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1 INTRODUCTION

Nonlinear excitations are responsible for many important dynamical properties of
materials (see e.g. Bishop et al.'). However, the treatment of the complete dynamics
of appropriate models is often not possible. For the case of well-localized excitations
there have been established methods which reduce all the possible degrees of freedom
to a few, chosen to be sufficient to capture the intermediate (“mesoscopic”) length
and time scales controlled by the nonlinear coherent structures and their interactions
(collective variable approach, see e.g. Kosevich?).

For magnetic systems Thiele® suggested such an approach starting from the mi-
croscopic Landau-Lifshitz equation with Gilbert damping. Considering steady-state
motion of a single localized excitation in an external field, he derived for one collec-
tive coordinate an equation of motion (hereafter, the “Thiele equation” (TE)) which
contains a damping, a gyro, and an external force term. This method was applied
to easy-plane Heisenberg magnets?, where the localized excitations are vortices, and
it could be shown that the results agree with observations of computer simulations®.
However, this approach fails, if the damping parameter is set to zero. By generalizing
Thiele’s approach to non-stationary motion, Wysin et al.® derived a similar equation
(“Generalized Thiele equation” (GTE)), but with an additional term of the form
“mass times acceleration” which takes into account the inertia of the magnetization
field due to changes in the velocity of the excitation.

All of these approaches were applied to single excitations only. Though the interac-
tion with other similar excitations can be studied by treating them as external forces,
we cannot expect to find all the possible collective dynamics of such a multiple-
excitation system within this ansatz. Moreover, for the vortices of the easy-plane
Heisenberg ferromagnet one obtains a mass which depends logarithmically on the
system size and which therefore allows no dynamics at all for an infinite system.



We present here a generalization of the ansatz of Wysin et al.® to a system with
N distinct excitations (Sec. 2). Considering N collective coordinates we derive a
system of N coupled equattons of motion, all of GTE-type. In Section 3 we consider
vortices in easy-plane Heisenberg ferromagnets and calculate the mass and gyro ten-
sors. In addition to the single-vortex contributions we now also find coupling terms
depending explicitly on the mutual distance and position of the vortices. Moreover,
as we show for a two-vortex system (Sec. 4), there exist degrees of freedom for which
the associated masses are independent of the system size. A brief comparison with
numerical simulations of two-vortex systems shows that we can successfully describe
the observed dynamics.

2 DERIVATION OF EQUATIONS OF MOTION

In this section we will consider a magnetic system with Hamiltonian H whose dy-
namics is given by the Landau-Lifshitz equation
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S is the vector of magnetization (in units of &). We furthermore suppose that the
system under consideration exhibits well-localized excitations which, in a first approx-
imation, can be uniquely characterized by (collective) coordinates X“(t). a = 1,2, ...
One can expect that for this case the field S depends explicitly on those coordinates.
Therefore, assuming a system of N of these structures, we propose the following
ansatz

S(r,t)i= S[rX?, .o XN . XN, (2)

where we have included an explicit dependence on the velocities of the excitations®.
Generalizing the ansatz of Thiele for our choice of S we can rewrite (1) in terms of
force densities
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(Lower indices always label vector components, upper ones the different excitations).

At this point it becomes clear that we must assume an explicit dependence of S on the
X to derive from the first order differential equation (1) the second order differential
equations (3). These terms proportional to the second time derivatives of S are crucial
for a correct description of the dynamics for a system without damping (to which we
restrict ourselves here), as will be shown below. Since Eqn. (1) preserves the length
of S, we can rewrite this three-dimensional vector in the two canonically conjugate

fields ¢ and m:
S = (VS? —m?cos ¢, VS? —m?sin ¢, m). (5)

After integrating out the field parameter r, we finally arrive at N equations of motion
for the N collective coordinates X:

i {M#%? + GX#} = —v°E, a=1
B=1

s N (6)



These equations have a similar form (GTE-like) as the one for a single vortex®, but
contain additional coupling terms which can become quite important, as will be seen
below. The tensors M** and G, which we will call mass and gyro tensors, respec-
tively, are defined as
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V= is the gradient with respect to X, and E is the energy of the system.

3 APPLICATION TO AN N-VORTEX SYSTEM

We now consider explicitly a classical two-dimensional easy-plane Heisenberg ferro-
magnet where the localized excitations are vortices. In the continuum limit (derived
from a square lattice) the Hamiltonian has the form
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where 6 measures the anisotropy of the system (¢ = 0 corresponds to the isotropic,

6 =1 to the planar Heisenberg model). As was shown earlier’ there exist two distinct

types of vortices which are stable for different values of the anisotropy parameter é:

While for large values of the anisotropy the vortex spin field is confined mainly to the

XY-plane, in the following discussion we only consider the regime 0 < § 0.3, where

already the static vortices exhibit a well-localized out-of-plane structure (Fig. 1a).
The energy of such a N-vortex system is given by®
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from which we derive
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To calculate the tensors G** and M we need explicit expressions for the fields m(r)

and @(r). As far as we are aware there have so far been derived only single vortex
solutions which are for a vortex at position X, up to lowest order in the velocity”,

o(r;X;X) = Cjarctany_xz + pé(r — x) T =X B DY
z— X, Ir — X|
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The numbers ¢ = +1 and p = +1 are the vorticity and the sign of the static out-
of-plane structure, respectively, and C = 1/4JS6§. For the calculation of the main
contributions of G* we need only the static parts of #(r) and m(r), while for the
calculation of M®* it is sufficient to include the velocity dependent part of m(r) (the



Fig. 1: Out-of-plane fields of single vortices: a) static structure (§ = 0.2); b) veloc-
ity-induced structure for a vortex moving in the z-direction (§ =1.0).

equivalent part of the ¢(r)-field is already exponentially small). The function mo(r)
has, in the é-range under consideration, the asymptotic form

mo(r) = \/rl,/re"’/”, r>1, (13)

where r, = /(1 — 6)/é is the vortex core radius. For the function 7 (r) we only know
that it approaches 1 for r > 1. However, for small r the complete velocity-dependent
out-of-plane structure shows approximately the same angular dependence as for large
r (cf. Fig. 1b), and we will assume in our calculation that (r) is a function of the
radial coordinate r only.

If we now consider only those systems for which the vortices are all well separated
from each other (i.e. the mutual distances are larger than max(r,, c)), we can assume
that the total N-vortex fields ¢(r) and m(r) can be well approximated by a linear
superposition of single-vortex solutions. Using this ansatz we obtain
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where 6;; and ¢€;; are the unit tensor and the completely antisymmetric tensor in two
dimensions, respectively, L is an upper cut-off for the system size, and Ai‘s (A*P) is
1 (0) for ¢°p® = ¢°p* and 0 (1) for ¢°p® = —qPp®. The action of the two operators
153‘3 and gf’;ﬁ on a vector is to project out its components parallel and perpendicular
to X* — X*, respectively. Additionally, we have introduced the abbreviations

daﬂ == |XEr - xﬁlv C(({) - 2(1_2 j::) d?‘?”?ﬂ.g(?‘)’
(16)
¥(d)=1d"? j:i drrm(r), and P(d) = fa‘i drm(r)/r,



where ag is a lower cut-off of the order of the lattice constant.

All the masses M*? depend logarithmically on the system size. However, as we
will show in the next section, there can exist dynamical degrees of freedom with an
associated mass which will remain finite, even on an infinite system. Moreover, Eqn.
(14) shows that the masses depend on the vorticities ¢* only. The gyrovectors, in
contrast, are always finite and are characterized by products of the form ¢°p?. In
particular, if ¢°p® = ¢®p™ the two-vortex contributions are exponentially small, while
they become more long-ranged (i.e. they decrease with (d*?)~2) for ¢°p® = —¢°p°.

4 DISCUSSION OF A 2-VORTEX SYSTEM

For a two-vortex system it is more convenient to rewrite the equations of motion in
the variables R = (X! + X?) and Y = X! — X2. With the new masses

M — M11+M122M22+M21

] (17)
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and gyrotensors
G = Gi4Go
B } -~ (18)
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we arrive at the two equations of motion
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In an appropriate coordinate system with one axis parallel, the other perpendicular,
to Y the mass tensors become diagonal:

- (M 0 = _1(M 0 -

M‘J‘(o Mg)’ M”‘z(o nifg)‘ =)
My = nC[(1+q'¢®)In(L/d)/2+ (+ + ¢'¢*x)]
M, = =C [(1+¢'¢*)In(L/d)/2 + (¢ — ¢'q*x))
My, = =C[(1-q¢'¢®)In(L/d)/2+ (¥ — q'¢*x)]
M, = =C[(1-¢'¢*)In(L/d)/2+ (¥ +¢'¢*X)].

The dependence of the gyro tensors on the products ¢°p? suggests a division of
the following discussion into the two parts:

with

(21)

a) ¢'p? = ¢*p': For this case we find for the gyro tensors
Gl =G2 = G;-J- = 2mq'(p' + pgﬂlo)fij

Gj; = é;‘zj =Gi; = n¢'(p' — p*mo)ei; = Geyj.
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Fig. 2: Vortex-vortex simulations on a 50x50 square lattice; a) ¢'p? = ¢%p'; b)
q'p* = —¢*p'. O: initial positions. We used a small damping for the first 100

integration steps to remove initially excitated spinwaves.

Inserting this result into Eqns. (19) it follows that the center-of-mass (cms) coordinate
R is constant (which, without loss of generality, can be set to zero), and there remains
a single equation for the relative distance Y. Since G is a completely antisymmetric
tensor we can introduce the gyrovector g = Ge, to finally obtain

— . kq'q?
MY -gx ¥ =3

Y. (23)

Eqn. (23) describes a rotation of the two vortices around each other at distance d
with angular velocity
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and an additional cyclotron-like oscillation around this trajectory with frequency
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with w? = G?/M,M,. For the case ¢'¢> = +1 both masses M; and M, are indepen-
dent of the system size. Since w is inversely proportional to the masses this leads to a
high cyclotron frequency with small amplitudes which are of the order of the lattice
discreteness scale (Fig. 2a). For ¢'q> = —1, however, the masses increase logarith-
mically with the system size. These large masses lead to small values of w and the
cyclotron oscillations are easily observed in numerical simulations (see Fig. 1 in Ref.
9). The two terms in (25) which are due to the different values of the masses M,, M,
and the dependence of the masses on the mutual vortex distance lead to corrections
which are consistent with the observed d-dependence of the frequency w.



b) ¢'p? = —¢®p': Here we have the gyro tensors

G, =-G}=G;; = 2r¢' [(101 — p*C)e;; +2p%C ( g [1) )]
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The two resulting equations of motion (19) only have solutions for vectors R and Y
which are perpendicular to each other. E.g., if we set X! = (z,y) and X* = (—=z,v),
we obtain the two equations of motion

kq'q?
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This set of equations describes a parallel motion of the two vortices perpendicular
to their connecting line with a constant speed v, which is related to their mutual

distance d by vod = k/g. In addition cyclotron-like oscillations of the vortices around
the mean path are again possible with frequency
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Because of the nonlinear coupling of the two equations of motion we find that the
amplitudes of this oscillation parallel (1) and perpendicular (&) to the direction of
the cms motion satisfy the following equality

(é‘-’«) MQ{HQIQQ% 1=¢ } (30)
o M, T d (14()
In contrast to the previous case we have now masses of different origin present (M,
corresponds to the cms motion, M, to the relative motion of the two vortices) which
have different dependences on the system size. Therefore we always find in both
poss1ble cases (vortex-vortex and vortex-antivortex systems) a large and a small mass.
For ¢'¢> = +1 we find M; « In L and M, « Ind. This leads to elliptically distorted
cyclotron oscillations with a large amplitude perpendicular to the direction of the
cms motion ((10/&)* o In L). For ¢*q*> = —1 we find just the contrary, i.e. M;  Ind
and M, o In L leading to just the reversed amplitude ratio (1o/&)? o (In L)~}
These amplitude effects agree with numerical simulations, where we observe cy-
clotron oscillations with large amplitudes perpendicular to the direction of the cms
motion in vortex-vortex simulations (Fig. 2b), while in vortex-antivortex simulations
there appears to exist only the cms motion (Fig. 3 of Ref. 9). Our calculations
predict, in addition, a decrease of the value of w with increasing system size and/or
vortex distance. This dependence can also be observed in the computer experiments.
But, as in the case of rotational motion®, we need to include the effect of image vor-
tices for a better quantitative agreement between theory and simulations on a finite
lattice. The influence of the image vortices on the vortices within the system can
be seen in Fig. 3b of Ref. 9. There, the initial vortex pair splits at the upper left
corner into two single vortices which then move along the border. Here each of the
two vortices has a velocity which corresponds to that of a vortex pair with the second
(image) vortex moving symmetrically to the first, but outside the simulated system.




5 CONCLUSIONS

We have presented a collective variable approach to a system of N well-localized exci-
tations in a magnetic system. Generalizing earlier approaches which where restricted
to single excitations we obtained N coupled equations of motion of generalized Thiele
form (i.e. with inertial, gyro, and external force terms). As an example we applied
this ansatz to an easy-plane Heisenberg ferromagnet, where the localized excitations
are vortices. By explicitly considering two-vortex systems we could show that our
ansatz can successfully describe the dynamics of these excitations, including the ef-
fects caused by two-body interactions (different masses, dependence on mutual dis-
tances, etc.). However, here we have not considered any influence of the boundaries
(i.e. image vortices) on the two-vortex system. This will be discussed elsewhere.

6 ACKNOWLEDGEMENTS

This work was supported by Deutsche Forschungsgemeinschaft (SFB 213, C19), NATO
Collaborative Research Grant 0013/89, and by the United States department of En-

ergy. We also thank M. Peyrard, Ecole Normale Supérieure de Lyon, for useful
discussions.

REFERENCES

(1] A. R. Bishop, R. Ecke, and J. Gubernatis, Nonlinearity in Condensed Matter,
Springer, Berlin (1993).

(2] A. M. Kosevich, Soviet Phys. Uspekhi, 7:837 (1965).
3] A. A. Thiele, Phys. Rev. Lett., 30:230 (1973).
(4] D. L. Huber, Phys. Rev., B26:3758 (1982).

[5] A. R. Vélkel, F. G. Mertens, A. R. Bishop, and G. M. Wysin, Phys. Rev., B43:5992
(1991).

6] G. M. Wysin, F. G. Mertens, A. R. Volkel, and A. R. Bishop, in: Nonlinear
Coherent Structures in Physics and Biology, K.H.Spatschek and F.G. Mertens,
eds., Plenum, New York (1993).

[7] M. E. Gouvéa, G. M. Wysin, A. R. Bishop, and F. G. Mertens, Phys. Rev.,
B39:11840 (1989). ‘

8] J. M. Kosterlitz and D. J. Thouless, J. Phys, C6:1181 (1973).

[9] F. G. Mertens, G. M. Wysin, A. R. Vélkel, A. R. Bishop, and H.J. Schnitzer, in:
Nonlinear Coherent Structures in Physics and Biology, K.H.Spatschek and F.G.
Mertens, eds., Plenum, New York (1993).



