχ − ωαt + δm). (26b)

α = (n, m) is a full set of numbers labeling the magnon
eigenstates, with principle quantum number n and az-
imuthal quantum number m, and the δm are arbitrary
phases. Substituting this ansatz gives an eigenvalue
problem (EVP) having the form of coupled equations for
the functions f, g,

[( d2

dx2
+

1

x

d

dx
− m2

x2

)

− V1(x)
]

f

=

(

−ωrv

c0
+

2qm cos θ0

x2

)

g (27a)

[( d2

dx2
+

1

x

d

dx
− m2

x2

)

− V2(x)
]

g

=

(

−ωrv

c0
+

2qm cos θ0

x2

)

f (27b)

where the index α is omitted. Without loss of general-
ity, at this point we choose the sign of the topological
charge, q = +1. f and g cannot be determined ana-
lytically from Eqs. (27), but some useful results can be
obtained without a full solution. Comparing Eqs. (26a)
with the definition of the variables Sx̃

n
, S ỹ

n
above, we see

that the µ and ϑ fields are 90o out of phase, which im-
plies that the Sx̃ and S ỹ arrows in the wavefunction plots
must be orthogonal. A related important result is that
for pure modes with a well-defined value of m, a plot
of the wavefunction corresponds to a vortex-like struc-
ture of the Sx̃, S ỹ arrows with an apparent ”vorticity”
or winding number equal to m, as we saw above. This
feature is useful for identification of m in the different
modes obtained numerically for lattice systems.

The asymptotic behavior of f and g can be calculated
also. For r → 0 we obtain the same result as for H = 0,
namely, f, g ∼ r|q+m|, which describes the presence of a
‘hole’ in the functions µ, ϑ, at the vortex core for large
values of m. For large radius, in contrast with the case
of zero field,30 the asymptotics are more complicated,
because the term with cos θ0 in the RHS of equations
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(27) does not fall exponentially, but only as h/x2. We
show below that this produces a crucial difference in the
magnon modes of these cases, namely, “giant doublet
splitting”, which is a giant field dependence of the split-
ting, observed in the numerical calculations of the modes.

Consider the equations (27) far from the vortex. Using
the asymptotics cos θ0 ≈ h + h/x2 + (h/x4)(5− h2)/(1−
h2), and keeping the terms with the lowest powers of the
small function 1/x2 only, the potentials in these equa-
tions can be presented in the form

V1 = 1 − h2 − 1 + h2

x2
, V2 =

h2

x4
. (28)

The potential V1 having the term finite at x → ∞, an
expression for f in terms of g can be constructed as an
expansion in powers of 1/x2. To do this, rewrite Eq.
(27a) in lowest order in 1/x2,

[

− d2

dx2
− 1

x

d

dx
+ 1 − h2 +

m2 − 1 − h2

x2

]

f =

(

ωrv

c0
− 2mh

x2

)

g. (29)

Now let g ∝ Zν(z), where Z is one of the cylindri-
cal (Bessel) functions Jν or Yν , and z = kr, where k
is a magnon wave number whose value is determined
by ω through the dispersion relation (7). The index ν
will be allowed to differ slightly from the integer value
m (we check this below). Then, in this lowest ap-
proximation f is also proportional to Zν(z), specifically,
f (0) = ωrv

c (k2r2
v + 1 − h2)−1g. Continuing this way, we

can find f in the form, f = f (0)(1 + a/x2 + b/x4 + ...).
Also, assuming small k, with krv � 1, we arrive at

f =
1

1 − h2 + k2r2
v

(

ωrv

c0
− 2mh

x2

)

g. (30)

The expansion of f in the small quantities krv and 1/x2

could be constructed with arbitrary accuracy, but for our
case it is enough to use this expression. Note that only
the term with 2mh/x2 is kept here, because it can be as
large as or larger than the first term when ω is small.
Using this formula and Eq. (27b), far from the vortex we
get an EVP for g(z) only. It can be written as

d2g

dz2
+

1

z

dg

dz
− ν2

z2
g +

κ2

z4
· 4h2(1 + m2)

(1 − h2)
g + g = 0, (31)

where κ = krv(0) and the index is given by

ν2 = m2 +
4mhωrv(0)

c0(1 − h2)
. (32)

Thus, two unusual features are present for cone state
vortices at nonzero magnetic field. First, non–integer ν
appear, and second, terms like 1/x4 appear, caused by
non–exponential decay of the out–of–plane spin compo-
nents in the vortex. As was shown in Ref. ( 26), the

terms with 1/x4 are very important for the description of
magnon scattering by Belavin - Polyakov solitons present
in isotropic magnets. Accounting for these modifications
changes not only coefficients but even the dependence of
the scattering amplitude on k. To our knowledge, equa-
tions with non–integer ν have not appeared before in the
description of soliton - magnon scattering. Next we dis-
cuss the role of these terms in detail.

Obviously, at large distances, r � rv, the solution
should describe the free magnons scattered by the vortex.
For free magnons the solution is a combination of plane

waves in a form g0 ∝ exp(i~k ·~r), and gm = g0
m ∝ Jm(kr).

If a vortex is present we can use the scattering approxi-
mation, then the function gm at kr → ∞ could be rewrit-
ten as

gm ∝ Jm(kr) + σmYm(kr), (33)

where Jm(z), Ym(z) are the Bessel and Neumann func-
tions respectively, with integer index m, and the quan-
tity σm = σm(κ) (scattering amplitude) determines the
intensity of the magnon scattering due to the presence
of the vortex. If one writes σm = − tan δm, in standard
notation for scattering problems, the S-matrix can be
written as Sm = exp(2iδm).

On the other hand, the solution of Eq. (31) without
the terms κ2/z4 at r → ∞ could be written as

g(0) = Jν(z) + σ̃m(κ) · Yν(z), (34)

where the index of the Bessel and Neumann functions
determined by Eq. (32) is non–integer. Then, at large
but finite distances, some corrections caused by the term
proportional to κ2/z4 in Eq. (31) must be taken into ac-
count. In the long–wave approximation, κ � 1, these
corrections are small, and they decay faster than the
cylindrical functions, but they are also important for the
soliton–magnon scattering by the Belavin–Polyakov soli-
tons in isotropic ferromagnets, as was shown in Ref( 26).
Therefore, for non–zero field, the solution can be written
in the form

gm = Jν(z) + σm(krv) · Yν(z) + ∆gm(k, z), (35)

where the non–integer value |ν| ≈ |m| is determined by
Eq. (32), and ∆gm(k, z) represents the contribution of
the term with (1/z4) in Eq. (31).

The function ∆gm(k, z) can be considered as a small
correction, see Ref. 26 for details. The role of the term
∆gm(k, z) could be important at small z, and this cor-
rection must be taken into account in the region r0 �
r � 1/κ, which is used for calculation of scattering am-
plitude σm(κ) in the long wavelength approximation, see
Refs. 30, 27, 26. For example, this term gives the domi-
nant contribution to σm for all |m + 1| > 1, for Belavin-
Polyakov solitons in isotropic ferromagnets.26 But we
have shown that for the cone state vortex case their ac-
counting gives higher powers of small parameter krv to
the scattering amplitude and these corrections could be
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omitted. These terms are important for the analysis of
magnon modes for the finite size magnet with R ≤ rv,
see the last section. Thus, in contrast with the Belavin–
Polyakov case, these corrections are unimportant in the
scattering approximation (far from the vortex) and they
can be omitted.

Now we are in a position to analyze the function g
[Eq. (35)] describing magnon mode and magnon–vortex
scattering. The most important thing for our problem is
that the value of σ̃m(κ), see Eq. (34), could differ from
the real scattering amplitude σm(κ). In the long-wave
approximation, this can be seen if we take into account
that the terms with σm(krv) and r2

vk2, as well as the
difference |ν − m|, are small. Then, the Bessel function
Jν(z) can be expanded in powers of small quantity |ν −
m| and represented through Jm(z). Using the formula
(dJν/dν)m ≈ πYm/2 at z → ∞ see Ref. 35, and the
concrete value of ν−m from Eq. (32), the desired relation
between the σ̃m(κ) and the scattering amplitude σm(κ)
can be written as

σm(κ) = σ̃m(κ) +
πhωrv

c0(1 − h2)
sign m. (36)

The value of σ̃m(κ) is determined by the region near the
vortex core,30 and could be calculated using the same
method as in this article. Note that for all the modes
Eq. (36) predicts a linear dependence of σm(κ) on the
wave vector k. The same dependence occurs at h = 0
only for translational modes, with m = ±1. For the rest
of the modes, with m 6= ±1, the scattering is smaller
than that for the translational mode with m = ±1. As
we show below, the same regularities are still valid for
σ̃m(κ) at h 6= 0.

The value of σ̃m(κ) is determined by the region near
the vortex core. At h = 0 it was calculated analytically,
for m = ±1 in Ref. 30 and for m = 0 in Ref. 27. For
other modes it was only investigated numerically. The
important point is that the value of σ̃m(κ) for m = ±1
is largest at the long-wave limit (linear in k), the values
of σ̃m(κ) are smaller for m = ±2 and m = 0 [the last
one is proportional to k2 ln(1/k),27] and the scattering
amplitudes for the other modes are negligibly small. Us-
ing this, we can omit the term σ̃m for all the modes with
m 6= 0,±1. The scattering amplitude of these modes, in
the lowest approximation on ωrv/c, becomes

σm(k) =
πhωrv

c0(1 − h2)
sign m, |m| > 1. (37)

For the most interesting case, the translational modes
with |m| = 1, the value of σ̃ ∝ κ, and we need to calculate
it. It can be done in the same way as for h = 0, see Ref.
30; we discuss these calculations only briefly. We present
f(x), g(x) in the form

f(x) = f (0)(x)[1 + α(x)], g(x) = g(0)(x)[1 + β(x)],

(38)

where f (0)(x), g(0)(x) are known zeroth solutions describ-
ing the soliton displacement,

f (0)(x) =
dθ0

dx
, g(0)(x) = sign(m)

sin θ0

x
, (39)

and functions α, β are proportional to the small parame-
ter ωrv/c. Then, in an approximation linear in α, β, and
ωrv/c, for x � 1 one can get

(1 − h2)−1/2g =
r0

r
+

mωr

c0|m|(1 + h)

− 2hωr2
0

rc0(1 + h)2
ln

(

r

r0

)

. (40)

This equation at h = 0 coincides with one from Ref.
30. Comparing this expression with Eq. (33), in the re-
gion 1 � x � kr0, where both are valid, and using the
asymptotics of the cylindrical functions for z � 1, specif-
ically, J1 ≈ z/2, Y1 ≈ −2/(πz), we arrive at the formula
σ̃ = −(πκ2c0r0/ω)(1 + h)sign(m). The logarithm in Eq.
(40) gives higher powers of the small quantity κ, and the
corresponding terms in σ̃ are omitted. Using Eq. (36),
we can present the scattering amplitude σ(κ) in the form

σ|m|=1 = −πωr0

4c0
sign(m)

1 − 3h

1 − h2
. (41)

For the mode with m = 0 the term linear in ω is absent,
and the dependence σ0 ∝ ω2 lnω found for h = 027 still
holds for h 6= 0. Thus, for all the modes with |m| > 1,
the presence of the magnetic field changes the scattering
amplitude drastically: terms linear in ω appear and the
scattering amplitude at h 6= 0 becomes much larger than
that for zero field. We find that this produces a large
splitting of the doublets ±m, which has been verified
by our numerical calculations. More detailed investiga-
tion of these regularities, important for the description of
magnon modes for small particles in the so-called vortex
state,21 will be carried out in the next section.

IV. MAGNON MODES FOR CIRCULAR

MAGNETIC PARTICLE IN THE VORTEX CONE

STATE

As was shown in Ref. 30, the scattering amplitude is
a very convenient tool for calculation of frequencies of
magnon modes for finite sized circular magnets. This
amplitude can be calculated analytically, or numerically
with the use of a shooting method30,28,26,27 for infinite
system size, or extracted from numerical diagonalization
for discrete finite size systems with particular boundary
conditions. If the function σm(κ) is known, it is easy to
calculate magnon frequencies for arbitrary system sizes
and boundary conditions. For example, in Ref. 30 the
values of σm(κ) taken from numerical data for the mag-
net with fixed (Dirichlet) b.c. and sizes R = 20a to
R = 100a were brought together and used to describe
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the computer simulation of the vortex oscillations for the
R = 72a system with free b.c.

During recent years the problem of magnon modes for
finite size magnetic particles has become very important
in connection with novel magnetic materials – granular
magnets or magnetic dot arrays. These magnetic dots are
micron sized islands on a non-magnetic substrate, made
from different soft magnetic materials and having differ-
ent shapes – circular, elliptical or rectangular. They are
interesting both from the practical (high-density mag-
netic storage media) and fundamental points of view,
see Refs. 20. Resonance experiments for such dot arrays
show the presence of discrete magnon modes36 caused by
space quantization due to the finite dot size.

The theory of such modes was constructed for homoge-
neous in-plane magnetization.37 On the other hand, it is
known that small particles can be in different inhomoge-
neous states, namely, vortex states,21 and so-called leaf
or flower states.38 In this section, we apply our vortex-
magnon scattering theory to a finite-sized circular mag-
net in the cone vortex state. Note that we do not intend
a quantitative description of the magnon modes in a real
circular or cylindrical particle in the vortex state. The
vortex state is formed by the long-range magnetic dipole
interaction,21 and this interaction is not included in our
model, but does play an important role in forming the
magnon mode spectrum, see Ref. 37. On the other hand,
the main features of the model investigated below, such
as the doublet splitting and the presence of anomalous
low frequencies, must be model-independent and present
for real particles in vortex states.

We discuss the magnon modes for a two-dimensional
circular magnet with radius R (or, a thin cylinder) and
some boundary condition at r = R. For definiteness,
we apply fixed boundary conditions, θ = θ0 at r = R.
For h = 0 and large enough R � rv, the frequencies
are completely determined by the scattering amplitude,30

but for the cone state the situation is more complicated.
As was shown in the previous section, due to the slow

(power) decay of the out-of-plane magnetization in the
vortex, the correction ∆gm(k, z) proportional to k2h2 ap-
pears in the solution [See Eq. (35]. Moreover, the equa-
tion (dJν/dν)ν=m = (π/2)Ym, used for the derivation of
the scattering approximation, is only valid at argument
kr � 1.

But for the more interesting low-frequency magnon
modes, with small principal quantum numbers n, the
values of kR are not large; in the lowest approximation
the boundary conditions force kR to be zeros of Bessel
functions, see below. Thus, the universal connection be-
tween σ(κ) and magnon frequencies at h 6= 0 can be
established only for n � 1. To investigate the cases of
interest, n = 1, 2, ..., one needs to use the exact formula
for (dJν/dν)ν=m and take into account the corrections
caused by the terms 1/z4 in Eq. (31).

This is a complicated problem, the full solution of
which is far from the aim of this article. Two interesting
limiting cases are considered here. The first is the case

of small field, where the correction ∆gm(k, z), quadratic
in h, can be omitted. For small fields the vortex core size
is equal to r0, and it could be much less than the system
size R. The second case deals with the limit H ≈ Ha.
There the vortex core size W grows as H → Ha, and for
arbitrarily large values of R/a, the values of W and R
become comparable for some H nearly equal to Ha. Ob-
viously, the scattering approximation fails in this limit,
and to describe it a special technique is presented below.

A. Large system size, small field

To calculate the magnon modes for small but nonzero
field, the correction ∆gm(k, z) can be omittted, and it is
more convenient to present the solution (33) through Jν

and J−ν instead of Jm and Ym,

gm = Jν(z) + ˜̃σν(κ)J−ν(z), (42)

where ν is considered a positive non-integral number, ν =
|m| + (2hωr0/c)sign(m), for h � 1, h 6= 0. The function
˜̃σν(κ) can easily be written through σ̃m(κ); it is zero in
the absence of scattering.

For modes with m 6= 0,±1, the values of σ̃ (or ˜̃σ) are
negligibly small, and the b.c. immediately gives us the
equation for the frequencies of the modes with given m,
n, in the form ωm,n = jν,nc(h)/R, where jν,n is the nth

zero of Jν(z). Thus, for small ν−|m|, and c(h) ≈ c0, the
frequency for m 6= 0,±1 takes the form,

ωm,n = ω(0)
m,n + δωm,n, (43)

where ω
(0)
m,n determines the frequency in the main ap-

proximation on a/R, and depends on |m|,

ω(0)
m,n =

c0jm,n

R
. (44)

As for the homogeneous case, it is seen that in this ap-
proximation, doubly degenerate modes (i.e., doublets)
appear. The next correction δωm,n can be written as

δωm,n = 2hJS
( a

R

)2

sign(m)jm,n

(

djν,n

dν

)

ν=m

. (45)

This term produces the characteristic feature of magnon
modes for vortex state particles, namely, the splitting of
the doublets. This splitting is clearly seen in numeri-
cal results, see Fig. 9. This splitting for m 6= 0,±1 is
proportional to the magnetic field,

∆ω|m|,n ≡ ω|m|,n − ω−|m|,n

= 4hJS
( a

R

)2

jm,n

(

djν,n

dν

)

ν=|m|

. (46)

The values of (djν/dν)ν=|m| can be expressed through
some long, but finite combinations of Bessel functions, see
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Ref. 35, or found numerically. At n � 1, the simple ex-
pression (djν/dν)ν=|m| = (π/2)[Nm(jm,n)/J ′

m(jm,n)] can
be used.

The formula (46) is in good agreement with our nu-
merics for m = 2, 3, 4 (only n = 1 was considered). For
comparison of the analytical and numerical results the
dimensionless quantity

∆Ω ≡ ∆ω · (R/a)2(1/JS)

= 4h[jν,n · (djν,n/dν)]ν=m, (47)

is most convenient. Some doublet splitting results from
numerical simulations for |m| > 1 on an R = 30a sys-
tem are shown in Fig. 10. For n = 1 the theory gives
∆Ωm=2/h = 26.09 [with (djν/dν)2 = 1.27], while the
slope of the Ωm=2(h) data is approximately 29.2; theory
gives ∆Ωm=3/h = 31.39 [with (djν/dν)3 = 1.23], whereas
the slope from numerical results for Ωm=3(h) is approx-
imately 34.5; theory for m=4 gives ∆Ωm=4/h = 36.4,
while the slope from the data is 39.1. Similar calculations
of these slopes by numerical simulation on an R = 25a
system gave values of 32.6, 35.2, and 39.1, for m = 2, 3, 4,
respectively. Note that the numerical data do not go ex-
actly through ∆Ω = 0 at h = 0, due to the breaking of
the degeneracy there caused by the lattice. However, the
trends of slopes increasing with m are consistent with
the theory, and the linear dependence on h is verified,
provided h is not too close to +1.

For modes with m = ±1 it is necessary to calculate the
value of σ̃m. For the lowest (the translational Goldstone
mode, TGM), it is enough to use the expansion (40),
which gives

ω−1,1 ≡ ωTGM = JS(1 + h)
( a

R

)2

. (48)

The appearance of a mode with extremely low frequency,

ωTGM � ω
(0)
m,n ∝ (a/R), is a specific feature of large

enough systems in the vortex state. The theoretical pre-
diction, Eq. (48), agrees very well with the numerical
simulations for h near zero, see Fig. 11.

For other modes with |m| = 1, the splitting of the
doublets is

∆ωm,n = −2JS
( a

R

)2

j1,n ×
{π

2
(1 + h)

N1(j1,n)

J ′
1(j1,n)

− 2h

(

djν,n

dν

)

ν=1

}

. (49)

For h = 0, this coincides with results in Ref. 30. For these
modes, ω(m = −1) in the same doublet is higher than
ω(m = 1). For n = 1, and using (djν,1/dν)ν=1 ≈ 1.34,
the splitting of the lowest doublet can be written

∆ω1,1 = JS
( a

R

)2

(6.157 − 14.38h), (50)

a result that is found to be in reasonable agreement with
our numerical data, as shown in Fig. 11.

B. Small system size and large field

In the previous subsection we have shown for the finite
system that as the field increases the translational mode
frequency grows, ωTGM ∝ (1 + h)/R2 , but the other

mode frequencies decrease, ωm,n ∝
√

1 − h2/rvR. It is
clear that the frequencies of these modes become compa-
rable at some value of the magnetic field. Comparing the
formulas for ωTGM and ωm,n one can see that they are
comparable when (1 − h) ∼ (1 + h)(rv/R)2 , i.e. when

R ∼ rv/
√

1 − h2 ' rv(h). Thus, it happens at fields such
that the vortex core size rv(h) becomes comparable with
the system size R. It is seen that frequency of the low-
est mode with m = −1 (the mode of vortex translational
motion) has the same order of magnitude as other modes.

This limiting case, R � rv(h), is unrelated to the
vortex dynamic problem in the infinite FM. However,
it precisely appears to be most fascinating for another
actual problem, namely, the problem of the eigenmodes
for small ferromagnetic particles in a non-uniform vortex
state. Therefore, let us go into details.

In the limiting case R � rv(h), one can expect that
characteristic gradient values of θ0(r) are considerably
higher than that for a vortex in an infinite FM at the
same field. Then, within the main approximation in a
small parameter R/rv(h), Eq. (10) only has terms con-
taining derivatives θ0(r) or the term with 1/r2. This
means that anisotropy and magnetic field energies can
be disregarded here, i.e. the case of the isotropic model
is in fact realized. For the isotropic FM, in this ap-
proximation Eq. (10) might be integrated once, which
gives dθ0/dr = (1/r) sin θ0. Then the analysis is simpli-
fied, and the soliton structure can be found exactly39.
Taking into account the boundary conditions, θ0(0) =
0, θ0(R) = θ∞, the soliton structure is determined by
the formula tan(θ/2) = (r/R) tan(θ∞/2). The calcula-
tion of the small corrections caused by the anisotropy
energy and the magnetic field gives the solution in the
form of a series expansion in powers of small parameters
r/rv(h) ≤ R/rv(h),

tan

(

θ

2

)

=
( r

R

)

tan

(

θ∞
2

)

×

1 + (r3/24r2
vR)(1 − h)

[

(r2/R2) − 3
]

1 − R2(1 − h)/12r2
v

(51)

An analysis of the normal modes on the background
of this soliton in the isotropic case is also considerably
simpler than for the anisotropic magnets. In particular,
one can exactly construct the normal mode wave func-
tions at ω → 025 and reveal their structure for small ω.26

On the basis of these solutions one can solve the problem
even for non-small θ∞, that corresponds to 1−h ∼ h and
R ∼ rv.

But we are only interested in the case R � rv(h), that
requires 1 − h � 1. Then the further analysis will be
carried out for this limiting case. Therewith we restrict
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ourselves to a linear approximation in 1−h. In this case it
is convenient to write the Eqs. (24) as the set of equations
for the functions u = (f + g)/2 and v = (f − g)/2, which
at θ � 1 are easily presented in the form

−d2u

dx2
− 1

x

du

dx
+

(m + 1)2

x2
u

+ U(x)u +
1

2
V (x)v =

ωrv

c0
u, (52a)

−d2v

dx2
− 1

x

dv

dx
+

(m − 1)2

x2
v

+ U(x)v +
1

2
V (x)u = −ωrv

c0
v, (52b)

where both U(x), V (x) are small (linear in 1 − h) at
h → 1,

U(x) =

(

2 − h

2
− m + 2

x2

)

θ2
0 − (1 − h) − 1

2
V (x) (53a)

V (x) =

(

dθ0

dx

)2

+

(

1 − 1

x2

)

θ2
0 (53b)

In the limit of h → 1 this system transforms to two un-
coupled equations, which go over into each other by sub-
stituting m for −m and ω for −ω. It is clear that for
the solutions with ω > 0 we are interested in, for small
(1 − h), the function v ∼ (1 − h)u � u. Then, the con-
tribution of the term with v is of the order (1 − h)2 and
it can be omitted. Consequently, the eigenmodes of the
system are determined by a causal Schrödinger EVP for
u(x) derived from (52a). In a zeroth approximation its
solution can be written in terms of Bessel function Jν(kr)
with integer index ν2 = (m + 1)2. Using the boundary
conditions u(R) = 0 one obtains a zeroth solution,

u(r) = Jν(jν,nr/R), ωm,n = JS(aj|m+1|,n/R)2. (54)

where ν = |m + 1| and jν,n is the n-th zero of the Bessel
function Jν(x). It is easy to see that within the zeroth
approximation in (1 − h) (i.e., h = 1), the modes with
m = −1 + ν and m = −1 − ν, where ν is a positive
integer, have the same frequencies and at m 6= −1 form
doublets. For small enough values of (1 − h), we have a
linear vortex profile (as in Fig. 1): θ(r) ≈ (r/R)θ∞, with
θ2
∞ ≈ 2(1 − h). Then the potential U(x) is proportional

to (1 − h):

U(x) ≈ −
{

1 + 2
(rv

R

)2
[

(m + 2) − x2
]

}

(1 − h). (55)

Calculating the contribution of the potential U(x) within
perturbation theory, the eigenfrequencies can be pre-
sented as

ωm,n= JS
( a

R

)2 {

j2
|m+1|,n

−
[

2(m + 2) +
R2

3r2
v

(

1 − 4(ν2 − 1)

j2
|m+1|,n

)

]

(1 − h)
}

. (56)

Thus, this degeneracy disappears if one takes into ac-
count the terms linear in (1 − h). Both the presence of
the doublets containing the modes with m = −1± ν and
the splitting of these doublets linear in (1−h) are in good
agreement with the numerical data at h ≈ 1. For modes
which do not manifest discreteness effects and have well-
defined m, Eq. (56) gives a fairly good quantitative agree-
ment with the numerical data. These data can be fit by

the function ωm,nR2/Js2a2 = A
(0)
m,n + Am,n(1 − h) with

good accuracy, comparing results of numerical simula-
tions for R = 30a with the theoretical expression (56), see

Table I. The values of A
(0)
m,n are consistently within a few

percent of the theoretical value, j2
|m+1|,n. The coefficient

Am,n does not depend on n for ν = |m+1| = 1 and it can
be presented as −2(m+2)−12.1, which describes well the
observed values of A0,1, A0,2, and A−2,1, A−2,2. Gener-
ally, the trends of the Am,n coefficients as m, n increase
are correctly predicted, such as the reversals of sign seen
for m = −4,−5, although the actual numerical values are
less accurately described. Also, the formula (56) shows
that the splitting ∆ων = ω−1−ν − ω−1+ν of the doublets
can be written, for fixed n, as ∆ωνR2/JS2a2 = 4ν(1−h).
So the slope of the splitting vs. (1−h) is predicted to be
4ν, independent of n; the data of Table I give slopes of
3.6, 9.1, and 12.4 for n = 1 and ν = 1, 2, 3, respectively,
and a slope of 4.3 for n = 2, ν = 1, consistent with the
theory.

For those doublets in which the mix of the states with
various m (for instance m = 1 and −3) occurs due to
discreteness effects, the limiting value of the frequency
at h = 1 is reasonably well described by the expression.
The term depending on (1 − h) in (56), however, de-
duced under the assumption of an individual m in the
mode, does not describe the observed h-field dependen-
cies for these partially superposed modes. For example,
for modes with m = 1 and m = −3 (ν = 2), there are
notable differences between the simulation and theory
results for the Am,n coefficients (Table I); see also the
ν = 4 doublet. However, for the field dependence of the
mean doublet frequency, (ω−1−ν,n +ω−1+ν,n)/2, the sim-
ulation and theory results have somewhat better agree-
ment. However, the doublets at ν = 2, ν = 4 are split
even at h = 1, due to discreteness effects of the lattice,
and it is clear that this makes application of Eq. (56),
derived from continuum theory, problematical for these
cases. With this exception, however, the theory given
here enables us to describe eigenfrequencies with a given
m in the case rv � R � rv(h).

V. CONCLUSIONS

Easy-plane anisotropy combined with a magnetic field
perpendicular to the easy plane leads to interesting new
features in the vortex properties and their effect on the
scattering of magnons. This combination of anisotropy
and field leads to the so-called cone state, where the
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spins tilt at an angle determined by the magnetic field
relative to anisotropy strength, cos θ0 = h, at an arbi-
trary in-plane angle. In the presence of weak anisotropy
[(1−λ) < 0.28 for square lattice], the stable out-of-plane
vortices are modified by the magnetic field into light and
heavy branches, depending on whether the magnetic field
is aligned with (h > 0) or contrary to (h < 0) the out-of-
plane component (Sz) of the vortex. In the limit h → 1,
the light vortex energy goes to zero, as seen in Fig. 4, and
the vortex width becomes larger than the system size.
On the other hand, at large negative magnetic field, the
heavy vortex width decreases, and at a certain critical
field hc < 0, the vortex becomes unstable. Beyond this
limit there are no heavy vortices; the central core region
spins reverse and the vortex transforms to a light vortex.
This instability can be explained as due to discreteness
effects of the lattice, which can be accounted for, to lead-
ing order, by including fourth order derivative terms in
the continuum limit Hamiltonian, together with a varia-
tional ansatz for the vortex out-of-plane structure. This
theory also gave a reasonable description of the depen-
dence of hc on the easy-plane anisotropy strength (1−λ),
as presented in Fig. 5.

The presence of a cone state vortex modifies the spec-
trum of magnons, which we analyzed through a numerical
relaxation procedure and through analysis of the dynam-
ical oscillations about the vortex structure. The most
significant effect of the magnetic field on this spectrum
is its influence on doubly degenerate modes. For small
fields |h| � 1, pairs of modes ω±m,n, with |m| > 1, that
are nearly degenerate at h = 0, obtain a splitting propor-
tional to the magnetic field. The frequency of the mode
with m > 0 increases with h, while the frequency of the
mode with m < 0 decreases with h. Lack of exact degen-
eracy at h = 0 is attributed to the scattering amplitude
σ̃m(κ) [See Eq. (34)], which is small but nonzero even
at h = 0, as well as to lattice effects. For the modes
with |m| = 1, there is also a linear dependence of the
frequency on h at small fields, although a finite splitting
is present in these doublets even at h = 0.

In the limit h → 1, a different set of doublets is present,
those with equal values of |m + 1|, or equivalently, the
pairs with m = −1 ± ν, where ν is a positive integer.
This clearly appears in Fig. 9. For these doublets, the
mode with the more negative m is higher in frequency,
and their splitting is proportional to (1 − h), with the
pairs being very close to degenerate at h = 1 (except for
small effects due to the lattice).

This latter limit also is relevant for consideration of
modes in small magnetic particles: when the particle size
is smaller than the vortex core size for that magnetic field
[R � rv(h)], this leads to the presence of the weakly
split doublets near h → 1. Also, such particles will be
expected to have an anomalously low frequency mode
(the translational Goldstone mode) once the magnetic
field is adjusted to small values h � 1. The general
features found in the model system considered here are
expected to appear in real particles, although the details

due to influence of different geometry and dimensionality
may be different. Thus it may be interesting to look for
either type of weakly split doublets, either near h = 0 or
near h = 1, in resonance experiments on small particles
supporting vortex states.
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FIG. 1. The OP-vortex profiles for light vortices (h > 0)
calculated using λ = 0.999 on a lattice system with radius
R = 158a. The different curves correspond to different values
of h with increment ∆h = 0.1 .
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FIG. 2. The OP-vortex profiles for heavy vortices (h < 0)
calculated using λ = 0.999 on a lattice system with radius
R = 158a. The different curves correspond to different values
of h with increment ∆h = −0.1 .
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FIG. 3. The OP-vortex profiles for heavy vortices (h < 0)
calculated using λ = 0.96 on a lattice system with radius
R = 50a. The different curves correspond to different values
of h with increment ∆h = −0.05 . There are no stable heavy
vortices for h stronger than approximately 0.35; instead they
converted to light vortices by reversal of spins in the core.
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FIG. 4. The OP-vortex energies with the ground state en-
ergy of the cone state, Ec, subtracted out, for various values
of the anisotropy parameter, λ. For h > 0 these are light
vortices, and for h < 0 they are the heavy vortices. All were
calculated on a lattice system with radius R = 50a.
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FIG. 5. The heavy vortex critical fields, below which heavy
vortices become unstable, as a function of the anisotropy pa-
rameter, λ. The solid curve is the result of the variational
calculation [Eq. (15)]. Data points are results of numerical
energy minimization for lattice systems with radius R = 100a.
The inset shows the asymptotic behavior at λ → 1 more
clearly.

FIG. 6. Wavefunctions for R = 20a, λ = 0.99, for the mode
with m = −1, at the indicated magnetic fields h. The Sx̃ (or
ϕn) amplitudes (certain magnitude and phase) are shown as
arrows with triangular heads, and Sỹ (or θn) amplitudes are
shown as arrows with v-heads.34
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FIG. 7. Wavefunctions for R = 20a, λ = 0.99, for the mode
with m = −2, at the indicated magnetic fields h.

FIG. 8. Wavefunctions for R = 20a, λ = 0.99, for the mode
with m = +2, at the indicated magnetic fields h.
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FIG. 9. Numerical results for frequencies of the lowest spin-
wave modes in the presence of a light (h > 0) or heavy
(h < 0) vortex in a circular system with radius R = 30a
and anisotropy parameter λ = 0.99, vs. the magnetic field
h. Numbers by the curves indicate the assignments of az-
imuthal quantum numbers, m, which were based on the asso-
ciated wavefunctions. Note the double degeneracies of modes
m,−(m + 2), in the limit h → 1, and the strong splitting of
modes ±m as h deviates away from 0.
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FIG. 10. Numerical results from R = 30a system, for
the splittings ∆ωm,n of the lowest doublets (n = 1) for
|m| = 2, 3, 4, as functions of the magnetic field h. Dashed
curves are guides to the eye. The slopes of the data near
h = 0 are 29.2, 34.8, and 39.1 for |m| = 2, 3, 4, respectively.
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FIG. 11. Numerical results for the splitting of the low-
est doublet (n = 1) for |m| = 1, and for the frequency of
the translational Goldstone mode (TGM), as functions of the
magnetic field h. Dashed curves are guides to the eye, while
solid curves show the theoretical predictions described in the
text, Eqs. (48) and (50).
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