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A Quantum Monte Carlo Study of a Spin -% Chain
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Los Alamos, WM 87545, UsA
Abstract

An efficient finite temperature Quantum Monte Carlo simulation is
described for nearest neighbor spin-% models in the presence of external
magnetic fields. The method is used to study the specific heat ang
susceptibility of ferromagnetic easy plane cases with an in-plane

magnetic field, and applied to the one-dimensional magnet

{CEHIIHHSJCuErS.

Phl(S. Rev. B 31 3205 19¢5)



A number of opne dimensional (1-D) mode]l spin systems have been
studied recently using finite temperature quantum Monte Carle (QMC)
lethuds.l'z'a’ Cullen and Landau2 have studied the isotropic Epin-%
Heisenberg chain and the analytically solvable XY model using the
"checkerboard decomposition". Both of these systems have been mapped to
6-vertex models. We would 1ike to extend and apply their methods to
5pin-% systems in which the exchange is anisotropic, in particular with
easy plane anisotropy, and where there is an applied magnetic field in
the easy plane. The addition of these two symmetry breaking terms is
shown below to lead to either an 8 or 16 vertex model, depending on the
set of eigenstates chosen, and these can be more efficient to work with
than the 6-vertex models.

There has been some experimental evidence that an example of this
tvpe of system, the 5p1n-% ferromagnet "CHAB" ({CEHllﬂHB}EuBra} shows
thermodynamic Properties indicative of sine Gordon soliton-1ike excita-
tinns.4 The magnetic field and temperature dependences of the measured
specific heat has been fitted to classical sine-Gordon theory with a
renormalized rest mass, but a priori this seems of doubtfyl validity in
such a low spin system where quantum effects should have great impor-
tance. The purpose here is to obtain the low temperature thermodynamics
for this system without making any classical approximations, in order to
investigate the Physical importance of quantum effects and directly
assess the accuracy of the presumed Hamiltonian. Another similar real
material exists, EsNiF3, which is a spin-1 easy-plane ferromagnet in
which the exchange is believed to be isotropic but there is a single ion
easy plane anisntrnpy,ﬁ"E A similar QMC study of that system will be

reported elsewhere.



The general N spin Hamiltonian we consider s
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Here Sx, Sy, st are spin-; operators, J , J » J_, are arbitrary exchange
i i i 2 x' "y "z

constants, and hx' hz are applied fields. We use a transformation first
Proposed by Suzukjl which uses the Trotter formula to map this 1-p
Quantum Hamiltonian onto an approximately equivalent 2-D classical
Hamiltonain. For further details see references (1,2,3,7). First the
two-site Hamiltonian Hf j+1 is written as the sum of two noncemmuting
parts (to simplify evaluation of matrix elements later):
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The partition function Z = trace fe-ﬁH}, where B = 1/T and T is the

temperature, is approximated using the mth order Trotter formula within
the trace. The resulting mth order approximatian for 2, denoted I[m},

is
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where the bracket notation < > means only those terms where i,r are both
odd or both even are included. (This is the origin of the term
"checkerboard decumpusitinn"}. The vertex energy E{m]{i,r] for the ver-

tex (block of four spins) at site (i,r) in the 2-p lattice is given by
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Here the 51,r are eigenvalues of an appropriately chosen operator. We
IBH'i,i-f]

have approximated e m in a symmetric way, in order to preserve the

invariance of the matrix elements with respect to the interchange of r

and r+ 1. In the limit m + o, Z(m:r approaches the exact partition

function of the original 1-D quantum problem.

At each of the N x 2m sites in this Jattice there is an Ising spin
varijable Si,r = 3 %, the eigenvalue of 5: in the rth set of states used
in the Trotter approximation. (we Quantize using eigenstates of gf}.
This effective 2-p lattice has periodic boundary conditions in the
"Trotter direction" (the "r", or path integral, direction) as a result
of the trace operation, while we impose periodic boundary conditions in
the spatial direction. These spins, taken in blocks of four, determine
the energies of the %Hm vertices on the lattice, and therefore the total
energy in the 2-p system,

Since we are using eigenstates of Sf operators, matrix elements of

‘.ﬂ -
BHj 441 By in
e " are trivial. For those of e " » We make use of the

operator identitya:
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where 6: = 25:. 5: and 5; are raising and lowering operators, and
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It will be seen that of the 16 possible vertices, all are nonzero
if hx # 0 (16 vertex model)}, while 8 are nonzero if hch = 0 and Jx # Jy
(B vertex model). Only 6 are nonzero if hx =0 and qx = qy (the iso-
tropic 6 vertex model in Ref. 2). Thus the presence of symmetries tends
to reduce the number of allowed vertices -- vertex weights which are
Zero correspond to infinite energy and therefore prohibited states. If
any weight is negative or complex, the energy is complex. Such vertices
are not prohibited if they always occur in pairs, such that their net
contribution to Ifm) is real and positive. This is always the case for

the 8 vertex mode].



In principle the simplest model with which one can work, is the 16
vertex model, since individual Spin flips can then be the basic QMC
“move", An 8 vertex model is alsg convenient; there the basic moves are
row, column, and square flips. (These types of moves always generate
allowed states). For a 6 vertex model, we do not know a set of simple
moves which keeps one within the 6 allowed vertices, so that using a
combination of row, column, and square flips can generate disallowed
states and waste computing time. IrnnfcaTTy the presence of too much
symmetry in the original problem makes the case of isotropic exchange
with only a fielg parallel to the quantization axis the most difficult
in the present formalism.

The specific heat of CHAB has been measured? in the temperature
range from 1.7 to 7K, with a Ltransverse field up to 7kG (approx. 1K).
For the parameter values helieved4 to be associated with CHAB:
Jx = 1..‘1_,“r = 110K, Ji = 104.5K, and for fields hz =0, 0« hx < 10kG, one
finds that although this is a 18 vertex model, the percentage of single
spin flip moves accepted using the standard Metropolis algorithm is
impractically small (less than 1¥ for 1K < T < 10K). This is because
this model is approximately a 6 vertex model, with the magnetic field
just a mild perturbation. The 16 vertex model works well only if the
field, exchange constants, and temperature are all the same order of
magnitun‘e.g |

An alternative way to study the thermodynamics for CHAB is to
choose J, = J, = 110K, and Jy = 104.5K, h, =0, 0« h, < 10kG. (That
s, rotate the coordinate System so that the quantization axis ljes in
the easy plane). This is now an 8 vertex model, and remains an 8 vertex

mode] even when the field goes to zero. Provided the anisotropy is



strong enough, this will be a good 8 vertex model to work with rather
than just a smaly perturbation on a @ vertex model. This is the mode ]
for which we have performed a QMC calculation. 1In this case it js
interesting to remark on the effective Hamiltonian for the 2-D lattice.
(The general case is given in Ref. 8), The vertex energy E{mJ(i.r} can

be written (for the 8 allowed vertices)
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Thus the effective 2-p Hamiltonian has different near neighbor couplings

i, r

in the real space (Jh} and Trotter {JVJ directions, and in addition a
second nearest neighbor diagonal interaction {Jd}' The exchange
constants are

=1 4 z
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P [
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Jg = (28)™" enltanhk_/tanhk, ]

For CHAB at very low temperature, all three exchange constants are neg-
ative. However, as the temperature is increased Jh becomes positive and
we have a system with competing ferromagnetic and antiferromagnetic

interactions.



The Monte Carlo Algorithm: Within the 8 vertex model, one must

always flip the spins at a vertex in pairs, and this necessitates f1ip-
Ping a series of Spins in the lattice which 1ie on a closed path. Wwe

have chosen to use 8 combination of straight column flips plus square

In a single MC step, we attempt N column flips and %Hm square
flips, chosen at random positions. Typical simulations used from
10° = 3% 105 steps, with i first 20% disregarded, and the rest split
into groups for error analysis. The internal energy, specific heat,
magnetization, and susceptibility were computed as in Ref. 2 from expec-
tation values of dppropriate derivatives of the vertex weights, The
validity of the algorithm was checked by comparison with an exact m = 1
transfer matrix calculation.

An initial configuration of the system was obtained by first taking
a small number of MC steps at a temperature which was twice the desired
value, in order to "stip" the system. The data obtained using several
such initial states was then averaged to Produce the results shown here.
We have used N = 32, and m = 2, 4, 8, 12 and 15. For the present case,
we have found that the choice of m = 8 is the optimum value for which
the statistical errors are reasonably small (~ 5% for available com-
puting time), and the error due to using a finite m Trotter
approximation seems to be of similar magnitude.

Susceptibility measurements for CHAB are not available but accurate
specific heat studies have been made.4 Our results for AC, Fig. 1(c),

are in fair agreement with the experimental data regarding the



temperatures at which ac maximizes. Comparison with the Ref. 4 results
shows that the most obvious differences are a tendency for the QMc
results to lie below the experimental ones for AC -- by approximately
20%. This could have several sources: (i) A systematic additional
specific heat component measured experimentally, e.g. nonmagnetic con-
tributions or entropy-reducing Pinning effects in the absence of a field
(i1) Errors in the parameter values assumed in the mode]l Hamiltonian
(1), or corrections to the Hamiltonian. Regarding the parameter values,
these have been estimated primarﬂy4 from fits to linear properties.
There is g possibility that more accurate assignments of parameters are
necessary before precise comparisons with classical or quantum "soliton"
theories can be made, especially for such sensitive properties as AC.
We have investigated the effect of varying the easy plane anisotropy
from 3% to 7% (5% being assumed previously). While decreasing the
anisotropy decreases C, any systematic variations in AC are small, less
than the error bars for AC, which are approximately #15%. (iii) Fin-
ally, there may be systematic QMC errors leading to an underestimate of
C and AC, especially due to finite m Trotter approximation. Work in
progress on an "exact" transfer matrix calculations and on computer
renormalization calculations for finite chains may help to answer this
question. Also, comparisons with data® for AC in the spin-1 ferro-
magnetic EsHiF3 are in progress and should throw further light on the
question of how accurately simple model Hamiltonians describe the mag-
netic behaviors and how well parameter values are known. These are very
important questions in view of the continuing cuntruversiess concerning
the use of classical or quantum theories in either CHAB or CsHiFa.

We would like to thank E. Loh, Jr. and s. Satija for helpful
discussions. Work at Los Alamos was performed under the auspices of the

USDOE.
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with an odd (even) number of + %'s to a vertex with an even (odd)
number of + %'s. When the field is small compared to the exchange,
vertices with an odd number of + %‘5 have energies much larger than
the other vertices, and single spin flip acceptance rates rapidly
approach zero. This is the major source of difficulty with this 16

vertex model.
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Fig. 1 QMC results for CHAB at fields hz = 0.0(o), 3.3(a), 6.5(+),
10.0(x) kG. The data points in (a) were found from expectation
values of the variable EE(ﬁE{mjfi.r}}, while those in (b) were
the fluctuations in this variable. The curves in (a) are
weighted least SQuares polynomial fits to the data points, while
the curves in (b) are derivatives of the fitted curves in (a).
In (¢) we also show the difference AC(T) -- the specific heat
with a field minus the zero field result, obtained directly from
(b). Finally (d) shows the susceptibility in the direction of
the applied field (in the easy Plane); the curves are

polynomial fits to the reciprocal susceptibility.
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