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Summary

Notes on Legendre polynomials, associated Legendre functions, spherical harmonics, and

the properties needed from them to get electric dipole transition matrix elements.

1 What is interesting

For an electric dipole transition between two states of known orbital angular momentum, specified
by angular quantum numbers l, m for the initial state and l′,m′ for the final state, one wants to
know certain matrix elements between the states, like

〈n′l′m′|r|nlm〉 =
∫

dr r2Rn′l′(r)rRnl(r)
∫

dΩ Y m′

l′ (Ω) r̂(Ω) Y m
l (Ω) (1.1)

The states also are labeled by some other principal quantum number n′ and n, that is needed to
determine the radial wave functions Rnl(r). The volume element for these integrals is d3r = r2drdΩ,
where dΩ = −dφ d(cos θ) = dφ sin θ dθ, and the angular integrals are over the surface of a unit
sphere. In these notes I am only interested in the angular integrals. The radial unit vector in
Cartesian coordinates is

r̂(Ω) = x̂ sin θ cos φ + ŷ sin θ sinφ + ẑ cos θ = r̂xx̂ + r̂y ŷ + r̂z ẑ. (1.2)

Thus I want to discuss how to get these three angular integrals,

Ii =
∫

dΩ Y m′

l′ (Ω) r̂i Y m
l (Ω), i = x, y, z. (1.3)

The arguments r̂i are not unit vectors, however, they can be expressed in terms of spherical harmonics
with index l = 1. Those spherical harmonics are

Y 0
1 (θ, φ) =

√
3
4π

cos θ, Y ±1
1 (θ, φ) = ∓

√
3
8π

e±iφ sin θ (1.4)

Then one can see that the components of the radial unit vector are written in terms of these, if one
so desires, as

r̂x = sin θ cos φ = −
√

2π

3
(
Y 1

1 − Y −1
1

)
(1.5)

r̂y = sin θ sinφ = i

√
2π

3
(
Y 1

1 + Y −1
1

)
(1.6)

r̂z = cos θ =

√
4π

3
Y 0

1 . (1.7)

Then one sees that the desired angular integrals involve products of three spherical harmonics.
Although I know that there is a lot of theory about how to evaluate these types of integrals for any
choices of the quantum indeces, by advanced techniques, here I am considering only the case where
one of them has 1h̄ unit of orbital angular momentum. Also, I want to see how this can be found
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more by arithmetic and algebraic approach, using the properties of the differential equation that
leads to the spherical harmonics, and especially, the generating functions.

To this end, actually, I will approach this as follows. The spherical harmonics can be expressed
as products of two normalized functions, one for the θ dependence, and one for the φ dependence:

Y m
l (θ, φ) = Θm

l (θ)Φm(φ), Φm(φ) =
1√
2π

eimφ (1.8)

The φ dependence is trivial. The θ dependence is the more interesting part. To be able to get the
desired angular integrals, it will suffice to find expressions for products of the spherical harmonic
Y m

l with either sin θ or cos θ, and in fact, try to express those products in terms of other spherical
harmonics. This is equivalent to finding what are known as recurrence relations for the angular
functions Θm

l (θ). Those show what can happen to Θm
l (θ) when multiplied by either sin θ or cos θ,

which is exactly what is needed to get the transition matrix elements.

sin θ Θm
l (θ) =??, cos θ Θm

l (θ) =?? (1.9)

The calculation also reproduces the electric dipole selection rules along the way.
To proceed, I am going to review some properties of Legendre polynomials Pl(cos θ) and the

associated Legendre functions Pm
l (cos θ), which ultimately give the unit normalized angular functions

Θm
l (θ). Especially, the approach will be to find the desired recurrence relations by manipulating the

generating function for the associated Lengendre functions. Note that the only difference between
the Pm

l and Θm
l is in their normalizations. The Θm

l are normalized to unity over 0 ≤ θ ≤ π, while
the Pm

l (and the Pl) are normalized in a way so their value at θ = 0 is convenient for matching
boundary conditions.

2 Legendre Polynomials

This is not meant to be a reference on all properties of Legendre polynomials. I only want to dicuss
their generating function, because it leads to the generating function for the associated Legendre
functions. The Legendre polynomials apply to problems with azimuthal symmetry, and hence, no
dependence on the quantum index m or on azimuthal angle φ. For reference, their differential
equation is

(1− x2)P ′′
l (x)− 2xP ′

l (x) + l(l + 1)Pl(x) = 0, x = cos θ. (2.1)

This is the angular part of Laplace’s equation when there is rotational symmetry about the z-axis.
It is standard to write the argument as x, but really the argument is the projection onto the z-axis
of a position on the unit sphere.

One can solve the equation by series expansion, etc. Eventually, one can show that the solutions
are the Legendre polynomials, which can be expressed very compactly using Rodrigues’ formula:

Pl(x) =
1

2l l!
dl

dxl
(x2 − 1)l. (2.2)

The solutions are defined on the interval −1 ≤ x ≤ +1. They apply to any kind of problem where
Laplace’s equation is being solved, where the physical problem has rotational symmetry around the
z-axis.

Probably there is a way to get the generating function for the Legendre polynomials directly
from the differential equation. Instead, one can realize that the electric potential of a point electric
charge on the z-axis, leads to the generating function. The unit electric charge is at position z′ = r′

(it has θ′ = 0). The potential it generates is measured at radius r, with r > r′ assumed, at a polar
angle θ from the z-axis. That potential is a solution to Laplace’s equation and hence a solution to
Legendre’s equation. It is

V (θ) =
1

|r− r′|
=

1√
r2 + r′2 − 2rr′ cos θ

=
1
r
· 1√

1 + (r′/r)2 − 2(r′/r) cos θ
(2.3)
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It can be shown that the second factor is a sum over all of the Legendre polynomials. Thus, it is
their generating function. With the definitions t ≡ r′/r < 1 and cos θ = x, the generating function
is

g(x, t) =
1√

1− 2xt + t2
=

∞∑
l=0

tl Pl(x) (2.4)

The generating function can be used to produce many relations between the Legendre polynomials.
Or it could be used simply to reproduce them, by expanding it in a power series in t. The coefficient
of tl will give Pl(x). For example do a few terms:

g(x, t) = (1 + t2 − 2xt)−1/2 = 1− 1
2
(t2 − 2xt) +

3
8
(t2 − 2xt)2 − 5

16
(t2 − 2xt)3...

= t0(1) + t1(x) + t2
(
−1

2
+

3
2
x2

)
+ t3

(
−3

2
x +

5
2
x3

)
+ ... (2.5)

from which we can see the first four Legendre polynomials inside the parenthesis. They are all
normalized to give the value Pl(1) = 1.

Another feature of the generating function is that it can give different recurrence relations,
depending on how it is manipulated. One way is to take the derivative w.r.t. t on both sides of
(2.4).

∂g

∂t
=

− 1
2 (2t− 2x)

[1− 2xt + t2]3/2
=
∑

l

ltl−1 Pl(x) (2.6)

But that reproduces the gen func on LHS, multiplied by x− t and divived by 1− 2xt + t2, and so

(x− t)g(x, t) = (x− t)
∑

l

tl Pl =
[
1− 2xt + t2

]∑
l

ltl−1 Pl (2.7)

Now rearrange by shifting indeces so that all terms have the same power of t:∑
l

tl {xPl − Pl−1 − (l + 1)Pl+1 + 2xlPl − (l − 1)Pl−1} = 0. (2.8)

The coefficient of each power of t must vanish, so there results Bonnet’s recursion formula,

lPl−1 − (2l + 1)xPl + (l + 1)Pl+1 = 0 (2.9)

It can be written as a recurrence:

Pl+1 =
1

l + 1
[(2l + 1)xPl − lPl−1] (2.10)

For instance, use it with l = 1 to get P2 from P1 = x and P0 = 1, to check it:

P2(x) =
1
2

(3x · x− 1) (2.11)

and it can be seen that the result is correct. From this, all the Pl(x) can be generated. (This
iteration could even have started with l = 0, try it.) By doing other manipulations of g(x, t), like
taking more derivatives, derivatives w.r.t. x, multiplying by powers of t before doing derivatives,
etc., many other relations can be developed.

Try another manipulation: derivative w.r.t. x.

∂g

∂x
=

− 1
2 (−2t)

[1− 2xt + t2]3/2
=
∑

l

tl P ′
l (x) (2.12)
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Again some rearrangements to get all terms with the same power of t:

t
∑

l

tl Pl = [1− 2xt + t2]
∑

l

tl P ′
l = 0 (2.13)∑

l

tl
{
Pl−1 − P ′

l + 2xP ′
l−1 − P ′

l−2

}
= 0 (2.14)

Then shifting l up by one gives

P ′
l−1 − 2xP ′

l − Pl + P ′
l+1 = 0 (2.15)

That’s not pretty, but try to combine it with the first recurrence relation, by taking the derivative
of (2.9):

lP ′
l−1 − (2l + 1)(Pl + xP ′

l ) + (l + 1)P ′
l+1 = 0

⇒ xP ′
l = −Pl +

1
2l + 1

[
lP ′

l−1 + (l + 1)P ′
l+1

]
. (2.16)

Then using this in (2.15) gives

P ′
l−1 − 2

(
−Pl +

1
2l + 1

[
lP ′

l−1 + (l + 1)P ′
l+1

])
− Pl + P ′

l+1 = 0

⇒ P ′
l−1 + (2l + 1)Pl − P ′

l+1 = 0 (2.17)

Sometimes this last relation is written as

Pl =
1

2l + 1
(
P ′

l+1 − P ′
l−1

)
(2.18)

which is a useful form to have if the integral of Pl(x) is desired, because it makes the integration
trivial!

3 Associated Legendre Functions

Now onto the main topic. It turns out that the more general version of Laplace’s equation, without
the assumption of azimuthal symmetry, is the associated Legendre equation,

(1− x2)P ′′(x)− 2xP ′(x) +
[
l(l + 1)− m2

1− x2

]
P (x) = 0. (3.1)

This equation governs the behaviour of the Θ(θ) functions. Magically, this equation can be obtained
from the regular Legendre equation (2.1) by differentiation m times with respect to x. You could
fill in the details, but it helps to know the Leibnitz binomial formula for differentiation of a product
m times:

dm

dxm
[A(x)B(x)] =

m∑
s=0

(
m
s

)
ds

dxs
A(x)

dm−s

dxm−s
B(x).

(
m
s

)
=

m!
s!(m− s)!

. (3.2)

For example, the middle term in the Legendre equation requires only s = 0 and s = 1 in this sum,
and it becomes

dm

dxm
[xP ′

l ] = xP
(m+1)
l + mP

(m)
l , P

(m)
l =

dm

dxm
Pl(x). (3.3)

Superscripts within parenthesis indicate order of the derivative. Next, one needs terms with s =
0, 1, 2 for the first term in Legendre’s equation (maximum times 1 − x2 can be differentiated), and
that gives

dm

dxm
[(1− x2)P ′′

l ] = (1− x2)P (m+2)
l − 2mxP

(m+1)
l −m(m− 1)P (m)

l (3.4)
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Combining all the terms from differentiating m times, Legendre’s equation has become

(1− x2)P (m+2)
l − 2mxP

(m+1)
l −m(m− 1)P (m)

l − 2
(
xP

(m+1)
l + mP

(m)
l

)
+ l(l + 1)P (m)

l =

(1− x2)P (m+2)
l − 2(m + 1)xP

(m+1)
l + [l(l + 1)−m(m + 1)]P (m)

l = 0 (3.5)

Due to the m + 1 on the second term it is not in self-adjoint form. But it is a differential equation
for the derivative of a Legendre polynomial, y(x) = P

(m)
l (x). Further, it is clear that the number of

derivatives cannot be more than l. Try to put the equation in self-adjoint form by multiplying by
(1− x2)m:

d

dx

[
(1− x2)m+1 dy

dx

]
+ (l −m)(l + m + 1)(1− x2)my(x) = 0. (3.6)

That doesn’t quite work, yet, one sees that instead the change to u(x) = (1− x2)m/2y(x), does lead
to a self-adjoint equation, which is the associated Legendre equation (details left as an excercise for
you):

d

dx

[
(1− x2)

du

dx

]
+
[
l(l + 1)− m2

1− x2

]
u(x) = 0. (3.7)

Due to the way this was constructed from the Legendre equation, its solutions are already known!
They are mth derivatives of the Legendre polynomials, multiplied by the adjustment factor (1 −
x2)m/2. These are the associated Legendre functions, where now a superscript m is used to
denote them and indicate the number of derivatives that were used,

Pm
l (x) ≡ (1− x2)m/2 dm

dxm
Pl(x). (3.8)

Since there are formulas for the Legendre polynomials, these functions can be evaluated using this
expression for the general case.

Just do a check of the results it gives, for example, for l = 2. Start from P2(x) = 1
2 (3x2 − 1). At

most, one can do two derivatves w.r.t. x. Scaling by (1− x2)m/2, one gets

P 0
2 (x) = P2(x) =

1
2
(3x2 − 1), (3.9)

P 1
2 (x) = (1− x2)1/2 P ′

2(x) =
√

1− x2
1
2
(6x) = 3x

√
1− x2, (3.10)

P 2
2 (x) = (1− x2)2/2 P ′′

2 (x) = (1− x2)
1
2
(6) = 3(1− x2). (3.11)

There is also a definition for negative values of m, which only makes sense as an extension of the
above by Rodrigues formula for the derivative (the differential equation only depends on m2). That
definition is

P−m
l (x) = (−1)m (l −m)!

(l + m)!
Pm

l (x) (3.12)

By this normalization, things work well in various recursion relations. But these really aren’t signif-
icantly different than the functions at positive m. One has for l = 2,

P−1
2 (x) = −1

(2− 1)!
(2 + 1)!

P 1
2 (x) = −x

2

√
1− x2, (3.13)

P−2
2 (x) = +1

(2− 2)!
(2 + 2)!

P 2
2 (x) =

1
8
(1− x2), (3.14)

(3.15)

When Rodrigues’ formula for the Legendre polynomials is combined with the above for the
associated functions, one also has an interesting result:

Pm
l (x) =

1
2l l!

(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l (3.16)
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This formula is useful for normalizing these functions. Becausethey come from a Sturn-Liouville
problem, the eigenfunctions for different eigenvalues l are orthogonal. After some calculations, one
can show the main orthogonality condition,∫ +1

−1

dxPm
l (x) Pm

l′ (x) =
(

2
2l + 1

)
(l + m)!
(l −m)!

δll′ . (3.17)

This will be useful for the overall normalization of the spherical harmonics and their polar angle
dependent parts, Θm

l (θ).
Next, I want to develop the generating function for the Pm

l (x) and use it to find the interesting
properties.

3.1 Generating function for the Pm
l (x)

It is easy to get the generating function because it comes from the generating function for the
Legendre polynomials, differentiated m times, then modified by the factor (1− x2)m/2. Start from

gL(x, t) =
1√

1− 2xt + t2
=

∞∑
l=0

tl Pl(x) (3.18)

Do a few derivatives to see the pattern,

dgL

dx
= [1− 2xt + t2]−3/2

(
−1

2

)
(−2t)

d2gL

dx2
= [1− 2xt + t2]−5/2

(
−1

2

)(
−3

2

)
(−2t)2

d3gL

dx3
= [1− 2xt + t2]−7/2

(
−1

2

)(
−3

2

)(
−5

2

)
(−2t)3

dmgL

dxm
= [1− 2xt + t2]−m− 1

2 (2m− 1)!! tm. (3.19)

Then the generating function for the associated Legendre functions at azimuthal quantum number
m is

g(x, t) = (1− x2)m/2 dmgL

dxm
= (2m− 1)!!

(1− x2)m/2 tm

[1− 2xt + t2]m+1/2
=

∞∑
l=0

tl Pm
l (x). (3.20)

I still call it g(x, t) so equations that follow are not even further complicated by extra symbols.
In principle we could expand the LHS in powers of t, and the coefficient of tl will be the function
Pm

l (x). That would be a hard way to learn about the Pm
l (x). Instead, I’ll look at different ways to

take derivatives, and avoid any power series expansions.

3.2 A first recurrence relation for Pm
l (x), at ∆m = 0

We are looking for relations involving the functions at closely spaced l, possible for the same m or
nearby m’s. Especially, we want relationships where one term in the equation contains either xPm

l

or
√

1− x2Pm
l , where x = cos θ, because these will be useful in the dipole matrix elements. One of

the simplest things to try is to move the tm in (3.20) to the opposite side, and differentiate w.r.t. t.
To help, denote (2m − 1)!! (1 − x2)m/2 = cm as this does not change under these operations. One
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has

d

dt
· cm

[1− 2xt + t2]m+1/2
=
∑

l

tl−m Pm
l (x),

⇒ cm(m + 1/2)(2x− 2t)
[1− 2xt + t2]m+3/2

=
∑

l

(l −m)tl−m−1 Pm
l (x),

⇒ (2m + 1)(x− t)
cmtm

[1− 2xt + t2]m+1/2
= [1− 2xt + t2]

∑
l

(l −m)tl−1 Pm
l (x),

⇒ (2m + 1)(x− t)
∑

l

tl Pm
l =

∑
l

[1− 2xt + t2](l −m)tl−1 Pm
l , (3.21)

As before for the Legendre polynomial relations, arrange so all terms have the same power of t, by
shifting indeces,∑

l

tl
{
(2m + 1)xPm

l − (2m + 1)Pm
l−1

}
=

∑
l

tl
{

(l + 1−m)Pm
l+1 − 2x(l −m)Pm

l + (l − 1−m)Pm
l−1

}
(3.22)

Collecting some common terms, the coefficient of each power of t gives the first recurrence relation,
for functions all at the same azimuthal quantum number,

(2l + 1)xPm
l (x) = (l + m)Pm

l−1(x) + (l −m + 1)Pm
l+1(x). (3.23)

Since x = cos θ, this will give the selectrion rule for transitions that involve the operator r̂z. Because
the m’s are the same on both sides of this equation, those are the type of transitions that conserve
azimuthal quantum number. Or, they obey the selection rule ∆m = 0. In addition to this, oe also
sees that the original state at l (on the LHS) gets connected only to states at l ± 1 (on the RHS).
These selection rules will be clarified more so below.

3.3 A second recurrence relation for Pm
l (x), at ∆m = +1

Now I want to get a relation which relates the functions at different values of m. To do that, the
operations on the generating function have to be done in a different order. In this case, first rearrange
the expression (3.20), then differentiate w.r.t. t. Again, the factor (2m− 1)!! (1−x2)m/2 = cm does
not change during these operations.

g(x, t) =
cmtm

[1− 2xt + t2]m+1/2
=
∑

l

tl Pm
l (x), (3.24)

cmtm =
∑

l

[1− 2xt + t2]m+1/2 tl Pm
l (x), ⇐ do

d

dt

cmmtm−1 =
∑

l

{
(m +

1
2
)[1− 2xt + t2]m−1/2 (2t− 2x)tl + [1− 2xt + t2]m+1/2 ltl−1

}
Pm

l (x)

mcmtm−1

[1− 2xt + t2]m−1/2
=
∑

l

{
(2m + 1)(t− x)tl + [1− 2xt + t2]ltl−1

}
Pm

l (x)

At this point, the LHS has the generating function (almost) at m shifted downward by 1. It only
needs the cm part corrected to be cm−1, but that is easy,

cm = (2m− 1)!! (1− x2)m/2

= (2m− 1)(1− x2)1/2
[
(2m− 3)!! (1− x2)(m−1)/2

]
= (2m− 1)(1− x2)1/2 cm−1. (3.25)
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With that used in the LHS, there results

m(2m− 1)(1− x2)1/2
∑

l

tl Pm−1
l =

∑
l

{
(2m + 1)(t− x)tl + [1− 2xt + t2]ltl−1

}
Pm

l (x) (3.26)

The usual procedure of getting all powers of t the same gives

m(2m−1)
√

1− x2Pm−1
l = (2m+1)Pm

l−1−(2m+1)xPm
l +(l+1)Pm

l+1−2lxPm
l +(l−1)Pm

l−1 (3.27)

m(2m− 1)
√

1− x2Pm−1
l = (2m + l)Pm

l−1 − (2m + 2l + 1)xPm
l + (l + 1)Pm

l+1 (3.28)

OK, it doesn’t look real promising, but the term with xPm
l on the RHS can be substituted from the

first recurrence relation, to give

RHS = (2m + l)Pm
l−1 + (l + 1)Pm

l+1

−(2m + 2l + 1)
1

2l + 1
[
(l + m)Pm

l−1(x) + (l −m + 1)Pm
l+1(x)

]
,

(2l + 1)× RHS = [(2l + 1)(2m + l)− (2l + 1 + 2m)(l + m)]Pm
l−1

+[(2l + 1)(l + 1)− (2l + 1 + 2m)(l −m + 1)]Pm
l+1

= −m(2m− 1)Pm
l−1 + m(2m− 1)Pm

l+1. (3.29)

After all of this a remarkably simple relation comes out, due to the cancellation of the factor
m(2m− 1),

(2l + 1)
√

1− x2 Pm−1
l (m) = Pm

l+1(x)− Pm
l−1(x). (3.30)

Now since
√

1− x2 = sin θ, this gives a relation that is useful for the transition matrix elements of r̂x

and r̂y, where the azimuthal quantum number increases by 1. Again, the selection rule in magntiude
of angular momentum is that the original state at l is connected only to states at l± 1. Transitions
changing by more than 1 would have a zero matrix element.

3.4 A third recurrence relation for Pm
l (x), at ∆m = −1

One also can find another relation that corresponds to the azimuthal quantum number decreasing.
For some reason, this relation seems harder to obtain. Perhaps I do not have the simplest derivation!
I want some manipulations of g(x, t) that will cause the power m + 1

2 in its denominator to change
to m + 3

2 , and then rewrite the result in terms of sums of Pm+1
l . At the same time, I also want an

extra factor of sin θ =
√

1− x2 to appear on that same side of the equation.
Here is the way I found to do this: (1) derivative of g w.r.t. t. (2) rescale by [1 − 2xt + t2]m+1

on both sides. (3) do another derivative w.r.t. t. Let’s see what happens, starting after the first
derivative, which is the same as for the first recurrence relation:

(2m + 1)(x− t)cm

[1− 2xt + t2]m+3/2
=
∑

l

(l −m)tl−m−1 Pm
l (x), ← after

d

dt
(3.31)

(2m + 1)(x− t)cm

[1− 2xt + t2]1/2
= [1− 2xt + t2]m+1

∑
l

(l −m)tl−m−1 Pm
l (x), ← do another

d

dt

Note what happens on the LHS, which is why I did it this way,

d

dt

x− t

[1− 2xt + t2]1/2
= − 1

[1− 2xt + t2]1/2
−

1
2 (x− t)(2t− 2x)
[1− 2xt + t2]3/2

= −1− 2xt + t2 − t2 − xx + 2xt

[1− 2xt + t2]3/2
= − 1− x2

[1− 2xt + t2]3/2
(3.32)
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The operation produced a factor of (1 − x2) and raised the power in the denominator, which is
exactly what I wanted. With this, the LHS will be found proportional to a sum of Pm+1

l . Again,
one needs to see how cm gets changed into cm+1:

cm = (2m− 1)!! (1− x2)m/2

(2m + 1)(1− x2)cm = (2m + 1)(2m− 1)!! (1− x2)(m+1)/2+1/2

= (2m + 1)!! (1− x2)(m+1)/2
√

1− x2 = cm+1

√
1− x2. (3.33)

d

dt
· LHS = − cm+1

√
1− x2

[1− 2xt + t2]3/2
. (3.34)

Now for the RHS of (3.31),

d

dt
· RHS =

∑
l

(l −m)
{

(l −m− 1)tl−m−2[1− 2xt + t2]m+1

+tl−m−1(m + 1)(2t− 2x)[1− 2xt + t2]m
}

Pm
l

d

dt
·RHS = t−m−1[1−2xt+t2]m

∑
l

(l−m)
{

(l−m−1)[1−2xt+t2]tl−1+2(m+1)(t−x)tl
}

Pm
l (3.35)

Now moving those factors in front of the sum to the LHS term, it becomes the generating function
at m + 1. There results from these manipulations,

−
√

1− x2
cm+1

√
1− x2

[1− 2xt + t2]m+3/2
= −

√
1− x2

∑
l

tl Pm+1
l =

=
∑

l

(l −m)
{

(l −m− 1)[1− 2xt + t2]tl−1 + 2(m + 1)(t− x)tl
}

Pm
l (3.36)

Then looking at the coefficient of tl gives a desired relation,

−
√

1− x2Pm+1
l = (l + 1−m)(l −m)Pm

l+1 − 2x(l −m)[(l −m− 1) + (m + 1)]Pm
l

+ (l − 1−m)[(l − 2−m) + 2(m + 1)]Pm
l−1

−
√

1− x2Pm+1
l = (l + 1−m)(l −m)Pm

l+1 − 2xl(l −m)Pm
l + (l − 1−m)(l + m)Pm

l−1. (3.37)

That’s a good result, because it gives a higher m in terms of three lower m’s. But this raw result
can be improved, by combining it with the first recurrence formula (3.23) to get rid of the term with
xPm

l on the RHS:

−
√

1− x2Pm+1
l = (l + 1−m)(l −m)Pm

l+1

− 2l(l −m)
1

2l + 1
[
(l + m)Pm

l−1 + (l −m + 1)Pm
l+1

]
+ (l − 1−m)(l + m)Pm

l−1

=
l + m

2l + 1
[(2l + 1)(l − 1−m)− 2l(l −m)]Pm

l−1

+
l −m

2l + 1
[(2l + 1)(l + 1−m)− 2l(l −m + 1)]Pm

l+1

=
1

2l + 1
{
(l + m)(−l − 1−m)Pm

l−1 + (l −m)(l −m + 1)Pm
l+1

}
(3.38)

So finally this gives a good recurrence relation,

(2l + 1)
√

1− x2 Pm+1
l (x) = (l + m)(l + m + 1)Pm

l−1(x)− (l −m)(l −m + 1)Pm
l+1(x). (3.39)

That was a little tough. And the result isn’t real pretty. But it shows another relation connecting
sin θ =

√
1− x2 with in this case, a decrease in the m index. It corresponds to being important for

the electric dipole transitions where ∆m = −1.
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3.5 Other recurrence relations?

I found only the above 3 recurrence relations, because we know the electric dipole selection rules
are ∆m = 0,±1, and these above relations suffice. But it is clear more recurrence relations can
be found, that could involve sin2θ and cos2 θ on the LHS, making connections with ∆m = ±2.
Different manipulations of the generating function (as with more derivatives w.r.t. t) can be used
to get these relations, that would be good for fiding higher order electric and magnetic multipoles.
Based on the last relation (3.39) just found, one needs to differentiate w.r.t. t and move the factor
[1− 2xt + t2] and its powers around to get what you want. Left as an excercise for the reader!

4 Normalized angular functions Θm
l (θ) and spherical harmon-

ics Y m
l (x, φ)

The normalization (3.17) for the associated Legendre functions has been given earlier. It can be
used to produce the Θm

l (θ) functions, such that they are unit normalized over the range of the polar
angle θ, or equivalently, over x = cos θ. Then these have to be defined as

Θm
l (x) =

√(
2l + 1

2

)
(l −m)!
(l + m)!

Pm
l (x), (4.1)

so that there normalization integrals (for the same values of m) are∫ +1

−1

dx Θm
l (x)Θm

l′ (x) = δll′ . (4.2)

In addition, the spherical harmonics are just the extension of these, with the azimuthal angular
dependence Φm(φ) included,

Y m
l (x, φ) =

√(
2l + 1

4π

)
(l −m)!
(l + m)!

Pm
l (x) eimφ, from Y m

l (x, φ) = Θm
l (x)

eimφ

√
2π

. (4.3)

The spherical harmonics, as constructed, obviously have unit normalization over the surface of a unit
sphere. Then based on the recurrence relations found for the Pm

l , they also have similar recurrence
relations, as do the Θm

l (θ).

4.1 Recurrence relations for Θm
l (θ) functions

One can use the definitions of these functions and combine with the first recurrence relation (3.23)
for the associated Legendre functions. It helps to have the definition turned around:

Pm
l (x) =

√(
2

2l + 1

)
(l + m)!
(l −m)!

Θm
l (x). (4.4)

Then substituting into the recurrence gives

(2l + 1)x

√
2

2l + 1
(l + m)!
(l −m)!

Θm
l = (l + m)

√
2

2(l − 1) + 1
(l − 1 + m)!
(l − 1−m)!

Θm
l−1

+ (l −m + 1)

√
2

2(l + 1) + 1
(l + 1 + m)!
(l + 1−m)!

Θm
l+1 (4.5)

Cancellations of common terms leads to

xΘm
l =

√
(l −m + 1)(l + m + 1)

(2l + 1)(2l + 3)
Θm

l+1 +

√
(l −m)(l + m)
(2l − 1)(2l + 1)

Θm
l−1 (4.6)
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Do the same for the second recurrence relation:

(2l + 1)
√

1− x2

√
2

2l + 1
(l + m− 1)!

(l − (m− 1))!
Θm−1

l =

√
2

2(l + 1) + 1
(l + 1 + m)!
(l + 1−m)!

Θm
l+1

−

√
2

2(l − 1) + 1
(l − 1 + m)!
(l − 1−m)!

Θm
l−1 (4.7)

It reduces to

√
1− x2 Θm−1

l =

√
(l + m)(l + m + 1)

(2l + 1)(2l + 3)
Θm

l+1 −

√
(l −m)(l −m + 1)

(2l − 1)(2l + 1)
Θm

l−1 (4.8)

And, do the same for the third recurrence relation,

(2l + 1)
√

1− x2

√
2

2l + 1
(l + m + 1)!

(l − (m + 1))!
Θm+1

l

= (l + m)(l + m + 1)

√
2

2(l − 1) + 1
(l − 1 + m)!
(l − 1−m)!

Θm
l−1

−(l −m)(l −m + 1)

√
2

2(l + 1) + 1
(l + 1 + m)!
(l + 1−m)!

Θm
l+1 (4.9)

Carefully do the cancellations, leads to

√
1− x2 Θm+1

l = −

√
(l −m)(l −m + 1)

(2l + 1)(2l + 3)
Θm

l+1 +

√
(l + m)(l + m + 1)

(2l − 1)(2l + 1)
Θm

l−1 (4.10)

That is very similar to the previous result, but only with the overall sign reversed and the m’s
negated in the factors on the RHS.

4.2 Recurrences for the spherical harmonics

These are almost the same as for the associated Legendre functions. The only difference is to include
the dependences on the azimuthal angles. That means multiply the three recurrence relations by
eimφ and adjust the indeces appropriately. The first relation is identical to that for the Θm

l ,

xY m
l =

√
(l −m + 1)(l + m + 1)

(2l + 1)(2l + 3)
Y m

l+1 +

√
(l −m)(l + m)
(2l − 1)(2l + 1)

Y m
l−1 (4.11)

The second relation has some shifting with applying Θm
l = Y m

l

√
2πe−imφ,

√
1− x2 eiφ Y m−1

l =

√
(l + m)(l + m + 1)

(2l + 1)(2l + 3)
Y m

l+1 −

√
(l −m)(l −m + 1)

(2l − 1)(2l + 1)
Y m

l−1 (4.12)

Finally the third relation gets a similar effect, in the opposite sense,

√
1− x2 , e−iφY m+1

l = −

√
(l −m)(l −m + 1)

(2l + 1)(2l + 3)
Y m

l+1 +

√
(l + m)(l + m + 1)

(2l − 1)(2l + 1)
Y m

l−1 (4.13)

It’s obvious in these last two relations, the extra factor of e±iφ causes the azimuthal dependences to
match on the two sides of the equations.
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4.2.1 Quality check: Do they work?

As a check, consider the effects of this operations on the l = 1 spherical harmonics, and see the
expression are valid. Use them first with l = 1 and m = 0. The first gives

cos θ · Y 0
1 =

√
(2)(2)
(3)(5)

Y 0
2 +

√
(1)(1)
(1)(3)

Y 0
0 =

√
4
15

Y 0
2 +

√
1
3
Y 0

0 . (4.14)

Check by the definitions Y 0
1 =

√
3
4π cos θ and Y 0

2 =
√

5
16π (3 cos2 θ − 1) and Y 0

0 =
√

1
4π . These give

cos2 θ = 1
3 (
√

16π
5 Y 0

2 + 1), and

cos θ · Y 0
1 = cos θ ·

√
3
4π

cos θ =

√
3
4π

1
3

(√
16π

5
Y 0

2 + 1

)
=

√
4
15

Y 0
2 +

√
1
3
Y 0

0 . (4.15)

which is correct. Just try one more, the second recurrence relation. There, apply it to Y −1
1 =√

3
8π e−iφ sin θ, then it gives

sin θ · eiφY −1
1 =

√
(1)(2)
(3)(5)

Y 0
2 −

√
(1)(2)
1)(3)

Y 0
0 =

√
2
15

Y 0
2 −

√
2
3
Y 0

0 (4.16)

For comparison, the known result is

sin θ · eiφ

√
3
8π

e−iφ sin θ =

√
3
8π

(1− cos2 θ) =

√
3
8π

1
3

(
2−

√
16π

5
Y 0

2

)
(4.17)

This actually gives the negative of that from the recurrence. The reason is simple. The usual
definition of spherical harmonics in physics includes the Condon-Shortley phase of (−1)m. I have
not included it in these recurrence relations. Once it would be included, the second two recurrence
relations, where m changes, will get a minus sign, say, added to the RHS. This is really of no
great physical importance, just as long as you know ifthat phase is included or not. It is simple to
include at the end, however, probably unnecessary since matrix elements tend to get squared to find
transition probabilities.

5 Transition matrix elements

Let me conclude here by evaluating the possible transition matrix elements, between an initial state
at l,m and a final state at l′,m′. It is clear the number of nonzero matrix elements are limited by the
selection rules, ∆l = ±1, ∆m = 0,±1. Even so, there are quite a few possibilities when the different
Cartesian components are also accounted for. In fact, let me account for Cartesian components of
r̂, and for matrix elements of circular polarization states of the operator.

The approach is now simple. Consider r̂x and its matrix elements. It requires ∆m = ±1. Use
(4.12) when ∆m = +1 and use (4.13) when ∆m = −1. Here the Condon-Shortley phase factor of
-1 is not included in these expressions. A shift of m is needed to apply those expressions. Then we
see that, due to the orthonormalization of the spherical harmonics, integrals of the form wanted are
easy. For r̂x = sin θ cos φ,

〈l′m′|r̂x|lm〉 =
1
2

∫
dΩ Y m′∗

l′ (Ω) sin θ(eiφ + e−iφ)Y m
l (Ω) (5.1)

Doing the appropriate shifting of m, the recurrrences give

〈l + 1,m + 1|r̂x|lm〉 = +
1
2

√
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
∆l = +1, ∆m = +1. (5.2)
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〈l − 1,m + 1|r̂x|lm〉 = −1
2

√
(l −m− 1)(l −m)

(2l − 1)(2l + 1)
∆l = −1, ∆m = +1. (5.3)

〈l + 1,m− 1|r̂x|lm〉 = −1
2

√
(l −m + 1)(l −m + 2)

(2l + 1)(2l + 3)
∆l = +1, ∆m = −1. (5.4)

〈l − 1,m− 1|r̂x|lm〉 = +
1
2

√
(l + m− 1)(l + m)

(2l − 1)(2l + 1)
∆l = −1, ∆m = −1. (5.5)

Consider next the results for r̂y = sin θ sinφ.

〈l′m′|r̂y|lm〉 =
1
2i

∫
dΩ Y m′∗

l′ (Ω) sin θ(eiφ − e−iφ)Y m
l (Ω) (5.6)

These are equal to the results for r̂x scaled by factors of ∓i for ∆m = ±1, respectively:

〈l + 1,m + 1|r̂y|lm〉 = − i

2

√
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
∆l = +1, ∆m = +1. (5.7)

〈l − 1,m + 1|r̂y|lm〉 = +
i

2

√
(l −m− 1)(l −m)

(2l − 1)(2l + 1)
∆l = −1, ∆m = +1. (5.8)

〈l + 1,m− 1|r̂y|lm〉 = − i

2

√
(l −m + 1)(l −m + 2)

(2l + 1)(2l + 3)
∆l = +1, ∆m = −1. (5.9)

〈l − 1,m− 1|r̂y|lm〉 = +
i

2

√
(l + m− 1)(l + m)

(2l − 1)(2l + 1)
∆l = −1, ∆m = −1. (5.10)

Finally for r̂z = cos θ, only the first recurrence applies,

〈l′m′|r̂z|lm〉 =
∫

dΩ Y m′∗
l′ (Ω) cos θY m

l (Ω) (5.11)

And this gives two results,

〈l + 1,m|r̂z|lm〉 =

√
(l −m + 1)(l + m + 1)

(2l + 1)(2l + 3)
∆l = +1, ∆m = 0. (5.12)

〈l − 1,m|r̂z|lm〉 =

√
(l −m)(l + m)
(2l − 1)(2l + 1)

∆l = −1, ∆m = 0. (5.13)

Nothing too pretty about these, however, it is the complete set of possibilities for the angular part
of the electric dipole matrix elements.

5.1 Matrix elements for circular polarization

If the light is circularly polarized, then one needs to imagine that the electric field of the light waves
is expanded as a linear combination of right and left circular polarizations. Really, one is finding
matrix elements of an interaction which is a scalar product, H ′ = −E · r. For waves travelling in
the z-direction, the basis vectors for right and left circular polarizations are 1

ûR =
1√
2
(x̂− iŷ), ûL =

1√
2
(x̂ + iŷ). (5.14)

1For right circular polarization, with your right thumb pointed towards the source, the electric field vector at a
fixed point in space rotates the same direction as your right-hand fingers curl. Vice-versa for left circular polarization.
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The Cartesian unit vectors are expressed with these as

x̂ =
1√
2
(ûR + ûL), ŷ =

i√
2
(ûR − ûL). (5.15)

Then the dipolar interaction can be expressed as

H ′ = −E · r = −(ERûR + ELûL) · (xx̂ + yŷ + zẑ)

= − 1√
2

[ER(x̂− iŷ) + EL(x̂ + iŷ)] · (xx̂ + yŷ) (5.16)

Here, ER and EL are the amplitudes for the waves being in the two possible polarization states.
But I kept the position operator in Cartesian components. This becomes

H ′ = −
[
ER

(
x− iy√

2

)
+ EL

(
x + iy√

2

)]
= −r

[
ER

(
r̂x − ir̂y√

2

)
+ EL

(
r̂x + ir̂y√

2

)]
(5.17)

This was a somewhat round-about way to show that the mixtures of Cartesian components corre-
sponding to right and left circular polarizations, are the objects within parenthesis, following ER

and EL, respectively. These are in fact the components of the dipole unit vector along the circular
polarization ”directions.” 2

By simple algebra, the dipole unit operator can be expressed

r̂(Ω) = x̂ sin θ cos φ + ŷ sin θ sinφ + ẑ cos θ =
1√
2

sin θ
(
ûReiφ + ûLe−iφ

)
+ ẑ cos θ (5.18)

Doing complex scalar products, or the round-about calculation given above, this is composed from
the circular polarization components, that give individual spherical harmonics,

r̂R ≡ 1√
2
(r̂x − ir̂y) =

1√
2
e−iφ sin θ = +

√
4π

3
Y −1

1 , (5.19)

r̂L ≡ 1√
2
(r̂x + ir̂y) =

1√
2
e+iφ sin θ = −

√
4π

3
Y +1

1 , (5.20)

r̂z = cos θ =

√
4π

3
Y 0

1 . (5.21)

(These definitions of Y m
l include the Condon-Shortley phase.) The advantage of using the circular

polarization components, is that they are indeed more natural states of a photon, since they have
well-defined angular momemtum. This means the list of nonzero matrix elements is smaller. For
example, for the left circular polarization, only the second recurrence (4.12) applies, corresponding
to ∆m = +1 only.

〈l′m′|r̂L|lm〉 =
1√
2

∫
dΩ Y m′∗

l′ (Ω) sin θ e+iφ Y m
l (Ω) (5.22)

There are only two nonzero matrix elements. Remembering to shift m up by 1 in (4.12),

〈l + 1,m + 1|r̂L|lm〉 =

√
(l + m + 1)(l + m + 2)

2(2l + 1)(2l + 3)
, ∆l = +1, ∆m = +1. (5.23)

〈l − 1,m + 1|r̂L|lm〉 = −

√
(l −m− 1)(l −m)
2(2l − 1)(2l + 1)

, ∆l = −1, ∆m = +1. (5.24)

2One needs to take care doing these operations because these basis vectors are complex. I am trying to do this in
a way where no conjugate operations are needed. If done incorrectly, the right and left parts can get interchanged.
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This shows more clearly that the photon in this case only raises the z-component of angular mo-
mentum of the atom that absorbed it. On the other hand, for the right-circular photon state,

〈l′m′|r̂R|lm〉 =
1√
2

∫
dΩ Y m′∗

l′ (Ω) sin θ e−iφ Y m
l (Ω) (5.25)

Again, there are only two nonzero matrix elements. In this case shift m down by 1 in (4.13),

〈l + 1,m− 1|r̂R|lm〉 = −

√
(l −m + 1)(l −m + 2)

2(2l + 1)(2l + 3)
, ∆l = +1, ∆m = −1. (5.26)

〈l − 1,m− 1|r̂R|lm〉 = +

√
(l + m− 1)(l + m)
2(2l − 1)(2l + 1)

, ∆l = −1, ∆m = −1. (5.27)

Now the photon only can lower the z-component of angular momentum of the atom. These are the
negatives of those for the left circular polarization, with m reversed inside the formulas.

If one thinks of these matrix elements as being applied to photon absorption, the coupling of
left circular to ∆m = +1 makes sense. The left photon is a positive helicity state, meaning, its
angular momentum of h̄ is along the propagation direction, or in the +z direction. It can only raise
the z-component of angular momentum of the atom, if it is absorbed. On the other hand, the right
circular photon has negative helicity, thus its angular momentum aong the z-axis is −h̄. When it
gets absorbed, it lowers the z-component of angular momentum of the atom.

5.2 Circular polarization: waves traveling in an arbitrary direction

In the last section the EM waves were assumed to be travelling along the z-direction. That geometry
makes sense for some simple situations. But in the most general case, there would be no requirement
that the wave vector of the EM waves is aligned with a particular z-axis. So to do this general case,
assume the waves travel in some direction with wave vector k, and have the electric field polarized
along a vector ε̂ that is perpendicular to k. This electric field could be expressed like

E(r, t) = Re
{

Eε̂ ei(k·r−ωt)
}

, and (Ex, Ey, Ez) = E(εx, εy, εz) (5.28)

Then the interaction Hamiltonian is now expressed, suppressing the time and space dependence,

H ′ = −E · r = −(Eε̂) · (xx̂ + yŷ + zẑ) = −E (xεx + yεy + zεz) (5.29)

The polarization vector is given in Cartesian components as ε̂ = (εx, εy, εz), where each component
is obtaned by εi = ε̂ · x̂i. Taking out also the radius, the interaction is

H ′ = −E · r = −Er (r̂xεx + r̂yεy + r̂zεz) = −Er [sin θ(εx cos φ + εy sinφ) + εz cos θ] (5.30)

But it makes sense to expand out the φ-dependence, which can be done some different ways. The
simplest is

H ′ = −Er

{
sin θ

[
εx

1
2
(eiφ + e−iφ) + εy

1
2i

(eiφ − e−iφ)
]

+ εz cos θ

}
= −Er

{
sin θ

[
eiφ

(
εx − iεy

2

)
+ e−iφ

(
εx + iεy

2

)]
+ εz cos θ

}
= −Er

{
sin θ

[
eiφ

√
2

(
εx − iεy√

2

)
+

e−iφ

√
2

(
εx + iεy√

2

)]
+ εz cos θ

}
(5.31)

Written this way, one sees that the components of the polarization that are coupled to well-defined
angular momenta are factors that resemble the definitions discussed for circular polarization. But
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one needs to be careful here. The first factors are involved in raising m and are for left circular
polarization:

EL = E ·
(

εx − iεy√
2

)
=

Ex − iEy√
2

, r̂L =
1√
2
e+iφ sin θ =

r̂x + ir̂y√
2

. (5.32)

The second factors are involved in lowering m and are for right circular polarization:

ER = E ·
(

εx + iεy√
2

)
=

Ex + iEy√
2

, r̂R =
1√
2
e−iφ sin θ =

r̂x − ir̂y√
2

. (5.33)

You can check that the algebra is correct, and in fact, it has to hold as

r̂ · ε̂ = r̂xεx + r̂yεy + r̂zεz =
(

r̂x + ir̂y√
2

)(
εx − iεy√

2

)
+
(

r̂x − ir̂y√
2

)(
εx + iεy√

2

)
(5.34)

This way of combining gives a real scalar product. One sees that the amplitude for absorption of left
circular photons is proportional to EL and the matrix element of r̂L, as defined here, and for right
circular photons, proportional to the product of ER and the matrix element of r̂R. The particular
values of the matrix elements were given in the previous section.

If the electric field moves in such a way that Ex− iEy = 0, then EL = 0 and the wave has a pure
right circular polarization.

On the other hand, if the fields behave with Ex + iEy = 0, then ER = 0 and the wave has a pure
left circular polarization.

The interaction will probably be expressed in many texts in terms of the spherical harmonics.
In this way the expression, if needed, is quite simple,

H ′ = −Er

√
4π

3

{
−Y +1

1

(
εx − iεy√

2

)
+ Y −1

1

(
εx + iεy√

2

)
+ Y 0

1 εz

}
(5.35)

This is also the same as

H ′ = −r

√
4π

3
{
−Y +1

1 EL + Y −1
1 ER + Y 0

1 Ez

}
(5.36)

5.2.1 Waves not traveling along z?

Another point is about the z-component. If the waves travel along z, there can be no z-component to
the electric field. On the other hand, suppose the waves are traveling, for example in the x-direction,
and they could have some aspect of circular polarization. Consider the amplitude as

E = (Ey ŷ + Ez ẑ)ei(kx−ωt) = (5.37)

If the components have aa relation like Ey = ±iEz, then the waves are circularly polarized. Now,
the matrix elements involving the z-components actually will relate to effects associated with the
circular polarization states.

But so far, we put the quantization axis along z, which is somewhat unnatural for this particular
problem. Still, the direction chosen for coordinates is arbitrary and has nothing to do with affecting
a final answer. A transition rate or matrix element squared, appropriately, will not in the end
depend on the coordinate system. But the system starting in an eigenstate of Lz is not the same as
starting in an eigenstate of Lx. An eigenstate of Lx, with quantum number mx, for a chosen l, has
to be a linear combination of eigenstates of Lz at its eigenvalues mz = 0,±1. Thus, the comparison
between using different coordinate systems takes some care.
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