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Summary

Here I discuss the dynamics of microscopic systems, primarily for spin models, in ther-

mal equilibrium, where the temperature causes random forces or torques, which are in

competition with a damping force. This includes summarizing Langevin dynamics and

finding methods for integrating the Landau-Gilbert equation of micromagnetics in time,

with damping & temperature. The goal is to understand how to set the random forces

according to a selected temperature that is desired.

1 Spin Dynamics at Zero Temperature

I start with a spin model for spin degrees of freedom Si (localized atomic angular momenta) at zero
temperature, that could have some damping included. Index i labels the spins or the sites where
they are located. There is some kind of effective magnetic field Bi that acts on each spin, and the
spins themselves belong to an object that also has magnetic moment ~µi and a rotational inertia Ii

(taken as a scalar).

1.1 Spin dynamics

The ratio of magnetic moment to angular momentum is the gyromagnetic ratio γ. Review this for a
classical charged particle (mass m, charge q) that is making a circular orbit of radius r at frequency
f . The orbital angular momentum is L = mvr = m(2πrf)r while the magnetic dipole moment is
µ = iA = iπr2 = qfπr2. Then the classical gyromagnetic ratio for an orbiting electron is

γ =
µ

L
=

qfπr2

m(2πrf)r
=

q

2m
, ~µi = γL. (1.1)

Due to quantum effects, this result is approximately doubled for a quantum electron, when instead
applied to its spin angular momentum. Also for real electrons it is negative, due to the negative
electron charge, and has a value about γe ≈ −1.76× 1011 (Ts)−1. Mostly I will not care about the
particular value, but need to be aware that µ is obtained from S by including a factor of γ. Also, I
will not care about any distinction between orbital and spin angular momentum. I will call it all,
spin. Then generally one assumes the relation,

~µi = γSi. (1.2)

Consider just one spin and its dynamics. The local magnetic field determines an energy or
Hamiltonian H for this one spin, which is just a scalar product of its magnetic moment with the
field,

H = −~µ ·B = −γS ·B (1.3)

For the moment, the index i is suppressed. There would be a term like this for each particle. The
dynamics is governed by the usual Newton’s second law for rotation, that the time rate of change of
angular momentum is equal to the torque. But the torque on the magnetic dipole is its cross product
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with the magnetic field. Then the equation of motion for the dynamics can be written either for S
or for ~µ:

dS
dt

= ~µ×B = γS×B,
d~µ

dt
= γ~µ×B. (1.4)

The effective field F that enters is a gradient of the Hamiltonian w.r.t. that dynamic variable,

F = γB = −δH

δS
(1.5)

Written this way, one sees that γ effectively drops out of the mathematical problem. Returning to
the problem with many spins, each one has an equation of motion determined by

dSi

dt
= Si × Fi, Fi = − δH

δSi
. (1.6)

Alternatively, γ can be scaled out by changing to a different time variable, t′ = γt. Then the
equations of motion are

dSi

dt′
= Si ×Bi, Bi = − 1

γ

δH

δSi
. (1.7)

But in this approach the gyromagnetic ratio still appears.
So generally I’ll use the dynamics the first way, whose Cartesian components are

Ṡx = SyFz − SzFy

Ṡy = SzFx − SxFz

Ṡz = SxFy − SyFx (1.8)

To completely specify the problem, the ”force” components must be given, which depend on the
type of model being considered. Below we try a few simple cases.

1.2 Damping

The equations can be damped (energy non-conserving) by adding a term whose torque has a compo-
nent along the effective fields. There are two ways to do this that are essentially equivalent, up to a
rescaling of the time variable. The vector S× F is perpendicular to both S and F. Then (S× F)×S
can be seen to have a positive component along F. To get a torque along F, a term +α(S×F)× S
or +α′Ṡ×S. Here the dot is used to denote the time derivative and α and α′ determine the strength
of damping. In the first way, the dynamics of a single spin follows

Ṡ = S× F + α(S× F)× S, (1.9)

and in the second way the dynamics is

Ṡ = S× F + α′(Ṡ× S). (1.10)

To show these are related, substitute this last equation into itself for the damping term,

Ṡ = S× F + α′
[
S× F + α′(Ṡ× S)

]
× S (1.11)

Expand out the last double cross product:

(Ṡ× S)× S = (Ṡ · S)S− S2Ṡ = −S2Ṡ (1.12)

The term (Ṡ · S) = 0 as can be verified from the equation of motion, which guarantees a conserved
spin length. Now the equation above is

Ṡ = S× F + α′
[
(S× F)× S + α′(−S2Ṡ)

]
(1 + α′2S2)Ṡ = S× F + α′(S× F)× S (1.13)

Then one can see that this is almost the same as the first damping, (1.9), except for a rescaling of
the time due to the factor on the LHS. At small damping parameter, this will not make any real
difference. At large parameter, this second form of damping is ”slower”, because it results in smaller
net time derivative of the spin. It also slows down the original torque effect (1st term on RHS).
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1.2.1 A single spin in a fixed field: no damping

Suppose there is a spin precessing in a fixed magnetic field, but with the first kind of damping turned
on. Starting from a given initial state S(0), what is the time evolution?

The field F = γB is constant in time. Try solving first without damping and then seeing how to
correct for it. The homogenous solution at α = 0 satisfies

Ṡ = S× F. (1.14)

Assume without loss of generality that the field direction defines the ẑ-axis, F = F ẑ. Then the
components of the spin satisfy simple precessional equations,

Ṡx = SyF, Ṡy = −SxF, Ṡz = 0. (1.15)

A harmonic solution exists with frequency ω = F , since S̈x = −F 2Sx and S̈y = −F 2Sy, and it
follows

Sx = a cos ωt + b sinωt, Sy =
1
F

Ṡx = −a sinωt + b cos ωt. (1.16)

The coefficients are set easily by the spin direction at time t = 0, such that a = Sx(0) and b = Sy(0).
The z-component does not change. Then the full solution without damping is

Sx(t) = +Sx(0) cos ωt + Sy(0) sinωt, ω = F = γB,

Sy(t) = −Sx(0) sinωt + Sy(0) cos ωt

Sz(t) = +Sz(0) (1.17)

This is just a continous rotation of the original xy components. It can also be written with a rotation
matrix,  Sx(t)

Sy(t)
Sz(t)

 =

 cos ωt sinωt 0
− sinωt cos ωt 0

0 0 1

  Sx(0)
Sy(0)
Sz(0)

 . (1.18)

For positive ω = γB, the rotation is in the negative (left hand or clockwise) sense around the z-axis.
Electrons would precess opposite to this, due to their negative charge.

1.2.2 A single spin in a fixed field: with damping

Next, what if the damping is included? The equation of motion becomes

Ṡ = S× F + α
[
S2F− (S · F)S

]
(1.19)

The extra ”force” due to the damping term pushes the spin towards the magnetic field direction. The
first term here is along F and does not affect the x and y components. Now in terms of components
the equations are

Ṡx = SyF − α(SzF )Sx,

Ṡy = −SxF − α(SzF )Sy,

Ṡz = αS2F − α(SzF )Sz. (1.20)

It is lucky that the z component equation is separated from the other two. Then it can be solved
first although it is nonlinear. It separates as

use Sz = S tanh θ →
∫ Sz(t)

Sz(0)

dSz

S2 − S2
z

=
∫ t

0

αF dt,

1
S

[
tanh−1 Sz(t)

S
− tanh−1 Sz(0)

S

]
= αFt (1.21)
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The solution is

Sz(t) = S tanh
[
tanh−1

(
Sz(0)

S

)
+ αFSt

]
(1.22)

It is interesting that the spin very slows goes towards the applied field. In the limit of inifinite time
the hyperbolic tangent goes to 1 and thus Sz → S, as it should. It might be better, though, to have
done the integration by partial fractions and get logarithms (or use the log expression for the inverse
hyperbolic tangent). Had I done it that way, one gets,

1
2S

[
ln

∣∣∣∣S + Sz(t)
S − Sz(t)

∣∣∣∣− ln
∣∣∣∣S + Sz(0)
S − Sz(0)

∣∣∣∣] = αFt (1.23)

Some rearragnements will give the solution. First do the obvious,

ln
∣∣∣∣S + Sz(t)
S − Sz(t)

· S − Sz(0)
S + Sz(0)

∣∣∣∣ = 2SαFt. (1.24)

With some obvious identifications, this is in the same form as

S + z

S − z
A = eβ or (S + z)A = (S − z)eβ , ⇒ z = S

eβ −A

eβ + A
(1.25)

Translating back to the physical variables, with a time scale defined as τ = [αSF ]−1, this gives

Sz(t) = S
e2t/τ − S−Sz(0)

S+Sz(0)

e2t/τ + S−Sz(0)
S+Sz(0)

= S
[S + Sz(0)]e2t/τ − [S − Sz(0)]
[S + Sz(0)]e2t/τ + [S − Sz(0)]

(1.26)

This algebra basically did the sum inside the inverse tangent of the other expression. No matter
what the initial condition, the spin will head towards the final state of Sz(∞) = S.

Now that produces a considerable perturbation to the other components. They require the extra
factor dependent on αFSz(t). Before trying to integrate them, one can see a (non)-conservation law
for the spin length. Multiplying each by the component and adding, there results,

d

dt
(S2

x + S2
y) = 2SxṠx + 2SyṠy = −2αFSz(t)(S2

x + S2
y). (1.27)

If I let the squared sum be called w = S2
x + S2

y , then this in an ODE for w(t):

dw

dt
= −2αFSz w, ⇒

∫ w(t)

w(0)

dw

w
= −

∫ t

0

dt 2αFSz(t) (1.28)

The RHS involves the time integral of Sz. Using the first form for the Sz solution, one can integrate
the hyperbolic tangent very easily, with b = αFS,∫

dt tanh(a + bt) =
1
b

∫
dx

sinhx

coshx
=

1
b

ln cosh(a + bt). (1.29)

Applied here this gives

ln
w(t)
w(0)

= −2αFS

αFS
ln

cosh[tanh−1 Sz(0)
S + αFSt]

cosh[tanh−1 Sz(0)
S ]

(1.30)

Then the in-plane spin length behaves as

w(t) = w(0)
cosh2[tanh−1 Sz(0)

S ]

cosh2[tanh−1 Sz(0)
S + αFSt]

(1.31)
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One can see it goes to zero at large times, as it should, when the spin converges towards the direction
of the field F, with a time scale τ = (αFS)−1. Further, this realy will not contain more information
than we already have, because w = S2 − S2

z should hold.
To check that, it may help to simplify this expression. The numerator can be simplified by using

1− tanh2 x = sech 2x, so that with x = tanh−1 Sz(0)
S ,

cosh2

[
tanh−1 Sz(0)

S

]
=

1
sech 2x

=
1

1− tanh2 x
=

1
1− (Sz(0)/S)2

=
S2

S2 − S2
z (0)

(1.32)

The denominator has a sum of two angles in the argument. With ex = coshx + sinh x and e−x =
coshx− sinhx, the rule for addition is

cosh(x + y) =
ex+y + e−x−y

2

=
1
2

[(cosh x + sinhx)(cosh y + sinh y) + (coshx− sinhx)(cosh y − sinh y)]

= coshx cosh y + sinhx sinh y. (1.33)

Here let y = αFSt, then together with tanhx = Sz(0)
S , one can use

coshx =
1

sech x
=

1√
1− tanh2 x

=
S√

S2 − S2
z (0)

, (1.34)

sinhx =
√

cosh2 x− 1 =
Sz(0)√

S2 − S2
z (0)

. (1.35)

Inserting these gives

cosh(x + y) =
S cosh y + Sz(0) sinh y√

S2 − S2
z (0)

(1.36)

Squaring gives

cosh2(x + y) =
(S cosh y + Sz(0) sinh y)2

S2 − S2
z (0)

(1.37)

Then putting things together, with w(0) = S2−S2
z (0), the in-plane squared spin length is expressed

w(t) =
S2(S2 − S2

z (0))
(S cosh y + Sz(0) sinh y)2

(1.38)

If all is correct, the identity w(t) + S2
z (t) = S2 must hold. Try the following:

S2 − w(t) = S2

{
1− (S2 − S2

z (0))
(S cosh y + Sz(0) sinh y)2

}
= S2

{
(S cosh y + Sz(0) sinh y)2 − (S2 − S2

z (0))
(S cosh y + Sz(0) sinh y)2

}
= S2

{
(S sinh y + Sz(0) cosh y)2

(S cosh y + Sz(0) sinh y)2

}
(1.39)

Compare the expression for Sz(t), writing its factors in terms of y = t/τ .

Sz(t) = S
[S + Sz(0)](cosh y + sinh y)− [S − Sz(0)](cosh y − sinh y)
[S + Sz(0)](cosh y + sinh y) + [S − Sz(0)](cosh y − sinh y)

= S
S sinh y + Sz(0) cosh y

S cosh y + Sz(0) sinh y
(1.40)

One can see the the relation w(t) + S2
z (t) = S2 does indeed hold!
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1.2.3 A single damped spin in a fixed field: the in-plane motion

Now to get the in-plane motion, look again at the differential equations (1.20). They have another
obvious symmetry that allows one to cancel out the damping terms for the xy motion. Do the
following combination:

SyṠx − SxṠy = F (S2
x + S2

y), or
SyṠx − SxṠy

S2
x + S2

y

= F. (1.41)

But this combination of derivatives is related to the derivative of the in-plane angle, i.e., check the
algebra,

φ = tan−1

(
Sy

Sx

)
, φ̇ =

1

1 +
(

Sy

Sx

)2

SxṠy − SyṠx

S2
x

=
SxṠy − SyṠx

S2
x + S2

y

. (1.42)

So the motion in-plane is very simple, and surprisingly, unaffected by the damping:

φ̇ =
SxṠy − SyṠx

S2
x + S2

y

= −F, =⇒ φ(t) = −ωt + φ0, ω = F. (1.43)

So we can summarize the total motion, which is described by giving Sz(t) and φ(t). There is a
uniform precession around the z-axis at frequency ω = F = γB, while the Sz component slowly goes
towards it maximum value of S.

Sz(t) = S
S sinhαSωt + Sz(0) coshαSωt

S coshαSωt + Sz(0) sinhαSωt
, φ(t) = −ωt + φ0, ω = γB. (1.44)

The Sz equation may also be expressed in terms of the polar angle between the spin and the applied
field, θ(t), by

cos θ(t) =
Sz(t)

S
=

sinhαSωt + cos θ0 coshαSωt

coshαSωt + cos θ0 sinhαSωt
(1.45)

1.3 Easy-plane spins & planar rotor dynamics, undamped

The rotor model is an approximate model for spins that can only move within the XY plane. They
are assumed to have zero z components (2D spins). This model is simple for adding the random
forces due to temperature, hence it is good to start with it and then see the modifications that will
be needed for a 3D spin model.

To get to the rotor model, start from the easy plane model. It will help first to look at the
equations of motion in in-plane angle φ and out of plane component Sz, as we saw that was useful
above. With φ = tan−1

(
Sy

Sx

)
, its dynamics is expressed as

φ̇ =
SxṠy − SyṠx

S2
x + S2

y

=
Sx(SzFx − SxFz)− Sy(SyFz − SzFy)

S2
x + S2

y

(1.46)

Then this must be solved together with the out of plane motion,

φ̇ = Sz

(
SxFx + SyFy

S2
x + S2

y

)
− Fz, (1.47)

Ṡz = SxFy − SyFx. (1.48)

It is typical to write this completely using spherical coordinates for the spins,

S = S(sin θ cos φ, sin θ sinφ, cos θ) (1.49)

Then the dynamic equations are generally, for any model,

φ̇ =
Sz√

S2 − S2
z

(Fx cos φ + Fy sinφ)− Fz, (1.50)

Ṡz =
√

S2 − S2
z (Fy cos φ− Fx sinφ) . (1.51)
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Now look at the easy-plane Heisenberg model, where the exchange Hamiltonian involves only
nearest neighbor interactions with ferromagnetic exchange J , and λ < 1 is the anisotropy parameter,

H = −J
∑
〈ij〉

(Sx
i Sx

j + Sy
i Sy

j + λSz
i Sz

j ) (1.52)

The forces on site i come from sums over its nearest neighbors,

F x
i = J

∑
〈j〉

Sx
j , F y

i = J
∑
〈j〉

Sy
j , F z

i = Jλ
∑
〈j〉

Sz
j . (1.53)

Then a little algebra for the in-plane component gives

φ̇i =
Sz

i√
S2 − (Sz

i )2
J

∑
〈j〉

(
Sx

j cos φi + Sy
j sinφi

)
− Jλ

∑
〈j〉

Sz
j

= J
∑
〈j〉

Sz
i

√
S2 − (Sz

j )2

S2 − (Sz
i )2

(cos φj cos φi + sinφj sinφi)− λSz
j


= J

∑
〈j〉

Sz
i

√
S2 − (Sz

j )2

S2 − (Sz
i )2

cos(φi − φj)− λSz
j


(1.54)

Some other algebra for the out of plane component,

Ṡz
i =

√
S2 − (Sz

i )2 J
∑
〈j〉

(Sy
j cos φi − Sx

j sinφi)

= J
√

S2 − (Sz
i )2

∑
〈j〉

√
S2 − (Sz

j )2 (sinφj cos φi − cos φj sinφi)

= −J
√

S2 − (Sz
i )2

∑
〈j〉

√
S2 − (Sz

j )2 sin(φi − φj) (1.55)

1.3.1 XY model

These last are the exact equations for the easy-plane model. But now make the approximation
that the z-components are small, Sz

i � S. Then square root factors simplify and the approximate
equations for the easy-plane model are

φ̇i ≈ J
∑
〈j〉

{
Sz

i cos(φi − φj)− λSz
j

}
, (1.56)

Ṡz
i ≈ −JS2

∑
〈j〉

sin(φi − φj). (1.57)

Now in the limit of λ = 0, the model is the XY model and the spins mostly stay near the xy plane,
with small out of plane deviations. Thus it is reasonable to suppose that the differences φi−φj and
the components Sz

i are of similar orders of smallness. If the equations are further approximated, to
the leading order, there results only

φ̇i ≈ JSz
i

∑
〈j〉

1 ≈ niJSz
i , (1.58)

Ṡz
i ≈ −JS2

∑
〈j〉

sin(φi − φj). (1.59)

The factor ni is the number of nearest neighbors that site i has; for a square lattice it is ni = 4,
except at the boundary of the system, where it is smaller. The sum over the sines cannot be so
approximated or there would be no dynamics left. This is the approximate dynamics for the XY
model (3D spins with strong planar anisotropy).
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1.3.2 Planar rotor model

Now the XY model can be contrasted to the planar rotor model, which has 2D rotating masses
with angular momentum only around the z-axis, Li, rotational inertia I, and kinetic energy L2

i /2I,
coupled in a fashion similar to that for the XY model. Their dynamics is described by the orientation
in the xy plane, φi, of each rod or rotator. As each moves, it has an angular velocity ωi = φ̇i. One
can start from its Lagrangian, which includes the potential like that in the XY model, which tends
to align the rotors when the parameter K > 0 here,

L = T − V =
∑

i

1
2
Iφ̇2

i − (−K)
∑
〈ij〉

cos(φi − φj) (1.60)

The momentum conjugate to the angles is the angular mometum component,

pi =
∂L
∂φ̇i

= Iφ̇i = Iωi = Li. (1.61)

The Lagrange equations of motion are simple, based on

d

dt

(
∂L
∂φ̇i

)
− ∂L

∂φi
= 0 (1.62)

This gives
d

dt
(Iωi) =

∂L
∂φi

=
∂

∂φi
K

∑
〈ij〉

cos(φi − φj) = −K
∑
〈j〉

sin(φi − φj), (1.63)

or a single second order differential equation,

Iφ̈i = −K
∑
〈j〉

sin(φi − φj). (1.64)

The dynamics can also be considered as coupled first order equations for (φi, ωi).

φ̇i = ωi, (1.65)

ω̇i = −K

I

∑
〈j〉

sin(φi − φj). (1.66)

This is mathematically the same as the XY model (when all ni are the same). The parameters
and the interpretations of the variables in the two models are different, however. To make the XY
model equations match this, one could define a new variable there, ωi = niJSz

i . This makes the first
equation for the XY dynamics the same as the rotor, φ̇i = ωi. Then the second equation becomes

niJṠi = ω̇i = −ni(JS)2
∑
〈j〉

sin(φi − φj). (1.67)

One sees that the XY model will be equivalent to the rotor model if the parameters are matched as
follows, using site-dependent rotational indertia,

ni(JS)2 =
K

Ii
=⇒ Ii =

K

ni(JS)2
(1.68)

The latter form indicates the rotor inertias needed to match the two models’ dynamics. Further, if
one is solving the rotor model but imagining that it represents an XY model, then the amount of
out of plane spin motion associated with the rotor’s velocity is given by the mapping,

Sz
i =

ωi

niJ
. (1.69)

Faster moving rotors correspond to spins tilting more so out of the xy plane. In the model on a
square lattice, most of the ni = 4, within the interior ofthe lattice.
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1.3.3 Planar rotor in Cartesian components

One can associate a planar spin for the rotor model Si = S(cos φi, sinφi). Then their dynamics is
simple,

Ṡx
i = −Sφ̇i sinφi, Ṡy

i = +Sφ̇i cos φi. (1.70)

or summarize this as

Ṡx
i = −ωiS

y
i

Ṡy
i = +ωiS

x
i . (1.71)

If ωi were constant, it is uniform precessional motion. But ωi changes with time, according to the
applied torque,

ω̇i = − K

IS2

∑
〈j〉

S2(sinφy
i cos φj − cos φi sinφj) = − K

IS2

∑
〈j〉

(Sy
i Sx

j − Sx
i Sy

j ) (1.72)

or more simply,

ω̇i =
K

IS2

∑
〈j〉

(Sx
i Sy

j − Sy
i Sx

j ) (1.73)

If one is doing numerical integration of these equations, this form is good due to the lack of trigono-
metric evaluations. The only problem, perhaps, is that now the problem is overspecified, having
three components, Sx

i , Sy
i , ωi, when two are sufficient. The numerical integration needs to be stable

enough to preserve the spin length. One sees from the three dynamic equations an effective force on
each spin,

F x
i =

K

IS2

∑
〈j〉

Sx
j , F y

i =
K

IS2

∑
〈j〉

Sy
j , F z

i = −ωi (1.74)

The functions that change Li = Iωi are torques. Thus one might also write these torques as the
basic mechanical torques, which are the conservative part of the dynamics,

(τm)i =
K

S2

∑
〈j〉

(Sx
i Sy

j − Sy
i Sx

j ) (1.75)

The dynamics can also have other torques, τdamping due to viscous damping and τrandom due to
random forces associated with the temperature. Then one will want to consider the dynamics due
to all of these torques acting together,

Iω̇i = (τm)i + (τdamping)i + (τrandom)i (1.76)

That is the overall goal in this project, especially for models more general than the planar rotor
model. But the rotor model is good for understanding the initial analysis.

2 Stochastics: Thermal fluctuations in the planar rotor model

In thermal equilibrium, the dynamics still goes on, but a system is continuously kicked by things
outside of it, that are in a temperature bath. Einstein and others (Langevin, Markov, etc.) consid-
ered this problem of Brownian motion over a hundred years ago, to prove the existence of atoms.
The atoms (or molecules) are bumping larger particles and sharing their energy, at the same time,
the particles’ motion is slowed down by the surounding fluid. Thus, a particle is exposed to damping
and to random forces. We can suppose a similar effect takes place in the rotor or other magnetic
system, although now there are viscous damping torques and random torques. The basic question,
is how to describe the thermal fluctuations, the distribution of random torques, and the dynamics
of the rotors (or magnetic dipoles) in their presence.

To begin, look at the dynamics of a free rotor, one not interacting with neighboring rotors. It is
assumed to be exposed to a heat bath that acts on it with random and viscous torques. There is no
usual mechanical torque. Still, the rotor will move around and its direction will follow some kind of
random walk. We want to consider first the correlations and fluctuations in its angular speed, ω(t).

9



2.1 Langevin equation for a rotor

The equations of motion for this one rotor are

φ̇ = ω, Iφ̈ = Iω̇ = τ(t)− αIω (2.1)

Here α is a damping constant with inverse time units, and τ(t) is the random or fluctuating torque,
and −αIω is the viscous torque. This is known as the Langevin equation, especially if we had
included a usual deterministic mechanical torque. Look at how to solve for the velocity ω(t), based
on some rather simple assumptions about the random torque. For one we suppose the random
torque depends on the temperature, and should be stronger with higher temperature. But that is
quantified later. For another, it is supposed that the fluctuating torque at one time is completely
unrelated to its value at an earlier time. That is the stochastic assumption. One can think there
are many solutions for the velocity, starting from some initial value–we need to do an averaging
procedure over all of the possible solutions, which correspond to different histories of the fluctuating
torque.

Can write a formal solution to (2.1) by combining its homogenous solution for no fluctuating
torque, with the particular solution when the torque is present. The homogeneous equation is

ω̇ = −αω (2.2)

and its solution, starting from initial velocity ω0, is

ω(t) = ω0e
−αt (2.3)

When the fluctuating torque is included, add some function g(t) to get the total solution. Let
ω(t) = ω0e

−αt + g(t). Now one has

ω̇(t) = −αω0e
−αt + ġ (2.4)

and substituted into the dynamics this gives

I(ω̇ + αω) = I(ġ + αg) = τ(t). (2.5)

This is the same as the orginal equation, so we gained little. Now try to solve by an ansatz,

g(t) = e−αtf(t), ġ = −αe−αtf + e−αtḟ . (2.6)

Then the ODE becomes
Ie−αtḟ = τ(t), ⇒ Iḟ = eαtτ(t). (2.7)

This can be formally integrated,

f(t) = f(0) +
1
I

∫ t

0

dt′ eαt′τ(t′) (2.8)

g(t) = e−αtf(t) = e−αtf(0) +
1
I

∫ t

0

dt′ e−α(t−t′)τ(t′) (2.9)

If one uses the boundary condition, f(0) = ω0, the correct homogeneous solution is recovered. So
the formal solution for the velocity, with an arbitrary torque function is

ω(t) = ω0e
−αt +

1
I

∫ t

0

dt′ e−α(t−t′)τ(t′) (2.10)
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2.2 Planar rotator velocity autocorrelation function

Now although the torques are not known, a velocity autocorrelation function can be found. The idea
is that this rotor starts with initial speed ω0 and then gets slowed down and affected by the random
torques. But we don’t know them exactly, however, we can get the average over all possible τ(t)
(with some reasonable assumptions about their distribution). One has to assume that the averaged
torque is zero, however, that does not mean that its effects are zero.

The velocity autocorrelation function is 〈ω(t)ω(t)〉. For large times it should converge towards a
value expected from equipartition, because it is related to the averaged kinetic energy,

1
2
I 〈ω(t)ω(t)〉 −→ 1

2
kBT (2.11)

where kB is Boltzmann’s constant and T is absolute temperature.
Using the solution found above, one has,

〈ω(t)ω(t)〉 =
〈

e−2αt

[
ω0 +

1
I

∫ t

0

dt′ eαt′τ(t′)
] [

ω0 +
1
I

∫ t

0

dt′′ eαt′′τ(t′′)
]〉

= e−2αt

{
ω2

0 + 2
ω0

I

∫ t

0

dt′ eαt′〈τ(t′)〉

+
1
I2

∫ t

0

dt′ eαt′
∫ t

0

dt′′ eαt′′〈τ(t′)τ(t′′)〉
}

(2.12)

The brackets show the averaging over the torque functions. But we assume there is no bias in these
functions, that they have an average effect of zero on the velocity. So the first average is

〈τ(t′)〉 = 0. (2.13)

The second average involves the product of a torque function, at two different times, averaged over
all the possible torque functions. They are assumed to be completely independent, and stochastic,
which means that the average gives zero unless the times are the same. So we take

〈τ(t′)τ(t′′)〉 = A δ(t′ − t′′). (2.14)

The normalization constant A will determined by equipartition. With that, one can continue to
evaluate the resulting integral. It is

a =
∫ t

0

dt′ eαt′
∫ t

0

dt′′ eαt′′A δ(t′ − t′′)

= A

∫ t

0

dt′ eαt′eαt′ = A
1
2α

(
e2αt − 1

)
. (2.15)

Finally this gives the autocorrelation function,

〈ω(t)ω(t)〉 = ω2
0e−2αt +

A

2αI2

(
1− e−2αt

)
(2.16)

To determine the constant, match the value as t→∞ with that required by equipartition in thermal
equilibrium (this is amazing that this works!)

〈ω(t)ω(t)〉t→∞ =
A

2αI2
=

kBT

I
⇒ A = 2αIkBT. (2.17)

That means the correlation of the torques had to follow the requirement,

〈τ(t′)τ(t′′)〉 = 2αIkBT δ(t′ − t′′). (2.18)

This is refered to as the fluctuation-dissipation theorem, since it relates the strength of the torque
fluctuations to the strength of the damping (or dissipation). The final velocity autocorrelation is
forced to be very simple,

〈ω(t)ω(t)〉 = ω2
0e−2αt +

kBT

I

(
1− e−2αt

)
. (2.19)
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2.3 Planar rotor diffusion

With a little more work, even the averaged position of the rotor can be determined, by integrating
the other differential equation, φ̇ = ω, in an average sense. This is

φ(t) = φ0 +
∫ t

0

dt′

[
ω0e

−αt′ +
1
I

∫ t′

0

dt′′ e−α(t′−t′′)τ(t′′)

]

= φ0 +
ω0

α

(
1− e−αt

)
+

1
I

∫ t

0

dt′
∫ t′

0

dt′′ e−α(t′−t′′)τ(t′′). (2.20)

Of course, that depends on the choice of τ(t) and so it has an infinite number of possible trajectories.
Instead, look at the mean-squared displacement from the starting point, as appropriate for a random
walk. This is averaged over the torque functions,

〈(φ(t)− φ0)2〉 =
ω2

0

α2

(
1− e−αt

)2 (2.21)

+
1
I2

〈∫ t

0

dt1

∫ t1

0

dt2 e−α(t1−t2)τ(t2)
∫ t

0

dt3

∫ t3

0

dt4 e−α(t3−t4)τ(t4)
〉

I already dropped the cross term, and now one can use the correlation function,

〈τ(t2)τ(t4)〉 = A δ(t2 − t4) (2.22)

But care is needed in the application of this! Use it to do the integration over t4 first. The delta
function picks out the point t4 = t2, but only if t2 is inside the range of integration. That constraint
is that t2 < t3 for a nonzero result. So the integration over only t4 gives∫ t3

0

dt4 e−α(t3−t4)A δ(t2 − t4) =

{
0 if t2 > t3

Ae−α(t3−t2) if t2 < t3
(2.23)

Next the integration over t3 can be performed, but since it requires t3 > t2, the limits are modified
to ∫ t

0

dt3 →
∫ t

t2

dt3. (2.24)

With that, there results ∫ t

t2

dt3 Ae−α(t3−t2) =
−A

α

(
e−α(t−t2) − 1

)
. (2.25)

The rest of the integrations are straightforward, with the integration over t2:

a =
∫ t1

0

dt2 e−α(t1−t2)
−A

α

(
e−α(t−t2) − 1

)
= −A

α
e−αt1

∫ t1

0

dt2

(
e−α(t−2t2) − eαt2

)
= −A

α
e−αt1

[
1
2α

(
e−α(t−2t1) − e−αt

)
− 1

α

(
eαt1 − 1

)]
= − A

α2

[
1
2

(
e−α(t−t1) − e−α(t+t1)

)
−

(
1− e−αt1

)]
(2.26)

Finally there is the integration over t1:

b = − A

α2

∫ t

0

dt1

[
e−αt

2
(
eαt1 − e−αt1

)
−

(
1− e−αt1

)]
= − A

α2

[
1
2α

e−αt
(
eαt − 1 + e−αt − 1

)
− t− 1

α

(
e−αt − 1

)]
=

A

α3

(
αt− 3

2
+ 2e−αt − 1

2
e−2αt

)
(2.27)
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So the mean-squared displacement is found as

〈(φ(t)− φ0)2〉 =
ω2

0

α2

(
1− e−αt

)2 +
2kBT

Iα2

(
αt− 3

2
+ 2e−αt − 1

2
e−2αt

)
. (2.28)

One can look at the short time and long time behaviors. For short times, there is

〈(φ(t)− φ0)2〉 ≈
ω2

0

α2
[1− (1− αt)]2 +

2kBT

Iα2

[
αt− 3

2
+ 2(1− αt +

α2t2

2
)− 1

2
(1− 2αt +

4α2t2

2
)
]

= ω2
0t2 +

2kBT

Iα2

[
α2t2 − α2t2

]
≈ ω2

0t2. (2.29)

Curiously, all of the constant terms and terms linear in t cancel out, and so do the temperature
dependent terms in t2. The net result is very simple and shows a ballistic result (motion at constant
speed). Compare at long times, where these is a diffusion,

〈(φ(t)− φ0)2〉 ≈
ω2

0

α2
+

2kBT

Iα2

(
αt− 3

2

)
=

1
α2

(
ω2

0 −
3kBT

I

)
+

2kBT

Iα
t ≈ 2kBT

Iα
t (2.30)

At very long times the linear term dominates and the constant term does not matter. Then the
root-mean-squared displacement is

√
〈(φ(t)− φ0)2〉 ≈

√
2kBT

Iα
t =
√

2Dt, (2.31)

where the difusion constant here is
D =

kBT

Iα
(2.32)

One might think that the angular displacement has a limit, not going beyond 2π, however, this
mathematics is such that if the walker goes beyond 2π, the angle is continued into the next branch,
is moving towards 4π, etc.

3 Numerical solutions of the Langevin equation

The main difficulty for numerical integrations of the differential equation is the task of producing
random torques with the correct distribution. Towards that end, first look at how this is done for
a mass experiences forces (instead of torques), as would take place for a usual Brownian particle
in 1D. After that, I’ll translate to the appropriate quantities for the rotor problem, since they are
mathematically equivalent.

The Langevin equation for a mass m with position r(t) and velocity v(t), experiencing determin-
isitic or conservative forces F (t), random forces Fs(t) and a viscous drag force scaled by coefficeint
α is

ma = Fnet ⇒ mv̇ = F (t)− αmv + Fs(t), ṙ = v. (3.1)

The deterministic mechanical force F (t) could be due to some potential. Sometimes it is better to
use forces F (t) and Fs(t) scaled as force per unit mass, f(t) = F (t)/m and fs(t) = Fs(t)/m, then
the mass drops out and we want to solve the simplified version,

v̇ = f(t)− αv + fs(t), ṙ = v. (3.2)

The forces Fs are stochastic. With the translations between the rotor model and the moving particle
model, of ω ↔ v and I ↔ m and τ ↔ F , one can see that their correlations must satisfy the
fluctuation-dissipation theorem,

〈Fs(t′)Fs(t′′)〉 = 2αmkBT δ(t′ − t′′). (3.3)
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In terms of the force per mass, this is changed to

〈fs(t′)fs(t′′)〉 =
2αkBT

m
δ(t′ − t′′). (3.4)

Recalling that the brackets imply an average all all possible force functions, we also assume there is
no directional bias to the averaged force,

〈fs(t′)〉 = 0. (3.5)

3.1 Langevin Euler method

Now for the simplest integration method, which is the Euler method, look at the approximation to
the ODE with a time step ∆t. The derivatives w.r.t. time are approximated as

v̇(t) ≈ v(t + ∆t)− v(t)
∆t

, ṙ(t) ≈ r(t + ∆t)− r(t)
∆t

. (3.6)

The velocity equation (for this free particle without a potential) can be integrated independently of
the position equation. Or one could always add the potential force to fs(t). Either way, the time
evolution for one time step of a usual Euler method is

v(t + ∆t) = v(t) + v̇∆t = v(t) + f(t)∆t− αv(t)∆t + fs(t)∆t, r(t + ∆t) = r(t) + v(t)∆t. (3.7)

But this does not apply well here, because the force fs(t) is rapidly varying. Instead, one needs
to integrate the ODE over the time step, and account for the variations in the force. So with an
integral approach, ∫ t+∆t

t

dt′ v̇(t′) =
∫ t+∆t

t

dt′ [f(t′)− αv(t′) + fs(t′)] (3.8)

The LHS gives the change in velocity. The second term on RHS can be approximated various ways,
but the simplest is to suppose v(t′) is a constant there (the value at one of the end points), or the
average of the endpoints. The fluctuating force term is zero, if averaged over many sample functions.
But that does not mean a particular value or sample of this integral is zero. One assumes there
is some distribution to the value of the integral, whose average is zero. Denote the integral as the
”stochastic acceleration” a(∆t) that it caused during ∆t (recall that f is force per mass, so this is
really acceleration times ∆t):

a(∆t) =
∫ t+∆t

t

dt′ fs(t′), with 〈a(∆t)〉 = 0. (3.9)

Although the average is zero, there is some width to the distribution. One can determine the squared
variance, which is nonzero,

σ2
a = 〈a2(∆t)〉 =

〈∫ t+∆t

t

dt′ fs(t′)
∫ t+∆t

t

dt′′ fs(t′′)

〉
=

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′ 〈fs(t′)fs(t′′)〉

=
∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
2αkBT

m
δ(t′ − t′′) =

∫ t+∆t

t

dt′
2αkBT

m
=

2αkBT

m
∆t (3.10)

That’s surprising one can find this out with so little information about the forces. This is only based
on the behavior the forces must have for establishing thermal equilibrium. Then going back to the
integrated equation of motion, it can be expressed using the simplest approximation for the damping
and conservative force terms,

v(t + ∆t) = v(t) + f(t)∆t− αv(t)∆t + a(∆t) (3.11)
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To do this updating numerically, it means that a(∆t) is replaced by a random number, whose average
is zero and whose variance is that determined in (3.10). In computation, random number generators
return a value w with zero mean and typically, a unit variance. Then it means here we should do

v(t + ∆t) = v(t) + f(t)∆t− αv(t)∆t + σa(∆t)w (3.12)
r(t + ∆t) = r(t) + v(t)∆t (3.13)

or, the random acceleration term is

a(∆t) = σa(∆t)w =
[
2αkBT

m
∆t

]1/2

w. (3.14)

It is a curious result. The random acceleration increases with the square root of the time step. But
this reflects the fact that during the time step, it is as if the particle is experiencing a small random
walk. How much it gets pushed has a diffusive behavior.

One then supposes that this same random acceleration term is included even if there is also a
potential force present. The two act together to determine the net dynamics.

If instead the planar rotor model is being solved numerically by this scheme, the change is quite
simple, translating the variables, a single step is

ω(t + ∆t) = ω(t) + τ(t)∆t− αω(t)∆t + σa(∆t)w (3.15)
φ(t + ∆t) = φ(t) + ω(t)∆t (3.16)

The deterministic torque per unit inertia is τ(t) and the random torque per unit inertia is the last
term, which is a random angular acceleration,

a(∆t) = σa(∆t)w =
[
2αkBT

I
∆t

]1/2

w. (3.17)

A note about the random numbers. If the random number generator is Gaussian, it will give a
unit variance, and the procedure above makes sense. Alternatively, one could use a random number
x uniformly distributed from -0.5 to +0.5, as Loft and de Grand did in 1987. Then you need to fix
your random numbers so that they have the desired variance. For uniform randoms x from -0.5 to
+0.5, their squared variance is

σ2
x =

∫ +0.5

−0.5

dx x2P (x) =
∫ +0.5

−0.5

dx x2 = 2
0.53

3
=

1
12

. (3.18)

Then to get the desired accelerations, one must scale them up by
√

12 to get a unit variance, and
apply them as w = x

√
12, or

a(∆t) = σa(∆t)w =
[
24αkBT

m
∆t

]1/2

x. (3.19)

Thus the explanation of the mysterious factor of 24 in the Loft and de Grand paper!
This scheme is not going to be very accurate, for the position it is first order accurate in the

time step. One can improve it by going to a second order or possibly higher order scheme. There
are different ways to do that, discussed next.

3.2 Verlet algorithm, without stochastic forces

For reference, the Verlet algorithm is mentioned here because it is a well-known 2nd order method
and could be useful for pointing out how to be adapted for stochastic forces.

Verlet is based on finite difference expressions for the position of a particle at closely spaced
times. The basic expansion in a Taylor series for position advancing forward in time is

r(t + ∆t) = r(t) + ∆t v(t) +
1
2!

∆t2v′(t) +
1
3!

∆t3v′′(t) +
1
4!

∆t4v′′′(t) + ... (3.20)
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One can do the same for the velocity,

v(t + ∆t) = v(t) + ∆t v′(t) +
1
2!

∆t2v′′(t) +
1
3!

∆t3v′′′(t) +
1
4!

∆t4v(4)(t) + ... (3.21)

and the position can be run backward in time too,

r(t−∆t) = r(t)−∆t v(t) +
1
2!

∆t2v′(t)− 1
3!

∆t3v′′(t) +
1
4!

∆t4v′′′(t) + ... (3.22)

If the forward and backward position equations are added, the odd powers of time step cancel out,

r(t + ∆t) + r(t−∆t) = 2r(t) + ∆t2v′(t) +
2
4!

∆t4v′′′(t) + ... (3.23)

and there results a three-point iteration for the position,

r(t + ∆t) = −r(t−∆t) + 2r(t) + ∆t2 f(t) +
1
12

∆t4v′′′(t) + ... (3.24)

The error depends on ∆t4, so this equation is accurate to third order, by itself. Note that it could
be useful computationally to write it as giving the changes in position, viz.,

[r(t + ∆t)− r(t)] = [r(t)− r(t−∆t)] + ∆t2 f(t) +O(∆t4) (3.25)

The velocity must be updated too. Taking the difference of the forward and backward position
equations gives

r(t + ∆t)− r(t−∆t) = 2∆t v(t) +
2
3!

∆t3v′′(t) + ... (3.26)

and rewriting to give the velocity from the two points,

v(t) =
1

2∆t
[r(t + ∆t)− r(t−∆t)]− 1

3!
∆t2v′′(t) + ... (3.27)

This is only accurate to first order in the time step, which demonstrates that the velocity will always
be more difficult to obtain, and at least one order less accurate than the position. Probably it has
some advantage over the Euler method, although their errors for the velocity are similar. The main
advantage here is that the position should be much more accurate than in the Euler method. This
can also be written as a sum of changes in position. Let the times be denoted with an index n,
where t = tn = n∆t, and rn = r(tn), vn = v(tn), etc. Then the Verlet algorithm can be summarized
in this index notation as

rn+1 = −rn−1 + 2rn + ∆t2 fn +O(∆t4) (3.28)

vn =
1

2∆t
[rn+1 − rn−1] +O(∆t2) (3.29)

The algorithm can also be written in terms of position changes. The change in position at the
nth time step can be expressed as

∆rn+1 ≡ r(t + ∆t)− r(t) = rn+1 − rn (3.30)

Then the Verlet algorithm can be summarized as

∆rn+1 = ∆rn + ∆t2 fn +O(∆t4) (3.31)

vn =
1

2∆t
[∆rn+1 + ∆rn] +O(∆t2) (3.32)

The accuracy quoted assumes the forces depend only on position, but we have a velocity dependent
damping force, so I think the accuracy depends on how that is implemented.

Another problem with the Verlet algorithm, is that the force in the position update is imple-
mented by multiplying by ∆t2. This is a small parameter and could lead to imprecision (when added
to the other larger terms). However, I don’t honestly see the real difficulty with that, except perhaps
due to numerical round off in a low precision computer (too few significant digits). All in all, the
Verlet algorithm will be accurate to second order in the time step for the position variable, because
that is limited by the velocity precision.
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3.3 Velocity-Verlet algorithm, without stochastic forces

This is a slight modification of the Verlet algorithm, it is hard to see why it is any better or worse,
and is said to be algebraically equivalent to the Verlet algorithm. The main difference, is that the
force appears both in the position update and in the velocity update. Perhaps that lends it a better
symmetry.

The first is the position update, which is the same as the forward time step expansion used to
derive Verlet, with the force (per mass) substituted for v′(t),

r(t + ∆t) = r(t) + ∆t v(t) +
1
2!

∆t2f(t) +
1
3!

∆t3v′′(t) + ... (3.33)

For the velocity updating, however, first consider this expression shifted forward one stime step,
that is,

r(t + 2∆t) = r(t + ∆t) + ∆t v(t + ∆t) +
1
2!

∆t2f(t + ∆t) +
1
3!

∆t3v′′(t + ∆t) + ... (3.34)

Now we already know a way to get the velocity at time t + ∆t, which is the difference,

v(t + ∆t) =
1

2∆t
[r(t + 2∆t)− r(t)]− 1

3!
∆t2v′′(t + ∆t) + ... (3.35)

Substituting the expression for r(t + 2∆t), one has,

v(t + ∆t) =
1

2∆t

{
r(t + ∆t) + ∆t v(t + ∆t) +

1
2!

∆t2f(t + ∆t)

+
1
3!

∆t3v′′(t + ∆t)− r(t)
}
− 1

3!
∆t2v′′(t + ∆t) + ... (3.36)

The difference r(t + ∆t)− r(t) is obtained from (3.33), so this is

v(t + ∆t) =
1

2∆t

{
∆t v(t) +

1
2!

∆t2f(t) +
1
3!

∆t3v′′(t) + ∆t v(t + ∆t) +
1
2!

∆t2f(t + ∆t)
}

+ − 1
12

∆t2v′′(t + ∆t) + ...

=
1

2∆t

{
v(t) + v(t + ∆t) +

∆t

2
[f(t) + f(t + ∆t)]

}
+

∆t2

12
(v′′(t)− v′′(t + ∆t)) + ... (3.37)

Rearranging the new velocity to the LHS only, there results the velocity updatng, that uses the force
averaged over the end points,

v(t + ∆t) = v(t) +
∆t

2
[f(t) + f(t + ∆t)] +

∆t2

3!
(v′′(t)− v′′(t + ∆t)) + ... (3.38)

The last term is the error, so the step is accurate to first order in the time step. Again adopting the
index notation with tn = n∆t and rn = r(tn), etc., the Velocity-Verlet algorithm can be summarized
as

rn+1 = rn + ∆t vn +
1
2
∆t2 fn +O(∆t3) (3.39)

vn+1 = vn +
1
2
∆t [fn + fn+1] +O(∆t2) (3.40)

In terms of the position, the velocity-Verlet is accurate to second order in the time step. One
advantage of this scheme it that it appears more symmetrical between the position and velocity
updating, as the force appears in both of them.
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3.4 The velocity dependent damping force

When the velocity dependent damping force is used, the above schemes should probably be modified,
because they really were designed for forces that depend on position.

Look at the Verlet scheme discussion, with f(t)→ f(t)−αv(t), to include the damping explicitly.
Then f(t) contains only the conservative forces. Then for the v(t) here, use the two-point symmetric
formula. With that, the position updating becomes

r(t + ∆t) = −r(t−∆t) + 2r(t) + ∆t2 f(t)

− α∆t2
{

1
2∆t

[r(t + ∆t)− r(t−∆t)]− 1
3!

∆t2v′′(t)
}

+
1
12

∆t4v′′′(t) + ... (3.41)

This can be cleaned up a bit,(
1 + α

∆t

2

)
r(t + ∆t) = −

(
1− α

∆t

2

)
r(t−∆t) + 2r(t) + ∆t2 f(t)

+
1
3!

∆t4
(

αv′′(t) +
1
2
v′′′(t)

)
+ ... (3.42)

That keeps the error term as ∆t4, which is good. The bad part is the extra calculations, however,
this may be more stable than implementing v(t) numerically, I think. For the Verlet algorithm, there
is going to be no change in the velocity update. Then Verlet with explicit damping looks like:(

1 + α
∆t

2

)
rn+1 = −

(
1− α

∆t

2

)
rn−1 + 2rn + ∆t2 fn +O(∆t4) (3.43)

vn =
1

2∆t
[rn+1 − rn−1] +O(∆t2) (3.44)

Try the same correction for velocity-Verlet. The position updating will have a similar change,

rn+1 = rn + ∆t vn +
1
2
∆t2 fn − α

1
2
∆t2

1
2∆t

[rn+1 − rn−1] +O(∆t3) (3.45)

This is going to require knowledge of a previous position, however, so it should probably be aban-
doned. In this equation, instead the damping could be simply expressed with −αvn on the RHS,
then,

rn+1 = rn + ∆t

(
1− α

∆t

2

)
vn +

1
2
∆t2 fn +O(∆t3) (3.46)

The damping slows down the ballistic jump of the particle. But this change in the algorithm is no
different than having the damping as a part of the forces. The same type of change can be tried for
the velocity update,

vn+1 = vn +
1
2
∆t [fn + fn+1 − α(vn + vn+1)] +O(∆t2) (3.47)

Here, the presence of vn+1 on the RHS does modify the algorithm and will make it more stable.
In fact, it is hard to define the algorithm without doing this. The result is the velocity update for
velocity-Verlet with explicit damping,(

1 + α
∆t

2

)
vn+1 =

(
1− α

∆t

2

)
vn +

1
2
∆t [fn + fn+1] +O(∆t2) (3.48)

3.5 Numerical stability with or without explicit damping?

Look at the Verlet scheme for position update, Eq. (3.28). If the damping is part of the implied
force fn, you wouldn’t be able to use fn = −αvn in numerical implementation, because only vn−1
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is known when the position update is applied. Suppose you were doing a simulation with only the
damping force and doing fn = −αvn−1, is it a stable iteration? The position update with this ”old”
velocity give a discrete equation,

rn+1 = −rn−1 + 2rn + ∆t2(−αvn−1)

= −rn−1 + 2rn − α∆t2
1

2∆t
(rn − rn−2)

= −rn−1 + 2rn − β (rn − rn−2) , β =
α∆t

2
. (3.49)

One can try a solution like rn = an to see if this is stable. Unfortunately it gives a third order
algebraic equation, not sure is the roots can be easily extracted. The equation becomes

an+1 = −an−1 + (2− β)an + βan−2

0 = −a3 + (2− β)a2 − a + β (3.50)

Forget that for now...
Instead, what if the damping is included as in the explicit method? Check the stability there

when there is only the damping force:

(1 + β)rn+1 = −(1− β)rn−1 + 2rn, put rn = an

0 = (1 + β)a2 − 2a + (1− β)

a =
1

2(1 + β)

[
2±

√
4− 4(1 + β)(1− β)

]
(3.51)

The roots reduce to

a =
1

(1 + β)

[
1±

√
β2

]
=

{
1 (positive square root)
1−β
1+β (negative square root)

(3.52)

I think this is unstable. The unit root it OK, because it leads to a constant position, which is what
to expect from viscous damping. But the root less than 1 will lead to rn → 0 for large n, which
means the particle is artificially pulled to the origin. That does not make physical sense, so probably
this scheme is not good. Thus, the Verlet algorithm appears to be problematic as far as including
the damping.

What about the velocity-Verlet with damping? Let me just check the explicit damping, since
it is the only thing that really makes sense anyway. Here one only needs to look at the velocity
updatng, which is essentially decoupled from the position updating. With only damping, one has
(again with β = α∆t

2 )
(1 + β)vn+1 = (1− β)vn (3.53)

Upon iteration starting from vo, this obviously leads to a solution,

vn =
(

1− β

1 + β

)n

vo. (3.54)

This closely approximates the correct exponential solution, and if we let the total time of integration
t = n∆t be fixed and the number of steps very large, there results:

vn =
(

1− αt
2n

1 + αt
2n

)n

vo →
e−αt/2

eαt/2
v0 = e−αtvo. (3.55)

It is indeed the correct solution for a particle only affected by the damping force. Then this is an
obvious advantage of using the velocity-Verlet instead of the just-Verlet algorithm! In addition, the
position now will be determined by the velocity and should be stable, with rn going to a constant
at large n, as it should.

OK, that was a summary of the Verlet type algorithms for molecular dynamics. The question
now, of course, is whether is it easy to modify them to include the stochastic forces. Next I suggest
some ideas towards that end, that should be methods with second order accuracy in the position.
Following that, I recall another scheme that includes stochastic forces, and is indeed second order
for the position.
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3.6 Developing Langevin second order methods?

One needs better approximations than first order, that include the stochastic forces correctly. The
Verlet algorithm and the velocity-Verlet algorithms, discussed in the previous sections do not have
stochastic forces. Still, the way to proceed is by integrating the ODE, not by finite difference expres-
sions alone. Thus is seems a little difficult to derive anything by comparison with the derivations of
Verlet and velocity-Verlet.

Here are some ideas about integrating numerically, however, this is not at all Verlet or velocity-
Verlet, but some of my own ideas on how to proceed.

Consider the basic ODE as having both stochastic forces fs(t) and all other deterministic me-
chanical forces contained in f(t) (per unit mass). Thus, f(t) includes the damping and any forces
due to a potential, such as any conservative forces. The dynamics is assumed to follow from

v̇ = f(t) + fs(t), ṙ = v(t). (3.56)

Now the velocity equation can be integrated, twice, to get the position. For simplicity of notation,
the starting time is t = 0 and the final time of one time step is t = ∆t. But first we integrate to
some arbitrary time inside that interval:

v(t)− v(0) =
∫ t

0

dt′ v̇ =
∫ t

0

dt′ [f(t′) + fs(t′)] (3.57)

Now integrate again, this time, to the end of the interval.∫ ∆t

0

dt [v(t)− v(0)] =
∫ ∆t

0

dt

∫ t

0

dt′ [f(t′) + fs(t′)] (3.58)

The LHS can be integrated exactly because v = ṙ. That gives∫ ∆t

0

dt [v(t)− v(0)] = r(∆t)− r(0)− v(0)∆t. (3.59)

The RHS of (3.58) needs some approximation for the integration of the deterministic mechanical
forces. Consider first the simplest, which is to say that that force is a constant during the time step.
Then that term gives ∫ ∆t

0

dt

∫ t

0

dt′ f(t′) ≈ 1
2
(∆t)2f(0) (3.60)

Obviously this might be improved somewhat, by using the average of the force at beginning and
ends of the interval, if that can be known numerically. Or alternatively, using the force at the middle
of the interval, again with the same caveat. The stochastic force integral is more interesting, and I
give it some name,

s = s(∆t) ≡
∫ ∆t

0

dt

∫ t

0

dt′ fs(t′) (3.61)

Dimensionally, s is force per mass times time squared, or length. It corresponds to the displacement
caused by the stochastic force during ∆t. Now, s must be averaged over all stochastic force functions.
But that average is zero as long as the force has no net bias in one direction. Still there is some
width to its distribution. We can try to find the squared variance of s.

σ2
s = 〈s2〉 =

〈∫ ∆t

0

dt

∫ t

0

dt′ fs(t′)
∫ ∆t

0

dx

∫ x

0

dx′ fs(x′)

〉

=
∫ ∆t

0

dt

∫ t

0

dt′
∫ ∆t

0

dx

∫ x

0

dx′ 〈fs(t′)fs(x′)〉

=
∫ ∆t

0

dt

∫ t

0

dt′
∫ ∆t

0

dx

∫ x

0

dx′
2αkBT

m
δ(t′ − x′)

=
2αkBT

m

∫ ∆t

0

dt

∫ ∆t

0

dx

∫ t

0

dt′
∫ x

0

dx′ δ(t′ − x′) (3.62)
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Now, this integral takes some special care. Consider especially the integrations over x′ and t′, and
the value of

Z =
∫ t

0

dt′
∫ x

0

dx′ δ(t′ − x′) (3.63)

For the integration over x′, a nonzero result requires t′ between 0 and x. Here is a diagram of the
times, supposing that x < t. It shows the results of the integration over x′:

0 x′ x t ∆t

-�
t′ in here gives 1

-�
t′ in here gives 0

Then for this case, the following integration over t′ gives

Z =
∫ t

0

dt′ H(x− t′) = x, for x < t. (3.64)

The other possible case is that t < x, then the diagram for the integration over t′ with the values of
that integration shown is

0 t′ t x ∆t

-�
x′ in here gives 1

-�
x′ in here gives 0

Then for this case, the following integration over x′ gives

Z =
∫ t

0

dx′ H(t− x′) = t, for t < x. (3.65)

So the general result for Z is

Z =
∫ t

0

dt′
∫ x

0

dx′ δ(t′ − x′) =

{
x if x < t

t if t < x
= min(x, t). (3.66)

That allows for the remainder of the integration to be done,

J =
∫ ∆t

0

dt

∫ ∆t

0

dx min(x, t) (3.67)

-
0 x

6t

0
∆t

∆t

�
�

�
�

�
�

�
�

t < x

x < t

This integration is within a unit square of the xt plane. Half of the
result comes from the lower triangle where t < x and the other half
comes from the upper triangle where x < t. So we can integrate
just one of these triangles and then double that. Doubling the t < x
region, the integral is

J = 2
∫ ∆t

0

dx

∫ x

0

dt t

= 2
∫ ∆t

0

dx
1
2
x2 =

1
3
(∆t)3.

Then the result for the squared variance of s is

σ2
s =

(
2αkBT

m

)
· 1
3
(∆t)3
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That is an interesting dependence on the size of the time step. So now to apply this to the numerical
integration of the ODE, assume again there is a random number generator giving a distribution of
numbers w with zero mean and unit variance. We use that to generate the random displacements s
by

s = σs · w =
[(

2αkBT

m

)
· 1
3
(∆t)3

]1/2

w. (3.68)

Putting together all the contributions to the displacement, the twice-integrated Langevin equation
is now approximated as

r(∆t)− r(0)− v(0)∆t =
1
2
(∆t)2f(0) + σs · w. (3.69)

Then the actual update of the particle takes place as follows:

r(∆t) = r(0) + v(0)∆t +
1
2
(∆t)2f(0) + σs · w. (3.70)

I believe this is a good method, but perhaps it is difficult to decide the order of the errors. However,
the difference terms are the same as in the velocity-Verlet method. So the error should probably be
of the order of ∆t3, as it was in velocity-Verlet.1

Note, however, the somewhat annoying v(0) factor can be removed, by combining this result
with the same result for a step in the other direction,

r(−∆t) = r(0)− v(0)∆t +
1
2
(∆t)2f(0) + σs · w′. (3.71)

I reversed the time step, but must use a different random number in this other interval. One can
think that the system starting at t = 0 was used for either of these expressions, and evolved either
earlier or later in time by ∆t. So the random forces will be different in either the backward or
forward time evolutions. Then if they are added, these equations produce

r(∆t) + r(−∆t) = 2r(0) + (∆t)2f(0) + σs · (w1 + w2). (3.72)

where w1 = w′ is the random number used in the negative time step and w2 = w is the random
number in the positive time step. Then as an updating algorithm, one need to have r at two previous
time steps to get the next one, i.e., shifting the time by t to an arbitrary one,

r(t + ∆t) = −r(t−∆t) + 2r(t) + (∆t)2f(t) + σs · (w1 + w2). (3.73)

One can see that this is very similar to the position update for the Verlet algorithm, but with the
addition of the stochastic displacement. Then it is a good bet that the error term here should be
proportional to ∆t4 as in the Verlet scheme.

Keeping in mind that the random number w1 took place and affected the system during the
interval [t − ∆t : t], and the random number w2 took place during the interval [t : t + ∆t], one
needs to re-use the w2 number again on the subsequent step. For that next step, one would generate
another random number w3, and apply the sum of w2 + w3, viz.,

r(t + 2∆t) = −r(t) + 2r(t + ∆t) + (∆t)2f(t + ∆t) + σs · (w2 + w3). (3.74)

and so on. I believe this is logically correct. I thought that the two randoms could be replaced
by a single new random number with a

√
2 larger variance, but that could imply some inconsistent

dynamics, if a very small w followed a larger one. In this proposed fashion, you still generate only
one random number per step, but have to save and re-use the previous one.

1This is the error in the finite difference terms here that are identical to terms in the velocity-Verlet algorithm.
There does not seem to be a simple error estimate for the stochastic term.
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This algorithm, which might be called Langevin-Verlet 2, could be summarized for the arbitrary
step n, where the times are tn = n∆t, n = 0, 1, 2, ... and the positions are rn = r(tn), etc.,

rn+1 = −rn−1 + 2rn + (∆t)2fn + σs · (wn + wn+1). (3.75)

There is still the question of how to update the velocity, though. One idea is to take it as derived
from the position, after the fact. But that doesn’t work–you need to know v(0) already to step
forward. The difficulty also is to be sure an algorithm is accurate to 2nd order in the time step.
Although what I have done to this point seems correct, it then runs into some questions about
updating the velocity.

To get the velocity at time ∆t correct to 2nd order in ∆t, also requires a double step. The other
ODE ṙ = v does not depend on the forces. One can make Taylor expansions,

r(∆t) ≈ r(0) + v(0)∆t +
1
2!

dv

dt
(∆t)2 +

1
3!

d2v

dt2
(∆t)3 + ...

r(−∆t) ≈ r(0)− v(0)∆t +
1
2!

dv

dt
(∆t)2 − 1

3!
d2v

dt2
(∆t)3 + ... (3.76)

The difference will cancel the even powers of ∆t, leading to a three-point 2nd order relation,

r(∆t)− r(−∆t) ≈ 2v(0)∆t +
2
3!

d2v

dt2
(∆t)3 + ... (3.77)

Then presumably this can always be used to get the velocity with an error proportional to (∆t)2,

v(t) ≈ 1
2∆t

[r(t + ∆t)− r(t−∆t)]− 1
3!

d2v

dt2
(∆t)2 (3.78)

Hence this gives v in the middle of an interval of 2∆t. But it is clear this will work, except that the
velocity will always be one step behind the position. That could possibly give difficulties in treating
the damping term, where the force depends on velocity.

So to summarize this proposed Langevin-Verlet algorithm, the iteration is of

rn+1 = −rn−1 + 2rn + (∆t)2fn + σs · (wn + wn+1). (3.79)

vn =
1

2∆t
[rn+1 − rn−1] (3.80)

As mentioned, this does not work well for the damping term, because to get that force, you need
the velocity vn, but it hasn’t yet been calculated. One can include the damping directly into the
first equation, as

fdamp
n = −αvn = − α

2∆t
[rn+1 − rn−1] (3.81)

Then applying that in the first half-step, it becomes

rn+1 = −rn−1 + 2rn + (∆t)2(fdamp
n + fc

n) + σs · (wn + wn+1)

= −rn−1 + 2rn − (∆t)2
α

2∆t
[rn+1 − rn−1] + (∆t)2fc

n + σs · (wn + wn+1) (3.82)

and this gives(
1 +

α

2
∆t

)
rn+1 = −

(
1− α

2
∆t

)
rn−1 + 2rn + (∆t)2fc

n + σs · (wn + wn+1) (3.83)

One can see this already reduces the effects of the conservative forces, fc
n, and of the stochastic forces.

However, based on the previous stability analysis, in the absence of conservative and stochastic forces,
this scheme is unstable, causing the particle to tend to move to the origin, rn → 0 for large n. That
is unfortunately a big problem with it.

2Without the stochastic term it is the Verlet algorithm.
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Nevertheless, this method with including the damping explicitly into the algorithm is summarized
as (

1 +
α

2
∆t

)
rn+1 = −

(
1− α

2
∆t

)
rn−1 + 2rn + (∆t)2fc

n + σs · (wn + wn+1) (3.84)

vn =
1

2∆t
[rn+1 − rn−1] (3.85)

I do not think this method as been used by anyone, which makes sense due to its stability issue.
Usually something simpler is taken. This is considered a ”Verlet” algorithm, because there is no
velocity explicitly in the iteration of the position.

3.6.1 A Langevin-Velocity-Verlet method?

One can try to do a different manipulation of the difference equations and get what could be called a
”Langevin velocity-Verlet” algorithm. That would mean that the velocity does appear explicitly in
the position updating, and the deterministic forces would appear in both the position and velocity
updatings. Let’s see if this works.

Start from the raw result for one time step, obtained from twice integrating Newton’s law and
using the index notation,

rn+1 = rn + ∆t vn +
1
2
(∆t)2 fn + σs · wn. (3.86)

Here wn is the random number for this particular time interval ∆t starting at tn and ending at tn+1.
Earlier I said it was annoying that the velocity is present. Now in this case I don’t mind! Instead of
symmetrizing for ±∆t, to get velocity-Verlet, a shift of the time t → t + ∆t is considered, but still
doing a forward time-evolution (the same steps as used for deriving standard velocity-Verlet):

rn+2 = rn+1 + ∆t vn+1 +
1
2
(∆t)2 fn+1 + σs · wn+1. (3.87)

This is the evolution in the next time step, so there is a different random displacement term deter-
mined by wn+1. Now use the symetric difference to get the velocity vn+1, at the boundary of these
two intervals,

vn+1 =
1

2∆t
(rn+2 − rn) +O(∆t2) (3.88)

Then using the position updates in this (first for rn+2), one gets,

vn+1 =
1

2∆t

{
rn+1 − rn + ∆t vn+1 +

1
2
(∆t)2 fn+1 + σs · wn+1

}
+O(∆t2) (3.89)

then with rn+1 − rn from (3.86),

vn+1 =
1

2∆t

{
∆t vn +

1
2
(∆t)2 fn + σs · wn + ∆t vn+1 +

1
2
(∆t)2 fn+1 + σs · wn+1

}
+O(∆t2) (3.90)

Now moving both vn+1 to the LHS and arranging,

vn+1 = vn +
∆t

2
· (fn + fn+1) +

σs

∆t
· (wn + wn+1) +O(∆t2) (3.91)

This is clearly the stochastic generalization of the velocity-Verlet algorithm, when combined with
(3.86). So these should be summarized together, which gives the Langevin-velocity-Verlet
scheme,

rn+1 = rn + ∆t vn +
1
2
(∆t)2 fn + σs · wn +O(∆t3) (3.92)

vn+1 = vn +
∆t

2
· (fn + fn+1) +

σs

∆t
· (wn + wn+1) +O(∆t2) (3.93)
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The same wn should be used in both the position and velocity update, however, the velocity update
requires the generation of the next random number wn+1. Then that value wn+1 will itself go into
the subsequent position update that gives rn+2, and so on. It can be seen to be accurate to second
order in the time step, for the position.

The time step divided into σs is interesting. This gives the constant,

σv ≡
σs

∆t
=

[(
2αkBT

m

)
· 1
3
∆t

]1/2

=
σa√

3
. (3.94)

Dimensionally, both σa and this new σv are velocities, while σs is displacement. So the variance in
this stochastic change in velocity still depends on the square root of the time step. It would likely
cause a usual diffusive (random walk) behavior of the velocity, which is what we want! Its strength
should be correctly associated with the temperature. This Langevin-velocity-Verlet appears to be a
good candidate for a useful integration scheme.

Finally, there is the one last slight modification if the damping force is included explicitly, which
really needs to be the case for the velocity dependent force (otherwise, what to do with −αvn+1 that
will appear on the RHS?). So including that, and using σv = σs/∆t on the RHS of both updates,
the LVV scheme can be summarized as

rn+1 = rn + ∆t (vn +
∆t

2
· fn + σv · wn) +O(∆t3) (3.95)

(1 + β)vn+1 = (1− β)vn +
∆t

2
· (fn + fn+1) + σv · (wn + wn+1) +O(∆t2) (3.96)

where again, β = α∆t
2 gives the scale of the damping. Written in this way the stochastic term is

intriguing. It acts as a random velocity added to the current speed, for the position update. Then,
that random velocity is combined with another one from the same distribution, and their net is used
to change the particle velocity. As well, the same factor ∆t

2 · fn + σv · wn is used in the position
update and in the following velocity update. Another similar factor is generated to do the current
velocity update and the next position update, and so on. It looks good and simple this way.

3.6.2 An out-of-phase (better) second order Langevin method

For the rotor.c magnet programs, I did a slight variation on the first order Euler method. It is
actually a second order method for the position and the velocity, if the damping force is treated
correctly.

I don’t recall the source where I found this method. It is based on having the position and
velocity values a half time step out of phase. I used the following:

1. Position half-step: r ← r + 1
2v∆t. with t← t + 1

2∆t.

2. Velocity update: v ← v + f∆t− αv∆t + σa(∆t)w.

3. Position half-step: r ← r + v 1
2∆t. with t← t + 1

2∆t.

4. Repeat the cycle.

Because of the time update and half steps, this may look confusing. But the scheme has two position
updates per step, but only one velocity update. That is actually so that there is at least one point
per cycle where both are defined, even though the minimum requirement is that r and v are defined
at the alternating half steps. It should be equivalent to the following:

1. Position half-step: r(t + ∆t
2 ) = r(t) + 1

2v(t)∆t, with t← t + 1
2∆t.

2. Velocity update: v(t + ∆t) = v(t) + f(t + ∆t
2 )∆t− αv(t)∆t + σa(∆t)w.

3. Position half-step: r(t + ∆t) = r(t + ∆t
2 ) + 1

2v(t + ∆t)∆t. with t← t + 1
2∆t.

4. Repeat the cycle.
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Let’s look at the corresponding theory for this, which best seen in a diagram of the time axis. For
compactness, use the index notation, with tn = n∆t and even half steps like tn+ 1

2
= (n + 1

2 )∆t, etc.
The symbols on the diagram are the numbers that actually get calculated in the algorithm. There
are velocities missing at the half steps, because those are not calculated.

-

timem - m - m - m -1

2

3 1

2

3

m - m -

rn−1

vn−1

rn− 1
2

rn

vn

rn+ 1
2

rn+1

vn+1

The diagram shows the different sub-steps 1©, 2©, 3©. Let’s look at the parts 1© and 3©, including
the error terms. For part 1©, with a half time step, the Taylor expansion from time tn is

rn+ 1
2

= rn +
∆t

2
vn +

1
2!

(
∆t

2

)2

v′n +
1
3!

(
∆t

2

)3

v′′n + ... (3.97)

Also write this for a reversed half time step,

rn− 1
2

= rn −
∆t

2
vn +

1
2!

(
∆t

2

)2

v′n −
1
3!

(
∆t

2

)3

v′′n + ... (3.98)

Then for part 3© of the algorithm, going into the time tn on the previous cycle, rn is found by solving
this last equation,

rn = rn− 1
2

+
∆t

2
vn −

1
2!

(
∆t

2

)2

v′n +
1
3!

(
∆t

2

)3

v′′n + ... (3.99)

Then the combination of the 3©-step and the subsequent 1©-step produces some cancellations [use
rn from (3.99) substituted into (3.97)] is equivalent to

rn+ 1
2

= rn− 1
2

+ ∆t vn +
2
3!

(
∆t

2

)3

v′′n + ... (3.100)

That is the usual symmetric formula for the velocity vn at the midpoint of these two half-steps.
Considered as an update of the position, which it is, the error is proportional to (∆t)3, so it is
accurate to second order in the time step.

Look at the velocity update. In finding vn+1 from vn, it is using the force calculated at the
middle of that time interval, fn+ 1

2
. This likely improves the precision. To see why this is so, look at

the integral needed to derive this stochastic update (note that there was no stochastic term in the
position update, so finite differences were OK there). From the Langevin equation, v̇ = f(t)+ fs(t),
integrated once, one gets

v(t + ∆t) = v(t) +
∫ t+∆t

t

dt′ f(t′) +
∫ t+∆t

t

dt′ fs(t′) (3.101)

The last term is the stochastic push which is replaced (”exactly”) by σa(∆t)w. The other integral
can be approximated different ways, according to the time at which the force is used. Look at the
expansion of that force (conservative + damping) around the middle of the interval–this would seem
to be the best alternative to try. The mid-point time is t̄ = t + ∆t

2 .

f(t′) = f(t̄ ) + (t′ − t̄ ) · f ′(t̄ ) +
1
2!

(t′ − t̄ )2 · f ′′(t̄ ) + ... (3.102)

With this expansion, the force integral can be evaluated:∫ t+∆t

t

dt′ f(t′) = f(t̄ )
∫ t+∆t

t

dt′ + f ′(t̄ )
∫ t+∆t

t

dt′ (t′ − t̄ )

+
1
2!

f ′′(t̄ )
∫ t+∆t

t

dt′ (t′ − t̄ )2 + ... (3.103)
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But changing to the relative variable z = t′ − t̄, the integrals are of the general form∫ +∆t
2

−∆t
2

dz zn =
zn+1

n + 1

∣∣∣∣+∆t
2

−∆t
2

=

{
2

n+1

(
∆t
2

)n+1
for even n

0 for odd n
(3.104)

So the force integral has only terms with odd powers of ∆t:∫ t+∆t

t

dt′ f(t′) = ∆t f(t̄ ) +
1
24

(∆t)3f ′′(t̄ ) + ... (3.105)

So this gives a good velocity updating procedure,

v(t + ∆t) = v(t) + ∆t f(t̄ ) + σa(∆t)w +
1
24

(∆t)3f ′′(t̄ ) (3.106)

where the last term is the error estimate. Written in the index notation, it is the same as what was
described for the rotor.c program:

vn+1 = vn + ∆t fn+ 1
2

+ σa(∆t)wn +
1
24

(∆t)3f ′′n+ 1
2

(3.107)

Surprisingly, the error is proportional to (∆t)3, the same order as the position updating! This makes
this method quite accurate.

There is only one technical detail that would limit the accuracy, which is the usual problem of
dealing with the damping. The algorithm had to use the term −αvn, although the theory says to
use −αvn+ 1

2
. But the velocities are not being calculated at the half time steps. So, let’s put in

the estimate of v at the half step, based on the average of the end points for that interval. The
expansions of v around the mid-point t̄ = t + ∆t

2 are

v(t) = v(t̄ )− ∆t

2
v′(t̄ ) +

1
2!

(
∆t

2

)2

v′′(t̄ )− 1
3!

(
∆t

2

)3

v′′′(t̄ ) + ... (3.108)

v(t + ∆t) = v(t̄ ) +
∆t

2
v′(t̄ ) +

1
2!

(
∆t

2

)2

v′′(t̄ ) +
1
3!

(
∆t

2

)3

v′′′(t̄ ) + ... (3.109)

Then these added together give a good estimate of the mid-point velocity,

v(t̄ ) =
1
2

[v(t) + v(t + ∆t)]− 1
2!

(
∆t

2

)2

v′′(t̄ ) + ... (3.110)

Using this to write the damping force −αv(t̄ ), we have in the velocity update, with index notation,

vn+1 = vn −
α∆t

2
[vn + vn+1] + ∆t fn+ 1

2
+ σa(∆t)wn

+α∆t
1
2!

(
∆t

2

)2

v′′n+ 1
2

+
1
24

(∆t)3f ′′n+ 1
2

(3.111)

or just summarizing together with the error term,

(1 + β)vn+1 = (1− β)vn + ∆t fn+ 1
2

+ σa(∆t)wn +O(∆t3), β =
α∆t

2
. (3.112)

In this way, the update is indeed accurate to second order in the time step, and the inclusion of the
damping is totally stable and gives the correct non-forced solution.
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So let’s summarize this out-of-phase 2nd order algorithm, with stable damping and two position
updates per step, but only one velocity update per step. Suppose I start from a vn and an rn− 1

2
,

and do the 3© part first:

rn = rn− 1
2

+
∆t

2
vn −

1
2!

(
∆t

2

)2

v′n +
1
3!

(
∆t

2

)3

v′′n + ... (3.113)

rn+ 1
2

= rn +
∆t

2
vn +

1
2!

(
∆t

2

)2

v′n +
1
3!

(
∆t

2

)3

v′′n + ... (3.114)

(1 + β)vn+1 = (1− β)vn + ∆t fn+ 1
2

+ σa(∆t)wn +O(∆t3), β =
α∆t

2
. (3.115)

It may seem unnecessary to do the two half steps in sequence. Why not just do one whole step from
rn− 1

2
to rn+ 1

2
for the position update? In fact, you could. But then would have the positions only

at the half-step times and the velocities only at the whole step times. For plotting, correlations or
other analysis, you would still need to shift one of them half a step to look correctly at the output.

The first error terms in the position update cancel, so the algorithm with the errors summarized,
and in my original 1©, 2©, 3© ordering, is

rn+ 1
2

= rn +
∆t

2
vn +O(∆3), (3.116)

(1 + β)vn+1 = (1− β)vn + ∆t fn+ 1
2

+ σa(∆t)wn +O(∆t3), β =
α∆t

2
, (3.117)

rn = rn− 1
2

+
∆t

2
vn +O(∆3). (3.118)

It is certainly simpler than the Langevin-velocity-Verlet I proposed earlier. For the rotor problem,
it worked fine. The big advantage, is the evaluation of the forces in the middle of the interval for
the velocity update. On the other hand, an advantage of the Langevin-velocity-Verlet is that it has
stochastic terms in both the position and velocity updates, which could give it some better balance
and symmetry.

I had a lot of discussion about numerics for a moving mass, however, all of it could be applied
to the rotor problem by the translations previously mentioned: m↔ I and v ↔ ω and f ↔ τ .

4 Langevin Dynamics for 3D Spins

The real problem I want to address is how to look at the dynamics for three-component spins in
thermal equilibrium at some temperature. It should be a simple generalization of the dynamics for
the rotor model, i.e., changed into the dynamics for spins, as in the Landau-Gilbert equation.

The damping for the Landau-Gilbert equation has already been discussed, so now, we need to
know what type of random ”forces” must be included, and how are they correlated to each other
and to the temperature.

The obvious physical idea, is that the spins should be subjected to random torques τs. But the
torqus cannot be arbitrary, because they must conserve the spin lengths. Then it makes more sense
and is more practical to imagine that there are random magnetic fields Fs that affect the spins. In
this way, their spin length will be absolutely conserved. So if I assume that, the possible equation
of motion for an individual spin with the first form of damping, Eq. (1.9), is

Ṡ = S× (F + Fs) + α[S× (F + Fs)]× S, (4.1)

I would hope that the conditions of thermal equilibrium (using classical mechanics with a Boltzmann
distribution) will be enough to determine the correlations of the random fields. One should assume
that they are uncorrelated in time, just as we had earlier for random forces,

〈F i
s(t)F

j
s (t′)〉 = A δij δ(t− t′) (4.2)
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where i and j label Cartesian components. The constant A needs to be determined.
The simplest situation to consider, that has some defined energy in the limit of zero temperature,

is a spin in a fixed magnetic field, which can be taken pointing along the z-axis, with F = Fz = γB.
If we don’t have at least this, there is no energy function for the system and no unique ground state.
So by having this, the spin’s minimum energy state is aligned to B, and fluctuations will cause it to
tilt away from this magnetic field, the more so with higher temperature.

The damping double cross product can be expanded in the usual way, and the equations of
motion are

Ṡ = S× F + S× Fs + α
[
S2(F + Fs)− S · (F + Fs)S

]
. (4.3)

If the equations of motion are considered in Cartesian coordinates, they are

Ṡx = Sy(F + F z
s )− SzF

y
s + αS2F x

s − α[SxF x
s + SyF y

s + Sz(F + F z
s )]Sx

Ṡy = SzF
x
s − Sx(F + F z

s ) + αS2F y
s − α[SxF x

s + SyF y
s + Sz(F + F z

s )]Sy,

Ṡz = SxF y
s − SyF x

s + αS2(F + F z
s )− α[SxF x

s + SyF y
s + Sz(F + F z

s )]Sz. (4.4)

This looks tough to analyze, and it probably means we need some approximations. Or, alternatively
it will be good to look also at the motion in spherical coordinates, or, at least in the two basic
coordinates, (φ, Sz). So transform to

Sx = S sin θ cos φ = S
√

1−m2 cos φ,

Sy = S sin θ sinφ = S
√

1−m2 sinφ,

Sz = S cos θ = Sm. (4.5)

Further, one expects in the absence of the random forces, that the spin will align with the applied
field, and quickly (in atomic time scales) go to Sz ≈ S or m ≈ 1. This means that Sx and Sy are
small parameters. Indeed, then it is actually better to use θ � 1 as a small parameter that scales
the in-plane components. So instead, use the transformation to

Sx = S sin θ cos φ ≈ Sθ cos φ,

Sy = S sin θ sinφ ≈ Sθ sinφ,

Sz = S cos θ ≈ S

(
1− 1

2
θ2

)
. (4.6)

This will be fine because we only want to know about the fluctuations away from or near the stable
state where the spin is aligned to the applied field. The alignment is only related to θ. The φ
variable should be free to move around at will, there is no potential to restrict it, because the energy
in the applied field is

H = −~µ ·B = −γS ·B = −γSB cos θ ≈ −γSB

(
1− 1

2
θ2

)
, (4.7)

which is a parabolic potential only for θ. The ground state energy is −γSB and the term 1
2γSBθ2

is the excitation energy above that value. On the other hand, there will be φ fluctuations, which we
might be able to relate to the temperature by looking at the autocorrelation of the velocity φ̇.

4.1 About spin and equipartition of thermal energy

As far as relating the dynamics to equipartition at some point, we know that an individual spin has
two degrees of freedom (the two angles). Classically each degree of freedom on average has a kinetic
energy of 1

2kBT , if it appears quadratically in the Hamiltonian. Only the deviation θ satisfies this.
So assuming quadratic equipartition applies, we would have for the mean excitation energy

〈Eθ〉 =
〈

1
2
γSB θ2

〉
=

1
2
kBT, or

〈
θ2

〉
=

kBT

γSB
. (4.8)
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Thinking about this, though, one can suspect something is wrong. Where is the other 1
2kBT of

thermal energy, if there are two degrees of freedom? Where is the other degree of freedom? The
angle φ does not appear in the Hamiltonian, and there is no KE term. So something does not add
up here.

To check whether the last result is correct (at least at low temperature where the fluctuations
are small), one can compare the average that would be obtained with the correct statistical average
using z = cos θ,

〈cos θ〉 = 〈z〉 =

∫ +1

−1
dz ze−βH∫ +1

−1
dz e−βH

=

∫ +1

−1
dz zeβγSBz∫ +1

−1
dz eβγSBz

(4.9)

With the parameter λ = βγSB, the lower integral is the partition function, whose exact value is

Z =
∫ +1

−1

dz eλz =
1
λ

(eλ − e−λ) =
2
λ

sinhλ (4.10)

The upper integral is the derivative of this

C =
∂

∂λ

∫ +1

−1

dz eλz =
∂Z

∂λ
=

∂

∂λ

(
2
λ

sinhλ

)
=

2
λ

(
coshλ− 1

λ
sinhλ

)
(4.11)

Then the statistical average is

〈cos θ〉 =
C

Z
=

2
λ

(
coshλ− 1

λ sinhλ
)

2
λ sinhλ

= cothλ− 1
λ

. (4.12)

Now look at what this gives for low temperature, where the spin deviates slightly from the field
direction and θ is small. The LHS is approximately 1− 1

2 〈θ
2〉. The RHS must be approximated for

large λ. Write it in exponential form, using

〈cos θ〉 ≈ 1− 1
2
〈θ2〉 ≈

1
2 (eλ + e−λ)
1
2 (eλ − e−λ)

− 1
λ
≈ 1− 1

λ
(4.13)

So this implies a similar relation for the squared variance, but twice as large as that from the
quadratic approximation,

〈θ2〉 ≈ 2
λ

=
2kBT

γSB
. (4.14)

It means that only this one degree of freedom, θ, is taking all of the thermal energy:

〈Eθ〉 =
〈

1
2
γSB θ2

〉
= 2

(
kBT

2

)
. (4.15)

This makes sense because the other degree of freedom (φ) is completely free to move around 0 to
2π at no cost in energy. It is important to realize this if at some point a matching to thermal
equilibrium properties is required.

To try to see why these two averages don’t match, look at the details of the (wrong!) quadratic
approximation. The energy above the ground state is E = 1

2SFθ2. If one is just averaging θ2 rather
than cos θ, the usual integral to do for a quadratic variable is

〈
θ2

〉
q

=

∫ π

0
dθ θ2e−β 1

2 FSθ2∫ π

0
dθ e−β 1

2 FSθ2 =
−2 ∂

∂λZq(λ)
Zq(λ)

, (4.16)

where the partition function is

Zq(λ) =
∫ π

0

dθ e−
1
2 λθ2

→
∫ ∞

0

dθ e−
1
2 λθ2

=
1
2

√
2π

λ
, (4.17)
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The derivative in the numerator is∫ π

0

dθ θ2e−
1
2 λθ2

= −2
∂Zq

∂λ
=

1
2

√
2π

λ3
=

1
λ

Zq(λ) (4.18)

and thus the average is 〈
θ2

〉
q

=
1
λ

=
1

βFS
=

kBT

FS
=

kBT

γBS
, (4.19)

and as well, the averaged energy follows the equipartition rule,

〈Eθ〉q =
1
2
γBS

〈
θ2

〉
q

=
1
2
kBT. (4.20)

But this does not actually apply to the spin problem!
Comparing the detail of the exact calculation, why do these differ? The answer is a actually

obvious. It is because this is not a usual quadratic degree of freedom, because the phase space allows
the spins to point anywhere on the surface of a sphere of radius S. When integrating correctly over
the polar angle (I ignored the 2π range of the in-plane angle), the differential element is sin θ dθ and
not just dθ as was assumed incorrectly for the quadratic integral. Let’s fix this and see what is the
average squared polar angle. Find the corrected partition function, applying further the small angle
approximation, sin θ ≈ θ, good for low temperature,

Z(λ) =
∫ π

0

dθ sin θ e−β 1
2 SFθ2

≈
∫ π

0

dθ θ e−
1
2 λθ2

= −e−
1
2 λθ2

λ

∣∣∣∣∣
π

0

=
1− e−

1
2 λπ2

λ
≈ 1

λ
(4.21)

The last approximation is that for low temperature. The desired average squared angle is twice the
derivative w.r.t. λ, divided by Z,〈

θ2
〉

= − 2
Z

∂Z

∂λ
≈ 2λ

1
λ2

=
2
λ

=
2kBT

FS
(4.22)

That is the same as the result from the averaging of cos θ. So we can really see, the polar angle takes
all of the thermal energy, which is twice the value naively expected from the quadratic equipartition
theorem (for a uniformly distributed variable)!

For reference also look at the averages of the terms that were dropped in the expansion of
cos θ = 1− 1

2θ2 + 1
4!θ

4 + ... I expect the higher terms just depend on higher powers of T . All of these
higher terms could take some of the energy kBT , which was all attributed to θ2, possibly. Look
at the quartic, and see what energy it gets, which can be done in the linearized model, using the
partition function already found,

〈θ4〉 =
22

Z

∂2Z

∂λ2
= 4λ

2
λ3

=
8

(βSF )2
=

8(kBT )2

(SF )2
. (4.23)

This is what I expected, however, at low temperature this is irrelavant compared to the quadratic
term we kept.

4.1.1 Average of polar angle θ

Another average that may be helpful for the calculations and testing of programming is the average
of the polar angle away from the magnetic field, θ. This will be a nonzero value that should
be proportional to T . Using the approximate differential element sin θdθ ≈ θdθ, good for low
temperature, and the low-T Hamiltonian,

〈θ〉 ≈
∫ π

0
dθ θ θe−β 1

2 FSθ2∫ π

0
dθ θ e−β 1

2 FSθ2 =
−2∂Zq

∂λ

Z(λ)
=

1
2

√
2π
λ3

1
λ

=
√

π

2λ
=

√
πkBT

2SF
(4.24)
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Thus, it is not linearly proportional to T , which is interesting, as is the curious factor of π/2. But it
shows how much the spin acquires xy components, proportional to sin θ, as it precesses around the
magnetic field in a cone-like state. For example, at a moderately low temperature kBT/SF = 0.1,
the formula gives 〈θ〉 ≈ 0.4, which is already quite large. That produces surprisingly large in-plane
components. The conclusion is that even at low T , the in-plane spin fluctuations are already quite
strong.

4.2 Dynamics in angular coordinates

We will consider, eventually, the equivalent linearization of the equations of motion. Cartesian
coordinates may not be the best choice. We know that Sx and Sy relate to the φ degree of freedom,
so it can possibly be ignored, initially. Only the Sz component is doing anything interesting. In any
case, look at both in the linearized sense, for small θ. One has from Ṡz = −S sin θ θ̇,

−S sin θ θ̇ = S sin θ(cos φF y
s − sinφ F x

s ) + αS2(F + F z
s )

−αS2 [sin θ(cos φ F x
s + sinφF y

s ) + cos θ(F + F z
s )] cos θ (4.25)

The damping terms involving the z-components are varying as 1− cos2 θ = sin2 θ. The other terms
are proportional to sin θ, that itself divides out. So now there is still the exact relation,

−θ̇ = (cos φF y
s − sinφF x

s )− αS [cos θ(cos φF x
s + sinφF y

s )− sin θ(F + F z
s )] (4.26)

Or it could be written

−θ̇ = (F y
s − αSF x

s cos θ) cos φ− (F x
s + αSF y

s cos θ) sinφ + αS(F + F z
s ) sin θ (4.27)

At low temperature one could then use the approximations cos θ ≈ 1 and sin θ ≈ θ to simplify some
of the terms.

Also look at the in-plane stochastic motion equation, First, the exact equation is

φ̇ =
SxṠy − SyṠx

S2
x + S2

y

=
SxṠy − SyṠx

S2 − S2
z

= −(F + F z
s ) +

(SxF x
s + SyF y

s )Sz

S2 − S2
z

+ αS2 SxF y
s − SyF x

s

S2 − S2
z

(4.28)

Then also consider the small angle approximation for Sz, where S2 − S2
z = S2 sin2 θ is a small

quantity (small xy spin components).

φ̇ = −(F + F z
s ) +

(cos φF x
s + sinφF y

s ) cos θ

sin θ
+ αS

cos φF y
s − sinφ F x

s

sin θ
(4.29)

The first term on the RHS is the usual precessional motion, but modified by the z-component of
the noise. The other parts are somewhat singular due to the presence of sin θ in the denominators.
Partly, though, this shows how there can be wild variations in φ, although those variations may
not have any true physical significance, rather, being an artifact of the singularity of polar spherical
coordinates near the pole. Even so, it can be written instead as

φ̇ sin θ = −(F + F z
s ) sin θ + (cos φ F x

s + sinφF y
s ) cos θ + αS (cos φF y

s − sinφ F x
s ) (4.30)

That is still exact. Again, at low temperature, the approximation is that cos θ ≈ 1 and sin θ ≈ θ.
Next, one has to look at this together with the dynamic equation for θ̇, and see if a solution can be
found, that can be related to equilibrium properties.
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4.3 The dynamics with only a longitudinal random field, F z
s (t)

The general dynamics for θ̇ and φ̇ in an arbitrary case could be challenging to solve. Physically, I
am not sure that is necessary. In the limit of small polar displacements θ, the φ coordinate becomes
irrelevant to the real physical mechanics, because there a change in φ gives the corresponding change
in spin components only after multiplication by sin θ, which is becoming small. In addition to this,
the φ coordinate is not connected to the energy, hence, it is hard to find a relation connecting it to
a thermal equilibrium statistical average.

Although I cannot completely justify it, I now consider a situation where the in-plane stochastic
fields are turned off, and the only nonzero noise comes from F z

s . It could be considered that the
only fluctuations present are the fluctuations in the actual applied field strength that is there, but
not in its direction.3 This itself might not be considered very physical. In the end, however, the Fs

is not a real magnetic field. It is meant only to represent the effect of temperature, so at least as a
mathematical device, this assumption is acceptable. Then the equations are greatly simplified,

θ̇ = −αS(F + F z
s ) sin θ, φ̇ = −(F + F z

s ). (4.31)

The φ̇ equation indicates some random jumping of that angle, but, I don’t know how to connect
averages like 〈φ(t)φ(t)〉 or even 〈φ̇(t)φ̇(t)〉 from this equation to equilibrium averages, so for now
let’s ignore that equation.

The θ̇ equation looks more challenging, however, it was already solved in an earlier section, in the
absence of the stochastic forces (it was written in terms of Sz there). In the way it is written here,
one might say it has ”multiplicative noise” instead of a noise term that is added. However, I am
not sure this is so important, because equations can always be transformed to different appearences.
The equation can be expressed

θ̇

sin θ
=

θ̇ sin θ

1− cos2 θ
=
− d

dt cos θ

1− cos2 θ
= −αS(F + F z

s ) (4.32)

At this point, the equation is still exact. Since I only desire to connect to low temperature properties,
we could assume θ � 1 and simplify some algebra, but I can see that is not necessary, because the
LHS can be integrated exactly. That integral is the inverse hyperbolic tangent, or, it can be expressed
with a logarithm. Integrating both sides, starting from an arbitrary initial angle θ0 = θ(0),∫ t

0

dt′
d

dt′ cos θ

1− cos2 θ
= αS

∫ t

0

dt′ [F + F z
s (t′)]

tanh−1 cos θ(t)− tanh−1 cos θ0 = αSFt + αS

∫ t

0

dt′ F z
s (t′)

1
2

{
ln

[
1 + cos θ(t)
1− cos θ(t)

]
− ln

[
1 + cos θ0

1− cos θ0

]}
= αSFt + αS

∫ t

0

dt′ F z
s (t′) (4.33)

Finally the last can be rearranged in a familar form,

1
2

ln
[
1 + cos θ(t)
1− cos θ(t)

· 1− cos θ0

1 + cos θ0

]
= αSFt + αS

∫ t

0

dt′ F z
s (t′) (4.34)

Now although that was exact, perhaps the reason for doing it has been lost. Let me also show the
linearized approximate version. The differential equation becomes simple in a new variable u = θ2,
because then du

dt = 2θ θ̇, and

du

dt
= −2αS[F + F z

s (t)]θ sin θ ≈ −2αS[F + F z
s (t)]u, then

1
u

du

dt
= −2αS(F + F z

s (t)). (4.35)

3It turns out that this does not give any equilibrium condition to determine the correlation constant A. But it is
good to try it. A better approach is given in a following section.
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This is easily integrated in the same way, starting from initial angle θ0,

ln
[
θ2(t)
θ2
0

]
≈ −2αSFt− 2αS

∫ t

0

dt′ F z
s (t′). (4.36)

It means this process is going to give the autocorrelation function for the polar angle, which is the
quantity for which we know the equilibirum value. For one particular realization of the stochastic
field, we have found the solution,

θ2(t) ≈ θ2
0e
−2αSFt exp

{
−2αS

∫ t

0

dt′ F z
s (t′)

}
(4.37)

The exact solution above will surely give the same result, when it is expanded for small angles. In
fact, to check that, let

Ξ(t) = αSFt + αS

∫ t

0

dt′ F z
s (t′) = αSFt + ξ(t). (4.38)

We already found the exact solution of (4.34), see for example equation (1.26) or (1.45),

cos θ(t) =
(1 + cos θ0)eΞ(t) − (1− cos θ0)e−Ξ(t)

(1 + cos θ0)eΞ(t) + (1− cos θ0)e−Ξ(t)
(4.39)

Now taking this and supposing the polar angle is small, as is its initial angle,

1− 1
2
θ2(t) ≈

(2− θ2
0
2 )eΞ(t) − θ2

0
2 e−Ξ(t)

(2− θ2
0
2 )eΞ(t) + θ2

0
2 e−Ξ(t)

=
2eΞ(t) − θ2

0 coshΞ(t)
2eΞ(t) − θ2

0 sinhΞ(t)
(4.40)

carry out a few more steps,

1− 1
2
θ2(t) ≈

1− 1
2θ2

0e
−Ξ(t) coshΞ(t)

1− 1
2θ2

0e
−Ξ(t) sinhΞ(t)

≈
[
1− 1

2
θ2
0e
−Ξ coshΞ

] [
1 +

1
2
θ2
0e
−Ξ sinhΞ

]
(4.41)

Keeping only the quadratic term, this is

1
2
θ2(t) ≈ 1

2
θ2
0 e−Ξ(coshΞ− sinhΞ) =

1
2
θ2
0 e−2Ξ(t). (4.42)

That gives the same as we found from the linearized dynamic equation, namely,

θ2(t) ≈ θ2
0 e−2Ξ(t) = θ2

0 e−2αSFte−2ξ(t). (4.43)

4.3.1 Finding an equilibrium condition??

Now do an averaging over the random field. This may be tricky but interesting. The averaged
autocorrelation of the angle is

〈
θ2(t)

〉
≈ θ2

0 e−2αSFt

〈
exp

{
−2αS

∫ t

0

dt′ F z
s (t′)

}〉
. (4.44)

This should be found by expanding the exponential,〈
e−2ξ(t)

〉
≈

〈
1− 2ξ(t) +

1
2!

(2ξ(t))2 − 1
3!

(2ξ(t))3 + ...

〉
(4.45)

But upon averaging over different histories of the stochastic fields, which should be assumed to be
unbiased, there obviously results

〈ξ(t)〉 = αS

∫ t

0

dt′ 〈F z
s (t′)〉 = 0. (4.46)
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Next, for the squared term, we need to use two copies of the integral,

〈
ξ2(t)

〉
= (αS)2

∫ t

0

dt′
∫ t

0

dt′′ 〈F z
s (t′)F z

s (t′′)〉 (4.47)

Now here is where we can make the assumption of uncorrelated random fields, with some undeter-
mined coefficient,

〈F z
s (t′)F z

s (t′′)〉 = A δ(t′ − t′′). (4.48)

That makes this integral easy to do:

〈
ξ2(t)

〉
= (αS)2

∫ t

0

dt′
∫ t

0

dt′′ A δ(t′ − t′′) = (αS)2
∫ t

0

dt′ A = (αS)2At. (4.49)

Next, the cubic term,

〈
ξ3(t)

〉
= (αS)3

∫ t

0

dt′
∫ t

0

dt′′
∫ t

0

dt′′′ 〈F z
s (t′)F z

s (t′′)F z
s (t′′′)〉 (4.50)

Here, some new approximation or postulate must be applied. The usual thing that is done is to
suppose the F factors can be averaged in pairs, since that is the basic correlator we have already
(random phase approximation?). But if these are paired up, then there is always one left alone, and
that averaged would be zero. So I think the reasonable approximation, is that this is zero, as would
be all the odd powers of ξ(t).

Finally, it will be good to do this rule to the fourth (and higher) power.

〈
ξ4(t)

〉
= (αS)4

∫ t

0

dt1

∫ t

0

dt2

∫ t

0

dt3

∫ t

0

dt4 〈F z
s (t1)F z

s (t2)F z
s (t3)F z

s (t4)〉 (4.51)

The integration variables are all equivalent, and un-ordered. They need to be paired, and there are
4×3
2×1 = 6 possible ways to do that. But all these ways to do the pairs give the same result, so

〈
ξ4(t)

〉
= 6(αS)4

∫ t

0

dt1

∫ t

0

dt2

∫ t

0

dt3

∫ t

0

dt4 A2 δ(t1 − t2) δ(t3 − t4) = 6(αS)4A2t2 (4.52)

If the same rules are applied to all the even powers of ξ(t), then the typical integral will be

〈
ξ2n(t)

〉
=

2n(2n− 1)
2!

(αS)2n(At)n =
2n(2n− 1)

2!
(α2S2At)n. (4.53)

Now putting the results together and praying for some magic, the sum of these terms is〈
e−2ξ(t)

〉
≈ 1 +

1
2!

〈
(2ξ(t))2

〉
+

1
4!

〈
(2ξ(t))4

〉
+ ...

= 1 +
1
2!

(2αS)2(At) +
6
4!

(2αS)4(At)2 + ... (4.54)

Unfortunately, the magic does not happen here. If I want the result for the autocorrelation to be
independent of time for large time, and go to the equilibrium value, this is not going to work. This
calculation gives 〈

θ2(t)
〉
∼ θ2

0 (4.55)

if the result will be time-independent–that does not make sense. At long time the result should be
independent of the particular starting value. It appears that at some point an approximation was
too extreme, probably the idea that only F z

s field was needed. My guess is that all the components
are needed to be logically consistent.
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4.4 Dynamics dominated by in-plane random fields, F x
s (t) and F y

s (t)

As seen in the previous section, the dynamics with the longitudinal stochastic field only does not
lead to anything resembling a Langevin equation, and hence it was not possible to get a condition for
the field correlations in equilbrium or give the constant A. One can possibly see why that is. If all
three components (F x

s , F y
s , F z

s ) are present, the total field is still nearly aligned on the z-axis, due to
the static field F = Fz = γB. The primary deviations from that state have to do with fluctuations
not in its magnitude, but in its direction. These directional fluctuations come from F x

s (t) and F y
s (t).

So, in this section, I concentrate on their effects.
In fact, it is good to give orders of smallness for different items. We are considering low tem-

perature, so T is the basic scale of smallness. Arbitrarily, one might assume the damping is also
a similar order. The angle θ actually should scale like 〈θ2〉 ∝ T , i.e. as the square root of T , at
most. The fluctuating fields are expected to scale like 〈FsFs〉 ∝ αT , i.e., Fs is the same order as the
temperature or the damping.

With that, look again at the dynamics equations. On the RHS of the equation for θ̇, there is a
stochastic term with the in-plane fields, and another one with the in-plane fields multiplied by α.
The second is one order smaller, so let’s ignore it. In addition, the field F z

s is added to the static
field F , the latter of which is much larger, so in this section we are ignoring F z

s ! Also, this makes
sense as saw it did not play any role in evolution towards equilibrium.

With these approximations, there results the following equation for the low-T in-plane dynamics,

φ̇ sin θ ≈ (F x
s cos φ + F y

s sinφ)− F sin θ (4.56)

The average dynamics of the in-plane angle is precession at frequency ω = −F , however, it gets kicks
from the random fields, but, there is no damping to leading orders. The kicks could be considered
quite strong, because of the factors of sin θ diminishing the other terms. For now, I don‘t care what
φ is doing in details, except that it is somewhat random, due to the dominance of the stochastic
forces there.

With the same type of approximations for the in-plane dynamics, there does result an equation
that resembles the Langevin equation. One gets

θ̇ ≈ (F x
s sinφ− F y

s cos φ)− αSF sin θ (4.57)

It resembles the Langevin equation for a rotor,

ω̇ = τs(t)− αω (4.58)

where τs(t) is the stochasic torque per unit rotational inertia. Note also the energetic similarities:
The rotor has KE = 1

2Iω2 while the spin has potential energy above the ground state E = 1
2SFθ2.

One can think it is impossible to solve this without knowing what φ(t) is doing. However, I think
that φ(t) is a fairly chaotic function, because although it could be roughly precessing at an average
rate ω = F , the kicks it receives are large. In addition, a regular function multiplied by a stochastic
function is mostly hard to predict, i.e., it will also likely be stochastic. So this combination that
appears here is a stochastic function. Let me call the combination τs(t), (it is similar to a stochastic
torque or a stochastic magnetic field),

τs(t) = (F x
s sinφ− F y

s cos φ) (4.59)

We may as well do the linearization also and change sin θ → θ. Then the polar dynamics is just like
the rotor,

θ̇ = τs(t)− αSFθ (4.60)

Now at this point its solution would be just like the solution we have already found, if the torque
has the properties expected for a stochastic function, even though it has some dependence on the
in-plane angle. But we can look at the correlations in τs:

〈τs(t)τs(t′)〉 = 〈(F x
s (t) sinφ(t)− F y

s (t) cos φ(t))(F x
s (t′) sinφ(t′)− F y

s (t′) cos φ(t′))〉 (4.61)
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It is usual to assume the different Cartesian coordinates of Fs are not correlated. So this assumption
is

〈F x
s (t)F y

s (t′)〉 = 〈F x
s (t)〉〈F y

s (t′)〉 = 0 (4.62)

Then this means the cross terms in 〈τs(t)τs(t′)〉 are zero. What about the direct terms? We want
to relate them to the fundamental assumed correlations,

〈F x
s (t)F x

s (t′)〉 = 〈F y
s (t)F y

s (t′)〉 = A δ(t− t′). (4.63)

Now the correlations here have the additional factors of sine and cosine. Consider them to be zero
unless the times match (which is very reasonable, because F x

s (t) is wildly changing and uncorrelated
at different times, regardless of the behavior of φ(t)). And, when the times do match, assume that
the regular function just factors out,

〈F x
s (t) sinφ(t) F x

s (t′) sinφ(t′)〉 = A δ(t− t′) sin2 φ(t) (4.64)
〈F y

s (t) cos φ(t) F y
s (t′) cos φ(t′)〉 = A δ(t− t′) cos2 φ(t) (4.65)

The constant A on the right is the same for both components, because the system is assumed
rotationally invariant (i.e., no force bias in thermal equilibrium, like always). Then when these are
summed, the net result is simple!

〈τs(t)τs(t′)〉 = A δ(t− t′). (4.66)

With that now as an assumption for the torques in the effective Langevin equation, although we
already solved it, just review that, and here with slightly different parameters:(

d

dt
+ αSF

)
θ(t) = τs(t). (4.67)

The solution is elucidated by taking out the long-time homogeneous behavior and letting

θ(t) = h(t) e−αSFt, gives ⇒
(

d

dt
+ αSF

)
θ(t) =

dh

dt
e−αSFt. (4.68)

This is like an integrating factor, and gives∫ t

0

dh

dt′
dt′ =

∫ t

0

dt′ τs(t′) eαSFt′ (4.69)

Then following the solution already developed earlier in these notes, the result will be that obtained
earlier, but with the changes I → 1 and α→ αSF . The polar angle comes out as

θ(t) = θ0 e−αSFt +
∫ t

0

dt′ e−αSF (t−t′) τs(t′) (4.70)

Obviously this is a good solution because it goes to zero at long times in the absence of the stochastic
force, and the time scale is correctly (αSF )−1. Then the procedure to get the autocorrelation
function works correctly here, and following the previous calculations, gives,

〈θ(t)θ(t)〉 = θ2
0 e−2αSFt +

A

2αSF

(
1− e−2αSFt

)
(4.71)

Finally, finally, in the limit of long times, this needs to reach the thermal equilibrium value (with
applied field F = γB):

〈θ(t)θ(t)〉t→∞ =
A

2αSF
=

2kBT

SF
=

〈
θ2

〉
eq.

(4.72)

(Here I am using the correct value for the RHS where all of the energy is in the θ degree of freedom.)
Now luckily the applied field cancels out, which is both surprising and very good. This gives the
needed constant

A = 4αkBT,

(
based on 〈Eθ〉 =

1
2
SF

〈
θ2

〉
eq.

= kBT.

)
(4.73)
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The numerical factor seems too large, but this averaged energy was found two different ways and is
correct. In fact, that value of A is correct for the correlations in τs, but not for the correlations in
the stochastic Cartesian components. The correct result for those is actually,

A = 2αkBT =⇒ 〈F x
s (t)F x

s (t′)〉 = 2αkBT δ(t− t′). (4.74)

Based on the algebra I did above, it is hard to see what went wrong. It is subtle. Apparently, there
is a correlaton between the in-plane fluctuating fields and the in-plane spin flucuations φ(t), that
was not correctly accounted for.

4.4.1 The corrected calculation of the equilibrium condition

-
x

6y

A
A

A
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���

��*
F⊥s

To do this in a different way, consider what the fluctuating
”torque” τs(t) really means. A diagram might help. The spin
factors present are σx = cos φ and σy = sinφ, which form a unit
vector ~σ from the projection of the spin onto the xy plane. Then
the combination in the equation of motion for θ̇ is the in-plane
component of the fluctuating field Fs that is perpendicular to
~σ. This fluctuating field can be written as

τs(t) = F x
s sinφ− F y

s cos φ

= (F x
s σy − F y

s σx)
= (Fs × ~σ)z = F⊥

s . (4.75)

The symbol F⊥
s indicates the instantaneous component of the stochastic field that is perpendicular

to the instantaneous projection of the spin in the xy-plane. There is another component of the
stochastic field that is parallel to the spin, namely,

F ‖
s = F x

s cos φ + F y
s sinφ = Fs · ~σ (4.76)

This term was multiplied by damping α in the equation of motion and thus plays only a weak role
in the dynamics. The combination of F⊥

s and F
‖
s could be a new basis for the stochastic field.

Of course, that axis ~σ is changing wildly with the fluctuations. Indeed, the angle φ responds very
quickly to the stochastic torques in a way we can’t predict, and that gave difficulties in the earlier
analysis.

In our algebra above, at one point, we assumed the correlations of τs proportional to the constant
A, and that constant was found to be A = 4αkBT , which is the correct constant for that variable:

〈τs(t)τs(t′)〉 = 4αkBT δ(t− t′). (4.77)

Then, the correlations for F⊥
s = τs correspond to a degree of freedom taking kBT of thermal energy

(twice the usual 1
2kBT ), and they do really have the ”4” on the RHS,〈

F⊥
s (t)F⊥

s (t′)
〉

= 4αkBT δ(t− t′). (4.78)

But the parallel component, on the other hand, does not contain any thermal energy, in the sense
of its correlations, to leading order, 〈

F ‖
s (t)F ‖

s (t′)
〉

= 0. (4.79)

In fact, this is because this parallel stochastic field component does not have any torque which
would change θ, hence it is not connected to the system energy. Its effect on the spin is a torque
acting around the z-axis, tending to push the spin in the azimuthal direction at constant θ. (Stated
otherwise, the vector F

‖
s σ̂ × S has no z-component.)
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Now at this point, we ignore the underlying fluctuating axis ~σ, and instead refer to the Cartesian
components for Fs, which is described either by the combination of perpendicular and parallel
components, or by Cartesian components to a fixed coordinate frame,

F 2
s = (F⊥

s )2 + (F ‖
s )2 = (F x

s )2 + (F y
s )2 (4.80)

Then the same transformation should be done for the autocorrelations, to their representation in
the fixed coordinate frame of the laboratory. Due to rotational symmetry, the x and y components,
take the same amount of energy, on average, which is half of what F⊥

s contains. So we can expect
that the Cartesian correlations are related to the perpendicular correlations by an obvious relation,〈

F⊥
s (t)F⊥

s (t′)
〉

= 〈F x
s (t)F x

s (t′)〉+ 〈F y
s (t)F y

s (t′)〉 = 4αkBT δ(t− t′). (4.81)

Then since the Cartesian factors are equivalent, we have the correct equipartition result,

〈F x
s (t)F x

s (t′)〉 = 〈F y
s (t)F y

s (t′)〉 = 2αkBT δ(t− t′). (4.82)

This shows the even sharing between different Cartesian components. Obviously the same can be
said for the z-component too, although we already saw that F z

s (t) does not evolve the system towards
equilibrium when the magnetic field is along the z-axis.

Then, for the total stochastic field, each Cartesian component will involve an amount of energy
corresponding actually to 1

2kBT , however, in an instantaneous sense, only two of these will be active
at any time. Thus, a spin in equilibrium will only get kBT of thermal energy, corresponding to two
effective degrees of freedom. The net fluctuation-dissipation theorem for the vector stochastic field
is thus,

〈Fs(t) · Fs(t′)〉 = 6αkBT δ(t− t′). (4.83)

This includes the factor of 2αkBT for each Cartesian component. Then this has shown that the
correlations of the effective torques are varying as

〈τs(t)τs(t′)〉 = 4αkBT δ(t− t′). (using 〈Eθ〉 = kBT ) (4.84)

And the correlations of the stochastic field, when refered to fixed Cartesian axes, has the factor
divided by 2, for example,

〈F x
s (t)F x

s (t′)〉 = 2αkBT δ(t− t′). (using 〈Eθ〉 = kBT ) (4.85)

This is the fluctuation-dissipation theorem for the (scaled) random magnetic fields.
Curiously, there is no mass or rotational inertia present, which is good because there really isn’t

such a quantity for a spin. Check this by checking dimensions. The Fs are the same dimensions as
F = γB, which is frequency or inverse time. So the LHS is squared frequency. On the RHS α in my
formulation is unfortunately not dimensionless, rather, it has dimensions of inverse of spin (see the
dynamic equation of motion), where spin is angular momentum (units = J· s). The delta function
is inverse of its argument, which makes it also inverse time. So in SI, the equation has dimensions

LHS =
1
s2

, RHS =
J

(Js) · s
=

1
s2

, All OK. (4.86)

Some may prefer to write the relation not with these scaled fields but with ones measured in tesla.
Also usually a dimensionless damping is defined, for example, by writing the damped dynamics like

Ṡ = S× F +
αo

S
(S× F)× S, where αo = αS. (4.87)

This new parameter αo is dimensionless. All the terms on the RHS have dimensions as FS. Also,
define the stochastic magnetic fields in tesla via Fs = γBs. Then in these terms the correlation
relation or fluctuation-dissipation theorem is

γ2S 〈Bx
s (t)Bx

s (t′)〉 = 2αokBT δ(t− t′). (4.88)
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One can ask, what about the F z
s fields, this calculation doesn’t say anything about them? They

have the same correlations as F x
s and F y

s , due to rotational symmetry in thermal equilibrium, its
just that they have a limited effect on this polar angle. They instead would produce motions for a
spin aligned to the x of y axes.

One may also try to consider a more general situation, say, that of a spin surrounded by others
and interacting via exchange. That could be general enough, still, it would require some good
approximations to be able to do the kind of analysis presented here.

4.5 Equilibrium condition based on 〈θ〉?
Now try to find a condition on the stochastic fields based on the average of θ, which is nonzero,
rather than the average of θ2. This may result in some other interesting relations between equilibrium
quantities, and also, give relations for testing numerics. I will try to use the equations of motion
with some reasonable assumptions in equilibrium. After a long time, the polar angle stays near some
average value that is its equilibrium value, and

〈θ〉 ≈
√

πkBT

2SF
, 〈θ̇〉 ≈ 0. (4.89)

For the in-plane motion, the good approximation is not as clear. For very low T and weak pertur-
bations, the motion should be a uniform precession at frequency ω = −F . So it is reasonable to
assume over long times,

〈φ̇ sin θ〉 ≈ 〈φ̇〉〈θ〉 ≈ −F 〈θ〉. (4.90)

Looking at the dynamics equations,

〈θ̇〉 = −αS〈(F + F z
s ) sin θ〉

+〈(F x
s sinφ− F y

s cos φ)〉+ αS〈(F x
s cos φ + F y

s sinφ) cos θ〉 = 0, (4.91)
〈φ̇ sin θ〉 = −〈(F + F z

s ) sin θ〉
+ 〈(F x

s cos φ + F y
s sinφ) cos θ〉+ αS〈(F y

s cos φ− F x
s sinφ)〉 = −F 〈sin θ〉. (4.92)

and knowing the thermal equilibrium value of 〈θ〉, this gives some surprising relations. They become

〈F x
s sinφ− F y

s cos φ〉+ αS〈F x
s cos φ + F y

s sinφ〉 = αSF 〈sin θ〉, (4.93)
−αS〈F x

s sinφ− F y
s cos φ〉+ 〈F x

s cos φ + F y
s sinφ〉 = 0. (4.94)

Here I also assumed 〈F z
s sin θ〉 = 0, because that term is much smaller than 〈F sin θ〉 6= 0. This is a

2 × 2 system for the two combined correlations. They can be easily solved, and the results are the
averaged perpendicular and parallel stochastic field components,〈

F ‖
s

〉
= 〈F x

s cos φ + F y
s sinφ〉 =

α2S2

1 + α2S2
F 〈sin θ〉, (4.95)〈

F⊥
s

〉
= 〈F x

s sinφ− F y
s cos φ〉 =

αS

1 + α2S2
F 〈sin θ〉. (4.96)

The sum is smaller than the difference, by a factor of the damping. If I assume a certain symmetry
between x and y components, then the first implies approximatley,

〈F x
s cos φ〉 = 〈F y

s sinφ〉 ≈ 1
2
(αS)2F 〈sin θ〉 ≈ 0. (4.97)

For low enough T , with small damping, the RHS is quite small, and approximates zero. Those
correlations involve a field component with the same component of the spin. It would make sense
that those are zero; we saw that Fz does not really cause Sz to relax towards equilibrium, and
these are similar. For the other equation, let me assume there is some symmetry relation of the
off-diagonal correlations like

〈F y
s cos φ〉 = −〈F x

s sinφ〉. (4.98)
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Applying 〈sin θ〉 ≈ 〈θ〉, this would imply

〈F x
s sinφ〉 = −〈F y

s cos φ〉 =
1
2
αSF 〈sin θ〉 ≈ 1

2
αSF

√
πkBT

2SF
= α

√
π

8
SFkBT . (4.99)

In some sense, this must mean that φ has to jump around suddenly in response to the random fields,
to make this correlation consistently nonzero. But this calculation did not give a constraint on the
field-field correlations like 〈F x

s (t)F x
s (t′)〉.

5 Numerics for 3D Langevin spin dynamics

Now one needs some numerical scheme to integrate the dynamics with the random fields and damping
included. We suppose all Cartesian components of Fs are present, and have the correlations in Eq.
(4.85). The dynamics are controlled by

Ṡ = S× (F + Fs) + α[S× (F + Fs)]× S, (5.1)

where αS = αo is the dimensionless damping. If one looks at just the form of the stochastic field
terms, they are mulitplicative, which means these fields are multiplying functions of the unknown
spin solution. There is only one damping term that is an additive noise, for instance, look at one
Cartesian component of a spin precessing around the constant applied field in the z-direction,

Ṡx = Sy(F + F z
s )− SzF

y
s + αS2F x

s − α[SxF x
s + SyF y

s + Sz(F + F z
s )]Sx (5.2)

The general form of this is rather nonlinear, but might be expressed

ṙ(t) = f [t, r(t)] + fs(t) · g[t, r(t)] (5.3)

The first term is the parts that don’t depend on stochastic fields, but do depend on the current
spin position r(t), a symbol used to generally represent all the spin components (i.e., a 3D vector).
The second term represents the stochastic terms. To see that form in the spin dynamics equations,
again, consider a scalar product of 3D vector functions, for example, in the Ṡx equation, the terms

fs(t) · g[t, r(t)] = F x
s (αS2 − αS2

x) + F y
s (−Sz − αSxSy) + F z

s (Sy − αSxSz), (5.4)

are represented with the vector functions,

~fs =

 F x
s

F y
s

F z
s

 , ~g =

 α(S2 − S2
x)

−Sz − αSxSy

Sy − αSxSz

 (5.5)

and the deterministic force function for Ṡx is

fx = [S× F + α(S× F)× S]x = SyF − αFSxSz. (5.6)

More simply and generally, the time dreivative of S is always easy to split into a deterministic
term (but with damping) and a stochastic term (also with damping). Obviously the equation is
linear in the fields F and Fs and one can write

Ṡ = S× [F− α(S× F)] + S× [Fs − α(S× Fs)] (5.7)

Then one can clearly read off the deterministic function f and the stochastic function that corre-
sponds to ~fs · ~g for each spin component’s time derivative.
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5.1 Euler method for 3D Langevin spin dynamics

Now how to solve a system like (5.3)? As always, it is best to start with the equivalent of an Euler
method, using the lowest order approximations to effect a a time step ∆t. Then later one can look
at how to improve its precision.

The stochastic forces must be accounted for by integrating the differential equation, not by finite
differences alone. This will give∫ t+∆t

t

dt′ ṙ(t′) = r(t + ∆t)− r(t) =
∫ t+∆t

t

dt′ f(t′) +
∫ t+∆t

t

dt′ fs(t′) · g(t′) (5.8)

For an Euler method, the deterministic parts on the RHS can be taken as constants– use their values
at the start of the time interval. This will only leave the integration of the stochastic part:

r(t + ∆t) = r(t) + ∆t f(t) + g(t) ·
∫ t+∆t

t

dt′ fs(t
′) (5.9)

The stochastic ”push” integral was already encountered for the Langevin equation for a mass. Give
it the same name a here, for one of its Cartesian components,

ai(∆t) =
∫ t+∆t

t

dt′ f i
s(t

′) (5.10)

Its average over different histories of the noise is zero:

〈ai(∆t)〉 =
∫ t+∆t

t

dt′
〈
f i

s(t
′)

〉
= 0. (5.11)

This applies to any Cartesian component. On the other hand, there is a distribution of this integral,
so get the squared variance based on the fluctuation-dissipation result for the fields Fs which are
identified as the fs here, so assume〈

f i
s(t)f

j
s (t′)

〉
= 2αkBT δij δ(t− t′). (5.12)

Then the squared variance of any Cartesian component of a is the same as that of ax,

σ2
a =

〈
a2

x(∆t)
〉

=
∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′ 〈fx
s (t′)fx

s (t′′)〉 = 2αkBT ∆t. (5.13)

Then, the corresponding term ai(∆t) in the integration step is replaced by a zero mean, unit variance
random number w multiplied by σa. So the Euler integration step is really simple, as expected,

r(t + ∆t) = r(t) + ∆t f(t) + g(t) · (σaw) (5.14)

The stochastic term really is a sum over Cartesian components, so here w is actually three random
numbers and this term is expanded out as

r(t + ∆t) = r(t) + ∆t f(t) + gi(t) · (σawi) (5.15)

I will avoid writing those sums over Cartesian indeces, however, to keep the formulas cleaner. That
is because I also want to use the index notation for the steps, with tn = n∆t and r(tn) = rn, etc. So
the one Euler step in index notation (with implied sum over Cartesian components in the stochastic
dot product) is

rn+1 = rn + ∆t fn + gn · (σawn), σa(∆t) =
√

2αkBT ∆t . (5.16)

Here, n on wn refers to the nth step’s triple random number, wn = (wx
n, wy

n, wz
n), and in similar

fashion, gn = (gx
n, gy

n, gz
n).

If one ignored the stochastic part, this is a Taylor series with the next order (error) term being
1
2∆t2f ′n. Then this step is accurate to first order in the time step.
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5.2 A second order integration method?

Let’s approach this with the goal of better precision. There are always different ways to proceed.
Let me first try to get a second order approach that uses rn and rn−1 to calculate the estimate
for rn+1. But remember that the only logical way to go about this is to integrate the differential
equation, otherwise, one doesn’t know how to deal with the stochastics.

On the RHS, both f(t) and g(t) can be expanded in Taylor series, like

f(t′) = f(t) + (t′ − t)f ′(t) +
1
2
(t′ − t)2f ′′(t) + ... (5.17)

While f(t) comes from the differential equation, f ′(t) must come from a finite difference estimate,
using two values at neighboring time steps. Suppose I use the times t−∆t and the current time t.
Applying this same expansion with t′ = t−∆t, we have

f(t−∆t) = f(t)−∆t f ′(t) +
1
2
(−∆t)2f ′′(t) + ... (5.18)

so this tells us that we can put

f ′(t) ≈ f(t)− f(t−∆t)
∆t

+
1
2
∆t f ′′(t) (5.19)

Then I have an expansion of the force at time t′ around the current time t,

f(t′) ≈ f(t) + (t′ − t)
[
f(t)− f(t−∆t)

∆t
+

1
2
∆t f ′′(t)

]
+

1
2
(t′ − t)2f ′′(t) + ... (5.20)

In the Euler method, the integration of the ODE produced ∆t f(t) on the RHS. Here, instead of just
multiplication by ∆t, we need to integrate this over the time step from t to t+∆t. With integration
over τ ′ = t′ − t, this gives∫ t+∆t

t

dt′ f(t′) ≈ ∆t f(t) +
(∆t)2

2
f ′(t) +

1
3!

(∆t)3f ′′(t) + ...

= ∆t f(t) +
(∆t)2

2

[
f(t)− f(t−∆t)

∆t
+

1
2
∆t f ′′(t)

]
+

1
3!

(∆t)3f ′′(t) + ...

= ∆t

(
3
2
f(t)− 1

2
f(t−∆t)

)
+

5
12

(∆t)3f ′′(t) + ... (5.21)

OK, this is a well-known 2-point finite difference formula for the integral. It just used the linear fit
to the function, then integrated. If this was the only thing in the ODE RHS, the algorithm would
become

rn+1 = rn + ∆t

(
3
2
fn −

1
2
fn−1

)
+

5
12

(∆t)3f ′′n (5.22)

This is accurate to second order in the time step.
Now for the stochastic term in second order, more work is needed. A similar expansion is made

for g(t),

g(t′) = g(t) + (t′ − t)g′(t) +
1
2
(t′ − t)2g′′(t) + ... (5.23)

But this is multiplied by the stochastic field, and then integrated. So the integral looks tricky,

q =
∫ t+∆t

t

dt′g(t′) · fs(t′) =
∫ t+∆t

t

dt′
[
g(t) + (t′ − t)g′(t) +

1
2
(t′ − t)2g′′(t) + ...

]
fs(t′) (5.24)

The integral itself cannot be evaluated, but its mean and variance can be found. The mean is zero,
due to 〈fs(t′)〉 = 0. Try to get the variance, using the fluctuation-dissipation theorem,

〈q2〉 =
∫ t+∆t

t

dt′ g(t′)
∫ t+∆t

t

dt′′ g(t′′) 〈fs(t′)fs(t′′)〉 = 2αkBT

∫ t+∆t

t

dt′ g2(t′)

= 2αkBT

∫ t+∆t

t

dt′
[
g(t) + (t′ − t)g′(t) +

1
2
(t′ − t)2g′′(t) + ...

]2

(5.25)
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There are several trivial integrals, and the result is

〈q2〉 = 2αkBT

{
∆t g2(t) + (∆t)2g(t)g′(t) +

(∆t)3

3
[
(g′(t))2 + g(t)g′′(t)

]
+ ...

}
(5.26)

Now to use it, the finite difference value of g′(t) must be substituted,

g′(t) ≈ g(t)− g(t−∆t)
∆t

+
1
2
∆t g′′(t) (5.27)

This could even be used in the term cubic in the time step. Some ugly algebra...

〈q2〉 = 2αkBT

{
∆t g2(t) + (∆t)2g(t)

[
g(t)− g(t−∆t)

∆t
+

1
2
∆t g′′(t)

]
+

(∆t)3

3

[
g(t)− g(t−∆t)

∆t
+

1
2
∆t g′′(t)

]2

+
(∆t)3

3
g(t)g′′(t) + ...

}
(5.28)

Rearrange,

〈q2〉
2αkBT∆t

= g2(t) + g(t)[g(t)− g(t−∆t)] +
1
3
[g(t)− g(t−∆t)]2

+
(∆t)2

3

(
7
2
g(t)− g(t−∆t)

)
g′′(t) + ... (5.29)

〈q2〉
2αkBT∆t

=
7
3
g2(t)− 5

3
g(t)g(t−∆t) +

1
3
g2(t−∆t)

+
(∆t)2

3

(
7
2
g(t)− g(t−∆t)

)
g′′(t) + ... (5.30)

Then the variance of this stochastic ”push” is actually dependent on the current and previous state
of the system, correct to second order in the time step,

σq =
√
〈q2〉 =

√
2αkBT∆t

[
7
3
g2(t)− 5

3
g(t)g(t−∆t) +

1
3
g2(t−∆t)

]1/2

+O(∆t3) (5.31)

This is the same order of error as in the deterministic part. Putting them together, with index
notation, and summing over the Cartesian components of the push, a single step is

rn+1 = rn + ∆t

(
3
2
fn −

1
2
fn−1

)
+ σq,n · wn +O(∆t3) (5.32)

where the stochastic impulse (due to each Cartesian component) is determined by

σq,n =
√

2αkBT∆t

[
7
3
g2

n −
5
3
gngn−1 +

1
3
g2

n−1

]1/2

(5.33)

This should be a single step for the original differential equation,

ṙ(t) = f(t) + fs(t) · g(t) (5.34)

where both f and g can depend on the desired solution function r(t).
I cannot be sure about the stability, it is difficult to judge without knowing the force function

explicitly.
There is a slight modification/simplification that could be applied. Above, I eliminated one term

cubic in the time step, but there still remained a cubic error term. More consistent would be to
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consider both cubic terms as the error. Then a simpler version of the algorithm will use the squared
variance as follows:

〈q2〉 = 2αkBT

{
∆tg2(t) + (∆t)2g(t)

[
g(t)− g(t−∆t)

∆t
+

1
2
∆t g′′(t)

]
+

(∆t)3

3
[
(g′(t))2 + g(t)g′′(t)

]
+ ...

}
(5.35)

Do some arranging,

〈q2〉
2αkBT∆t

= 2g2(t)− g(t)g(t−∆t) +
(∆t)2

3

[
(g′(t))2 +

5
2
g(t)g′′(t)

]
+ ... (5.36)

So now, the variance of the stochastic impulse is much simpler,

σq,n =
√

2αkBT∆t
[
2g2

n − gngn−1

]1/2
+O(∆t3) (5.37)

The actual step is still the same as before, and the method is accurate to second order.

5.3 Second order Runge-Kutta method for Langevin spin dynamics

Sometimes these simple finite difference-like methods are numerically unstable. It is good to try to
develop another method that might resemble Runde-Kutta, which tends to be very stable. It means
to try to split a time step into two parts, using some evaluation at the center of the time step.

Consider a determinisitc ODE
ṙ(t) = f(t, r) (5.38)

For second order Runge-Kutta, the first stage is to initially make a preliminary Euler half-step to
the center of the desired integral, t̄ = t + ∆t

2 . Then that initial prediction is used to get a better
estimate of the slope in the center of the interval, with which a whole “correction” step can be made,
starting from the original starting point r(t). I need to write this process as integrations, so it can
be generalized to the stochastic problem.

We know the expansion of the force around the center of the interval is

f(t′) = f(t̄ ) + (t′ − t̄ ) · f ′(t̄ ) +
1
2!

(t′ − t̄ )2 · f ′′(t̄ ) + ... (5.39)

The individual step using this has also already been discussed. For RK2, only the first term is used
and the correction step is

r(t + ∆t) = r(t) +
∫ t+∆t

t

dt′ f(t′) = r(t) + ∆t f(t̄ ) +
2
3!

(
∆t

2

)3

f ′′(t̄ ) + ... (5.40)

where the last is the error estimate. But this cannot be applied directly, because the position r(t̄ ) is
needed to generate the the mid-point force value. But that is where the preliminary Euler half-step
is applied, which is just the integral of the Taylor series over the half step using the starting force
value,

r(t̄ ) = r(t) +
∆t

2
f(t) +

1
2!

(
∆t

2

)2

f ′(t) + ... (5.41)

The force is really a function of time and the position, and this means really that f(t̄ ) = f(t̄, r(t̄ )),
using an estimate from this last expression. So to summarize the one RK2 step, with t̄ = tn+ 1

2
,

r̄ = rn +
∆t

2
f(tn, rn), (5.42)

rn+1 = rn + ∆t f(tn+ 1
2
, r̄) +O(∆t3). (5.43)

I have some doubt about how to get the accurate error estimate, but let it stand for the time being.
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For the stochastic modifications, the preliminary Euler step should be like what has been already
discussed, using though, a half-time-step, which introduces a factor of 1√

2
,

r̄ = rn +
∆t

2
fn + gn ·

(
1√
2

σaw1,n

)
,

1√
2

σa =

√
2αkBT

∆t

2
. (5.44)

To be careful, note what the stochastic term/random number is replacing. It represents the integral
over the half time step from t to t + ∆t

2 , of the stochastic force,

1√
2

σaw1,n
.=

∫ t+∆t
2

t

dt′ fs(t′) (5.45)

Note that we may use this same partial history of fs(t′) in the correction part of the RK2 step.
That is why I called the random number w1,n. There will be another random number, w2,n needed
for the correction stage.

Now for the ”correction whole step”, the g-function can be expanded around the center point,
instead of around the initial point as in the previous section,

g(t′) = g(t̄ ) + (t′ − t̄ ) · g′(t̄ ) +
1
2!

(t′ − t̄ )2 · g′′(t̄ ) + ... (5.46)

Multiplied by the stochastic field and integrated over the whole time step gives the stochastic ”push”,

q =
∫ t+∆t

t

dt′ g(t′) · fs(t′) =
∫ t+∆t

t

dt′
[
g(t̄ ) + (t′ − t̄ )g′(t̄ ) +

1
2!

(t′ − t̄ )2g′′(t̄ ) + ...

]
fs(t′) (5.47)

Of course, the mean of this integral is zero, but the variance is not, and

〈
q2

〉
=

∫ t+∆t

t

dt′ g(t′)
∫ t+∆t

t

dt′′g(t′′)〈fs(t′)fs(t′′)〉 = 2αkBT

∫ t+∆t

t

dt′ g2(t′)

= 2αkBT

∫ t+∆t

t

dt′
[
g(t̄ ) + (t′ − t̄ )g′(t̄ ) +

1
2!

(t′ − t̄ )2g′′(t̄ ) + ...

]2

(5.48)

Integration of the odd powers of (t′− t̄ ) gives zero because t̄ is in the center of the interval. Besides
the error term, only the zeroth and quadratic terms give a nonzero result. Their integration gives

〈
q2

〉
= 2αkBT

{
∆t g2(t̄ ) +

2
3

(
∆t

2

)3 [
(g′(t̄ ))2 + g(t̄ )g′′(t̄ )

]}
(5.49)

By using the center of the interval, there is no term quadratic in the time step. The terms cubic in
the time step can be considered the error terms. [One of them, g′(t̄ ), could be reduced but it really
doesn’t help because there will still be another cubic error term.] Then to leading order we can use
just q = g(t̄ )a(∆t), and the variance is

σq =
√
〈q2〉 =

√
2αkBT∆t g(t̄ ) = σa g(t̄ ) (5.50)

It is the same as used in the discussion of Langevin Euler steps in a previous section.
The total correction step includes the simultaneous changes due to both the deterministic and

stochastic terms. But for the stochastic part, we have to re-use the same history fs(t′) during
t ≤ t′ < t + ∆t

2 , that was used in the preliminary Euler step, Eq. (5.44). So the actual stochastic
push being used here, effectively determined only by g(t̄ ) and not depending on g′(t̄ ), etc, must
partly use the random number w1,n in the preliminary step, and a new random number, w2,n, due
to

q = g(t̄ )

{∫ t+∆t
2

t

dt′ fs(t′) +
∫ t+∆t

t+∆t
2

dt′ fs(t′)

}
= g(t̄ )

σa√
2

(w1,n + w2,n) . (5.51)
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The net random number being used here is wn = w1,n + w2,n. This is the sum of two unit-variance
randoms, i.e, 〈w1,n〉 = 0 and 〈w2

1,n〉 = 1, and the same for the other one. Then the squared variance
of the sum is 〈(w1,n + w2,n)2〉 = 〈w2

1,n〉 + 〈w2
2,n〉 = 2. The variance of the sum is then

√
2, which

combines with the factor of 1√
2

so that the variance of 1√
2
(w1,n + w2,n) is 1, as required.

Then the correction step, including the deterministic and stochastic effects, is

rn+1 = rn + ∆t f(t̄ ) + g(t̄ ) ·
(

1√
2
σa[w1,n + w2,n]

)
(5.52)

The number w1,n is required to be the same number that was used in the preliminary Euler stage.
So let’s summarize a single second order Runge-Kutta step. First there is the “trial” or

preliminary Euler step to the center of the time interval,

t̄ = tn+ 1
2

= t +
∆t

2
, (5.53)

where the preliminary update is

r̄ = rn +
∆t

2
f(tn, rn) + g(tn, rn) ·

(
1√
2
σaw1,n

)
. (5.54)

Then there is the correction stage all the way across the time interval,

rn+1 = rn + ∆t f(t̄, r̄) + g(t̄, r̄) ·
(

1√
2
σa[w1,n + w2,n]

)
. (5.55)

Both of these are written in such a way that the variance to be included is the same,

σa(∆t) =
√

2αkBT∆t . (5.56)

The errors should vary as (∆t)3, so that it is accurate to second order in the time step. When
actually applying the formulas, need to keep in mind that the dot products of g with the random
numbers are 3D scalar products like

gn · wn =
∑

i=x,y,z

gi
nwi

n (5.57)

That is, each of w1,n and w2,n are actually triplets of unit variance random numbers for the 3D spin
dynamics problem.

5.4 Second order Heun method for Langevin dynamics

This is a scheme that is about as simpler and accurate as RK2. I can’t say which is better. The
advantage of the Heun method, is that it is a type of predictor-corrector scheme, which tend to be
fairly stable. On the other hand, Runge-Kutta is also highly stable.

The predictor step is an Euler full step to some estimate of the solution at time tn+1, call it r̃n+1.
Then that is corrected by using an average of the slope f(rn) and at the predicted point, f(r̃n+1).
That averaged slope is used to shoot from r(tn) to the new solution point, r(tn+1).

To keep track of errors, start from expanding f and g around the initial point, as usual,

f(t′) = f(t) + (t′ − t)f ′(t) +
1
2
(t′ − t)2f ′′(t) + ... (5.58)

g(t′) = g(t) + (t′ − t)g′(t) +
1
2
(t′ − t)2g′′(t) + ... (5.59)

(5.60)
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For the ODE, ṙ = f + g · fs, integrated over one time step, the Euler uses only the first terms in
these expansions. The deterministic part is

r̃(t + ∆t) = r(t) + ∆t f(t) +
∫ t+∆t

t

dt′
[
(t′ − t)f ′(t) +

1
2
(t′ − t)2f ′′(t) + ...

]
= r(t) + ∆t f(t) +

(∆t)2

2!
f ′(t) +

(∆t)3

3!
f ′′(t) + ... (5.61)

No surprise there! For the stochastic addition to this, there is

q̃ =
∫ t+∆t

t

dt′ g(t′)fs(t′) =
∫ t+∆t

t

dt′ [g(t) + (t′ − t)g′(t) + ...]fs(t′)

= g(t)a(∆t) + g′(t)
∫ t+∆t

t

dt′ (t′ − t)fs(t′) + ... (5.62)

where the “acceleration” is

a(∆t) =
∫ t+∆t

t

dt′ fs(t′). (5.63)

and the error scales with the integral

b(∆t) =
∫ t+∆t

t

dt′ (t′ − t)fs(t′). (5.64)

As usual, the mean of q̃ is zero, no matter how many terms you keep, and we can get the variance,
but tracking the error seems tricky. However, we evaluated the squared variance to third order in
the time step, it was

〈q2〉 = 2αkBT

{
∆t g2(t) + (∆t)2g(t)g′(t) +

(∆t)3

3
[
(g′(t))2 + g(t)g′′(t)

]
+ ...

}
(5.65)

The Euler approach uses only the first term here, so the error in the squared variance can be read
off. To estimate the corresponding error in a particular evolution for q̃(∆t), I think I need a new
kind of mathematics. Let that be for now.

Then q̃ is replaced by a random number with the lowest approximation for the variance, σa, and
the predictor step is

r̃n+1 = rn + ∆t f(tn, rn) + g(tn, rn) · (σawn) +O(∆t2) (5.66)

It will turn out we will re-use this same random number for the corrector.
For the correction part of the algorithm, that is used to produce a better estimate of the average

slope. The exact solution could be obtained if we knew the exact average slope, for the deterministic
part,

r(t + ∆t) = r(t) + ∆t f(t) (5.67)

That change in position uses the trapezoid rule for integration:∫ t+∆t

t

dt′f(t′) =
∫ t+∆t

t

dt′
[
f(t) + (t′ − t)f ′(t) +

1
2
(t′ − t)2f ′′(t) + ...

]
= ∆t f(t) +

(∆t)2

2
f ′(t) +

(∆t)3

6
f ′′(t) + ...

= ∆t

(
f(t) + f(t) + ∆t f ′(t)

2

)
+

(∆t)3

6
f ′′(t) + ... (5.68)

But one knows that the function value at the new time is

f(t + ∆t) = f(t) + ∆t f ′(t) +
1
2
(∆t)2f ′′(t) + ... (5.69)
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Then the trapezoid rule with error estimate is∫ t+∆t

t

dt′f(t′) = ∆t

(
f(t) + f(t + ∆t)

2

)
− (∆t)3

12
f ′′(t) (5.70)

But since we don’t know exactly f(t + ∆t) because we are still trying to find r(t + ∆t) the best we
can do is use the predicted r̃ to get f(t + ∆t, r̃). The error is hard to estimate, but still should be
of order ∆t3.

Try to apply the same process to the correction for the stochastic part. With the trapezoid rule,
applied to the product funcion [g(t′)fs(t′)] (ignoring problems about its differentiability!):

q =
∫ t+∆t

t

dt′ [g(t′)fs(t′)] = ∆t

(
g(t)fs(t) + g(t + ∆t)fs(t + ∆t)

2

)
+O(∆t3) (5.71)

Clearly this makes no sense, and at no point was the statistics of fs used. The evolution could not
possibly depend on the stochastic function only at the end points.

Instead, need to do the integration-equivalent of the trapezoid derivation, but only g(t′) can
come from an expansion:∫ t+∆t

t

dt′ g(t′)fs(t′) =
∫ t+∆t

t

dt′
[
g(t) + (t′ − t)g′(t) +

1
2
(t′ − t)2g′′(t) + ...

]
fs(t′)

(5.72)

This isn’t looking very promising for giving a simple trapezoid rule, because how to get a term like
g(t + ∆t) times a random number out of this? However, try instead to do the expansion around the
center point of the interval:

g(t′) = g(t̄ ) + (t′ − t̄ )g′(t̄ ) +
1
2
(t′ − t̄ )2g′′(t̄ ) + ... (5.73)

If there weren’t any stochastic force multiplying this, its integral over the interval would drop out
the first derivative term. That would leave∫ t+∆t

t

dt′ g(t′) = ∆t g(t̄ ) +
1
3!

(
∆t

2

)3

g′′(t̄ ) + ... (5.74)

It doesn’t look like trapezoid, but it will become that, with the following expansions around the
center point,

g(t + ∆t) = g(t̄ ) +
∆t

2
g′(t̄ ) +

1
2

(
∆t

2

)2

g′′(t̄ ) + ... (5.75)

g(t) = g(t̄ )− ∆t

2
g′(t̄ ) +

1
2

(
∆t

2

)2

g′′(t̄ ) + ... (5.76)

From which one has the result that will give the trapezoid rule:

g(t̄ ) =
1
2
(gn + gn+1)−

1
2

(
∆t

2

)2

g′′(t̄ ) + ... (5.77)

Now include the stochastic function with the same central expansion, and integrate to get the push,

q =
∫ t+∆t

t

dt′
{

g(t̄ ) + (t′ − t̄ )g′(t̄ ) +
1
2
(t′ − t̄ )2g′′(t̄ ) + ...

}
fs(t′) (5.78)

Really, the first term here is the only one we want. The second term, though, is not necessarily zero
when a stochastic force is present, however. But the same can be said for all the terms beyond that.
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We already found the squared variance for this in the discussion of RK2 (this analysis here is really
now very similar!). It is

〈
q2

〉
= 2αkBT

{
∆t g2(t̄ ) +

2
3

(
∆t

2

)3 [
(g′(t̄ ))2 + g(t̄ )g′′(t̄ )

]}
(5.79)

Then the cubic terms are the error. To make this fit the trapezoid idea, though, g(t̄ ) comes from
the trapezoid rule. So really one needs to use

〈
q2

〉
= 2αkBT∆t

(
gn + gn+1

2

)2

+O(∆t3) (5.80)

To do the actual update with this, the push comes from the same random number wn that was used
in the predictor Euler step. It’s the same time sequence, same time interval, for fs(t′). The push
must be replaced by

q
.=

1
2
(gn + gn+1) · (σawn). (5.81)

So finally we can summarize the second order Langevin Heun method, which has first an
Euler predictor step, over the whole interval,

r̃n+1 = rn + f(tn, rn)∆t + g(tn, rn) · (σawn) +O(∆t2) (5.82)

Then the same random number gets used again in the corrector step, because it is the motion
re-calculated (better) over the same time interval, via the trapezoid rule,

rn+1 = rn +
1
2
[f(tn, rn) + f(tn+1, r̃n+1)]∆t

+
1
2
[g(tn, rn) + g(tn+1, r̃n+1)] · (σawn) +O(∆t3) (5.83)

One can see a good advantage of the Heun method over the RK2. It only needs one random number
(triplet) per step, since it uses that same number twice. That makes it very efficient.

50


