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Summary

The complex and frequency-dependent dielectric function ε(ω) describes how light inter-
acts when propagating through matter. It determines the propagation speed, dispersion
effects, absorption, and more esoteric phenomena such as Faraday rotation when a DC
magnetic field is present. Of particular interest here is the description of ε(ω) in conduc-
tors using quantum mechanics, so that intrinsically quantum mechanical systems can be
described. The goal is an appropriate understanding of the contributions from band-to-
band transitions, such as in metals and semiconductors, with or without an applied DC
magnetic field present.

Part A discusses the general theory of ε(ω) for a medium only in the presence of the optical
electric field. The approach is to find how this electric field modifies the density matrix.
It is applied to band-to-band transitions in the absence of an applied magnetic field.

In Part B, the effect of a DC magnetic field is discussed generally, with respect to how
it causes Faraday rotation. For free electrons, it causes quantized Landau levels for the
electrons; the dielectric function is found for that problem, and related problems are
discussed.

In this part, the important problem is how to include the effect of a DC magnetic field
on the band-to-band transitions, such as those in metals and semiconductors. Results are
found for 1D and 3D band models, with and without a phenomenolgical damping.

Taken together, these theories should be complete enough to describe Faraday rotation

effects in gold, whose dielectric function is strongly dependent on band-to-band transitions

for wavelengths below 600 nm.

1Last updated March, 2012, Florianópolis, Brazil
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6 Dielectrics in a DC Magnetic Field

The introduction to this topic appears in documents Dielectrics: Part A (general theory for dielectric
functions) and Dielectrics: Part B (modifications due to magnetic field, especially, discussion of
electronic Landau levels). Those may need to be reviewed in order to understand the discussion
here. This part is concerned primarily with the contributions to the dielectric function due to the
transitions between some bands (such as valence to conduction bands in a semiconductor).

7 Band to band transitions in a semiconductor/metal

So far the general theory for dielectric functions for right and left circular polarizations of the light, εR
and εL, were derived. The result is seen to depend on the transitions that change angular momentum
magnitude by h̄, due to the magnitude of the photon angular momentum. After checking that all
works out well for free electrons living in Landau levels, one can also look at some simple models
where there are transitions only between a pair of bands.
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Consider here electrons in a potential that produces bands, that have some quadratic kinetic
energy dispersion combined with the magnetic dipole energy. The states could be similar to those
considered earlier for almost-free electrons in a field, with the “unstable” states and energies:

ψklm = Cjl(kr)Ylm(θ, φ), Eklm =
h̄2k2

2m∗
e

−mµBB. (7.1)

For free electrons this was unstable because the angular momentum does not really have an upper
limit, leading to unbounded negative energies. The correct theory for truly free electrons in a
magnetic field is to consider their Landau levels, as is calculated in Dielectrics: Part B. This difficulty
is not present in a band, because bands are usually of a selected angular momentum, and, the energies
are not identical to this expression anyway.

Physically, electric dipole transitions nearly conserve electron momentum, so there is no change
in the kinetic term. The band states are identified by a wavevector and by angular momentum
quantum numbers l and m. Any transition that contributes to the susceptibility must change l
by ±1 and m by ±1. In terms of the spherical Bessel functions or indeed, any band states as the
eigenstates, we can suppose that their wave vector k does not change, however, the nonzero terms
do connect between different neighboring l’s. To decide the dependence on k it would be best to
know the radial overlap integrals. We might get an estimate based on just looking at the transitions
between some chosen l and l′, and ignore higher pairs, unless it is a simple extension to calculate
them all. The wavevectors here are assumed to be three-dimensional, and a damping parameter γ
is to be included for the dynamics.

So as a reasonable problem, I consider electrons living in two bands of angular momentum li
and lf separated by some gap, Eg, together with the splittings due to the magnetic field. One
should assume the magnetic splitting is greater than thermal energy kBT , otherwise, the magnetic
splittings would be totally smeared out and they would not be observable. Let me assme that the
band with l is lower in energy and is the valence band, while lf = li ± 1 (to satisfy the selection
rules) is the index for the conduction band. Between these two bands we can consider all transitions
that additionally satisfy the azimuthal selection rule, ∆m = ±1. We need to find the sums SR and
SL appropriate for the two circular polarizations, that give εR and εL.

To be specific, the energies in each of the bands of interest are written as follows. There is the
occupied hole quasi-particle band with effective massm∗

h and the (mostly) unoccupied electron quasi-
particle band with effective mass m∗

e. The zero of energy is placed at the center of the energy gap
for the following formulas. Then these band energies are written (for positively charged ”electrons”)

Ei = Eh = −1

2
Eg − h̄2k2

i

2m∗
h

−miµBB, Ef = Ee = +
1

2
Eg +

h̄2k2
f

2m∗
e

−mfµBB. (7.2)

These are the eigenstates specified by band wavevector, k, and band index l and azimthal quantum
number m. The states might be written for a periodic lattice like uklm(r)eik·r. Let me explain a
few other things here, which are different than that in Boswarva, Howard and Lidiard (1962) 2. As
I have mentioned elsewhere, they made what I see as an error by including both a Landau-level
energy together with the magnetic dipole interaction with the field; to me that is a double counting
for the orbital angular momentum contribution. So I do not have a Landau-level energy. Besides,
how can an electron be in a band, and yet have the motion/energy that it would have if in a free
Landau-level? That does not make sense. The two bands have effective masses of opposite sign,
as needed for electron and hole states. But the dipolar interaction is the same, because it refers to
the states allowed for the electrons in the occupied levels. (The hole is not created until an upward
transition takes place.) The m refers to the component of angular momentum along the applied
magnetic field.

There is an important question about electron statistics, which are fermions and obey Fermi-
Dirac statistics. The occupation factor wi−wf in most of these notes has been set to 1, which means

2“Faraday effect in semiconductors,” I. M. Boswarva, R. E. Howard, A. B. Lidiard Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences, Vol. 269, No. 1336 (Aug. 21, 1962), pp. 125-141. There
seems to be various errors in that paper.
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I am taking an extreme case that really may not apply to a metals like gold. This is equivalent to
assuming that the Fermi energy is somewhere near the middle of the gap between the bands. That
would be true in an intrinsic semiconductor, and may also apply to some doped semiconductors.
So I should call it the “semiconductor approximation.” But in gold, as an example, according to
Scaffardi and Tocho3 the gap energy is 2.1 eV while the Fermi energy, apparently measured from
the bottom of the gap, is 2.5 eV. If this is correct, it means the Fermi energy falls well within the
conduction sp-band. Then, the factor of wi − wf cannot be set to unity. It must have some energy
dependence. We can still take wi = 1, as the valence d-band should be fully occupied, well below EF ,
but the upper level needs to have its energy-dependent occupation number included correctly. So be
aware that in much of these notes, I set the upper levels to be fully unoccupied, which helped with
the integrations, but it is not always correct. More correctly, we should include the extra function
as follows in the integrands,

gif ≡ wi − wf ≈ g(Ef ) = 1 − F (Ef ), F (Ef ) =
1

exp {β(Ef − EF )} + 1
, (7.3)

where β is the inverse temperature and EF is the Fermi energy. Both these energies obviously must
be measured from the same reference level. This means that the energy difference that goes here is
actually

Ef − EF = (Eg − EF ) +
h̄2k2

f

2m∗
e

−mfµBB. (7.4)

Again, since a conducting metal could have Eg < EF (need to verify this), then the energy difference
Ef − EF could be negative for a large part of the conduction band of interest, giving it a large
occupation number. This would nearly zero out any contributions from the transitions in that wave
vector range. Further, the size of that wave vectors range will change with the temperature.

The magnetic dipole term is taken with a negative sign, which would be the correct sign for
positively charged electrons. In this way, the comparison with the theory in earlier sections
and the different effects of right and left circular polarization will be clearer. In earlier sections, the
sign of e was basically considered positive. But then, to compare these results with experiment, one
needs to remember to change the sign of the charge carriers. It means reverse the sign of the Bohr
magneton, or, of the magnetic frequency, ωB = eB/mec. To keep aware of the sign of the charges,
the band energies could otherwise be written

Ei = Eh = −1

2
Eg − h̄2k2

i

2m∗
h

−mi
h̄eB

2mec
, Ef = Ee = +

1

2
Eg +

h̄2k2
f

2m∗
e

−mf
h̄eB

2mec
, (7.5)

or even with the last terms as proportional to ωB/2. In addition, the goal here is to consider
nanoparticle samples, where the free Landau levels do not apply. Thus, I need to avoid that as an
approximation, because those wave functions have de Broglie wave lengths much greater than the
particle sizes.

The difference in the energies of two of these states gives the transition frequency, which is

ωif =
Ei − Ef

h̄
=
Eh − Ee

h̄
= − 1

h̄

[

Eg +
h̄2k2

i

2m∗
h

+
h̄2k2

f

2m∗
e

− (mf −mi)µBB

]

. (7.6)

Since the wave vectors are taken as equal, this can be written with the effective mass m̃,

h̄ωif = −
[

Eg +
h̄2k2

i

2m̃
− (mf −mi)µBB

]

,
1

m̃
=

1

m∗
h

+
1

m∗
e

. (7.7)

We will also refer to gap frequency ωg = Eg/h̄ for the first term.

3“Size dependence of refractive index of gold nanoparticles,” Lucıia B Scaffardi and Jorge O Tocho, Nanotechnology
17, 1309–1315 (2006).
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7.1 Expressions for permittivity for circular polarization, current aver-
aging

The type of sum that is needed, say, for right circular polarization, comes from the symmetriza-
tion found earlier for transitions between states of defined l and m, using the expression based on
averaging of the current density,

SR =
2me

h̄

o
∑

i

u
∑

f

(wi − wf )ω2
if |〈f |x|i〉|2

{

δmf=mi−1

ω + iγ + ωif
− δmf=mi+1

ω + iγ − ωif

}

(7.8)

This could also be expressed more fundamentally with the matrix elements of π̂ operators,

SR =
2

meh̄

o
∑

i

u
∑

f

(wi − wf )|〈f |π̂x|i〉|2
{

δmf=mi−1

ω + iγ + ωif
− δmf=mi+1

ω + iγ − ωif

}

(7.9)

In the first expression from the “quasi-free” electron analysis I’ll assume that the bare electron mass
me used to transform from π̂ to dipole matrix elements is OK, although I believe this is only going
to be a good approximation when the electron and hole quasi-particle masses are not too different
from me. The deltas come from a factor (1 − ∆m) that forces only contributions from transitions
with mf = mi − 1 (before the o/u symmetrization). The expression for left polarization and SL is
similar, but with the two deltas swapped. For the π̂ form it will be

SL =
2

meh̄

o
∑

i

u
∑

f

(wi − wf )|〈f |π̂x|i〉|2
{

δmf=mi+1

ω + iγ + ωif
− δmf=mi−1

ω + iγ − ωif

}

(7.10)

Of course, we have seen much earlier that these two can be combined into a single formula, where
helicity index ν = +1 for L-polarization and ν = −1 for R-polarization:

Sν =
2

meh̄

o
∑

i

u
∑

f

(wi − wf )|〈f |π̂x|i〉|2
{

δmf=mi+ν

ω + iγ + ωif
− δmf=mi−ν

ω + iγ − ωif

}

(7.11)

This is somewhat similar to the form used in the absence of magnetic field–but that was based
on averaging of the electric polarization, for the most part. I would like to be sure that this new
theory reduces to that previous one in the limit of B = 0. Although I cannot fully justify it, another
approach would be to assume that the π̂x operator on which this is based is nearly the same as the
standard momentum operator, which reduces to π̂x → h̄kx. Then, the needed matrix element here
might be written slightly differently, like

〈i|π̂x|f〉〈f |(π̂x − iπ̂y)|i〉 = |〈f |π̂x|i〉|2 (1 − ∆m) ≈ |h̄kxM(ki)|2 δkikf
2δmf=mi−1 (7.12)

This leads to an alternate expression for Sν that probably has a limit like the previous calculations,

Sν =
2h̄

me

o
∑

i

u
∑

f

(wi − wf )k2
i,x|M(ki)|2

{

δmf=mi+ν

ω + iγ + ωif
− δmf=mi−ν

ω + iγ − ωif

}

δkikf
(7.13)

I think the main advantage of this form is that one can assume a nearly constant matrix element
M(ki) between the bands, which is the same approximation that was made in the absence of the
magnetic field. It may have some dependence on the band indexes li and lf , which is supressed.
[Recall that this the similar matrix element squared for free electrons was proportional to ωB! That
will not be the case here, due to the band separation.] The more important parts here are the
dependencies on the azimuthal quantum numbers and their effects on the energies. Also note: that
is the expression based on the averaging of the current density.
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7.2 Expressions from averaging of electric polarization

In Part A of Dielectrics the results were worked out using the expression from averaging of the
polarization, which I think is not as fundamental. However, I may need to evaluate on that basis
simply to have the comparison of the results. The difference is that in place of a factor −ω in the
denominator for the susceptibility, there is a factor of +ωkk′ . As mentioned earlier, these are almost
the same, because the denominator of the original term is (ω+ iγ+ωkk′ ), which zeroes at ω = −ωkk′

(when damping is ignored). So, the theory expression for susceptibility, based on averaging of the
electric polarization, comes from

χij(ω) =
−ne2

meω(ω + iγ)

{

δij −
ω

meh̄

∑

kk′

(wk − wk′ )〈k|π̂i|k′〉〈k′|π̂j |k〉
ωkk′ [ω + iγ + ωkk′ ]

}

(7.14)

The second term leads to the sum SR in the same way as described already from averaging of the
current, and after symmetrizing for occupied and unoccupied levels, one gets

SR = − 2ω

meh̄

o
∑

i

u
∑

f

(wi − wf )
|〈f |π̂x|i〉|2

ωif

{

δmf =mi−1

ω + iγ + ωif
+

δmf=mi+1

ω + iγ − ωif

}

(7.15)

Swapping the deltas leads to the expression for left circular polarization,

SL = − 2ω

meh̄

o
∑

i

u
∑

f

(wi − wf )
|〈f |π̂x|i〉|2

ωif

{

δmf =mi+1

ω + iγ + ωif
+

δmf =mi−1

ω + iγ − ωif

}

(7.16)

In these expressions, there are two differences from the ones based on the current: (1) both terms
now have the same sign, which causes some different cancellations, and (2) the extra factor of ωif

in the denominator might make integrals that are easier to evaluate. This can be written for the
general helicity index ν = +1/− 1, for L/R circular polarizations,

Sν = − 2ω

meh̄

o
∑

i

u
∑

f

(wi − wf )
|〈f |π̂x|i〉|2

ωif

{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

(7.17)

Then once the sums are known, the permittivity is obtained by the usual way, regardless of
averaging of current or of polarization,

εR,L = 1 + 4πχR,L = 1 − 4πne2

meω(ω + iγ)
(1 + SR,L). (7.18)

7.3 Evaluating SR, 3D bands with damping, current averaging

Now consider the summations over the initial and final states. The first sum over kf can be evaluated
because of the Kronecker delta in wave vectors. For the sum over ki, I’ll take the usual approximation
of converting a sum over 3D wave vector into an integration,

∑

ki

−→ V

(2π)3

∫

d3k (7.19)

(and now just write k for ki). There will also still be sums over the possible azimuthal numbers.
To get further, it also has to be assumed that the matrix element M(ki) is a constant. Also, take
wi = 1 and wf = 0 (Fermi level within the gap). With these approximations, one now has

SR =
2|M |2h̄
me

∑

mi

∑

mf

V

(2π)3

∫

d3k k2
x

{

δmf=mi−1

ω + iγ + ωif
− δmf=mi+1

ω + iγ − ωif

}

(7.20)
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The angular parts of k can be integrated out, using kx = k sin θ cosφ and d3k = k2 dk d(cos θ) dφ,
and one has as usual

∫

dΩ k2
x =

∫ 2π

0

dφ

∫ +1

−1

d(cos θ) (k sin θ cosφ)2 =
4π

3
k2 (7.21)

Then there is still the integration over the magnitude of k,

SR =
2|M |2h̄
me

V

(2π)3
4π

3

∑

mi

∑

mf

∫ kF

0

dk k4

{

δmf=mi−1

ω + iγ + ωif
− δmf=mi+1

ω + iγ − ωif

}

(7.22)

The upper limit must be the Fermi wave vector, defined in the usual way, which depends on the
electron number density n.

Now the value of ωif is different in the two terms, due to the dependence on ∆m. For the first
term, with mf = mi − 1, there is

ω−
if = −

[

Eg

h̄
+
h̄k2

2m̃
+
µBB

h̄

]

, ∆m = −1. (7.23)

The first factor is the gap frequency ωg. With the Bohr magneton µB = eh̄
2mec and the magnetic

frequency ωB = eB
mec , the last factor is µBB

h̄ = 1

2
ωB. One can also make the definition of a scaled

wavevector,

s ≡
√

h̄

2m̃
k. (7.24)

Then this transition frequency becomes

ω−
if = −ωg − s2 − 1

2
ωB, ∆m = −1. (7.25)

There is also the transition frequency for the ∆m = +1, transition, which has the opposite sign on
the magnetic part,

ω+

if = −ωg − s2 +
1

2
ωB, ∆m = +1. (7.26)

Including the frequency ω + iγ, the integral becomes,

SR =
|M |2h̄V
3π2me

∑

mi

∫ kF

0

dk k4

{

1

ω + iγ − ωg − s2 − 1

2
ωB

− 1

ω + iγ + ωg + s2 − 1

2
ωB

}

(7.27)

The wave vector also should be switched to s, so that the variable of integration is s,

SR =
|M |2h̄V
3π2me

(

2m̃

h̄

)5/2
∑

mi

∫ sF

0

ds s4
{

1

ω + iγ − ωg − s2 − 1

2
ωB

− 1

ω + iγ + ωg + s2 − 1

2
ωB

}

(7.28)

The upper limit is the transformed Fermi wave vector, sF =
√

h̄
2m̃ kF . There is the sum over mi.

But that is related to how many transitions exist for each value of ∆m. Let me consider some simple
cases, like li = 1 and lf = 0 (p-band to s-band transition). Refer to the following diagrams.

s m = 0

p
m = +1
m = 0
m = −1

∆m = −1

6

∆m = +1

6
p

m = +1
m = 0
m = −1

d

m = +2
m = +1
m = 0
m = −1
m = −2

∆m = −1

6
6
6

∆m = +1

6
6
6
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For the p to s-band transitions (or vice-versa) one sees there is only one term for each choice of ∆m.
For the d to p-band transitions, there are 3 terms. In fact, one can see the number is the minimum
of 2l + 1 for the two bands, which turns out to be the same as li + lf (because li = lf ± 1). So the
sum over mi just gives a factor of li + lf . Let me denote this azimuthal multiplicity as

gm =
∑

mi

1 = min(2li + 1, 2lf + 1) = 2min(li, lf ) + 1 = li + lf . (7.29)

I’ll have this factor if I do not account for the thermal population of the levels. In some cases
below the Fermi distribution will be included. Then there is a separate sum over mf and the Fermi
function within the needed integrals. In that case, the gm is replaced by that sum, i.e., set gm = 1
there when the integrals take care of that counting.

It will be convenient to have the eventual result for susceptibility, χR, as physical factors times a
dimensionless integral. The integral over s (a frequency1/2) in (7.28) has dimensions of frequency3/2.
One can take that out,

SR =
|M |2h̄V gm

3π2me

(

2m̃

h̄

)5/2

× IR, (7.30)

IR =

∫ sF

0

ds s4
{

1

ω + iγ − ωg − s2 − 1

2
ωB

− 1

ω + iγ + ωg + s2 − 1

2
ωB

}

= I2(a1) − I1(a1). (7.31)

The arguments in these integrals are the following frequency combinations,

a2
2 = ω − ωB

2
− ωg + iγ. a2

1 = ω − ωB

2
+ ωg + iγ, (7.32)

Eventually, the sum SR then gets converted to its contribution to the susceptibility by the following
dimensionless factor,

χR =
−ne2

meω(ω + iγ)
SR. (7.33)

From there, one can get it to my “standard” dimensionless factors like this:

χR =
−ne2

meω(ω + iγ)
· |M |2h̄V gm

3π2me

(

2m̃

h̄

)5/2

× IR.

= −(nV )
2e2gm

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg
·

√
ωg

ω(ω + iγ)

2

π
× IR. (7.34)

The factor of (nV ) is within parenthesis because I suspect it should be let to 1, due to the kind of
normalization used for the density function. (The k-space sums already sum over all the electrons.)
That needs checking later. The factors after the dot (·) are the factors convenient to make IR in
dimensionless form, and also, have all of the frequency dependence after the dot.

The integrals needed were evaluated in Dielectrics: Part A. There I had found the following basic
indefinite integral:

I1(a) =

∫

ds
s4

a2 + s2
=

1

3
s3 − a2s+ a3 tan−1

( s

a

)

. (7.35)

The other one needed here can be expressed in some different ways, for a2 > 0,

I2(a) =

∫

ds
s4

a2 − s2
=

{

− 1

3
s3 − a2s+ a3 tanh−1

(

s
a

)

, for s < a,

− 1

3
s3 − a2s+ a3 coth−1

(

s
a

)

, for s > a.
(7.36)

I2(a) =

∫

ds
s4

a2 − s2
= −1

3
s3 − a2s+

a3

2
ln

( |s+ a|
|s− a|

)

(7.37)

In a sense the log form is better because it contains the two cases together. These are expressed
for real parameter a but actually with analytic continuation they indeed can apply even when a is
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complex. However, that algebra to extract the real and imaginary parts of the results can be a mess.
It also can be helpful to define a new function,

L(x) =
1

2
ln

( |1 + x|
|1 − x|

)

=

{

tanh−1 x for |x| < 1,

coth−1 x for |x| > 1.
(7.38)

Then the integral I2 can be expressed in a general way with this as

I2(a) =

∫

ds
s4

a2 − s2
= −1

3
s3 − a2s+ a3L

( s

a

)

≡ F2(s) (7.39)

There is also one more way to do I2, by using transformation s = iz and then it transforms into a
analyticaly continued version of I1,

I2(a) = i

∫

dz
z4

a2 + z2
= i

[

1

3
z3 − a2z + a3 tan−1

(z

a

)

]

= −1

3
s3 − a2s+ ia3 tan−1

(−is
a

)

. (7.40)

The first integral in SR is of the form of I2(a2) with a2
2 = ω + iγ − ωg + 1

2
ωB. If one ignored

the damping γ, this would be a positive a2
2 as long as the excitation frequency of the light satisfies

ω > ωg − 1

2
ωB. The second integral is of the form −I1(a1) with a2

1 = ω + iγ + ωg + 1

2
ωB. For zero

damping, this is positive at any excitation frequency. So now the SR sum has become

SR =
|M |2h̄V
3π2me

(

2m̃

h̄

)5/2

(li + lf ) [I2(a2) − I1(a1)]
sF

0
. (7.41)

7.3.1 Writing the integrals with Inouye et al. variable x = ωg + s2

It is interesting to get the SR and SL integrals in terms of the Inouye et al. variable, x = ωg + s2.4

We should actually start from the general integral at either polarization, which is

Iν =

∫ sF

0

ds s4
{

1

ω + iγ − ωg − s2 + 1

2
νωB

− 1

ω + iγ + ωg + s2 + 1

2
νωB

}

(7.42)

where the susceptibility sum that results is

Sν =
|M |2h̄V gm

3π2me

(

2m̃

h̄

)5/2

× Iν . (7.43)

Recall that ν = +1/− 1 corresponds to L/R circular polarizations. We can simplify Iν somewhat,
using the following definition of the Faraday-shifted complex optical frequency, ων ,

ων = ω + iγ +
1

2
νωB. (7.44)

Then the integral becomes

Iν =

∫ sF

0

ds s4
{

1

ων − ωg − s2
− 1

ων + ωg + s2

}

(7.45)

Then with dx = 2s ds or ds = 1

2
dx/

√
x− ωg, we get

Iν =
1

2

∫ ωg+s2
F

ωg

dx (x − ωg)
3/2

{

1

ων − x
− 1

ων + x

}

=

∫ xF

ωg

dx (x − ωg)
3/2 · x

ω2
ν − x2

. (7.46)

The integral is not divergent due to the finite upper limit, which is xF = ωg + s2F . It is simpler than
the Inouye et al. expression found from polarization averaging. Note that the power 3/2 will change
to 1/2 for a 1D band model. This is the result assuming wi − wf = 1.

4“Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Hideyuki Inouye, Koichiro Tanaka,
Ichiro Tanahashi and Kazuyuki Hirao, Phys. Rev. B 57, 11,334 (1998).
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One could try to reinstall the thermal factor, if desired. But actually that is not so simple,
because each term of the integrand gets a different Fermi function. The final state energy relative
to the top of the valence band is

Ef = Eg +
h̄2k2

2m∗
e

− 1

2
mf h̄ωB. (7.47)

This will depend on the variable x only if the hole and electron effective masses are the same. So I
assume that, m∗

e = m∗
h = m∗. Then the energy here is now

Ef = h̄

(

ωg + s2 − 1

2
mfωB

)

. (7.48)

The first term in Sν comes from mf = mi + ν, and the second term, from mf = mi − ν. However,
we can think now that the sums we had over mi and mf could be done in the opposite order: do the
mi sum first, leaving mf for last. When the sum over mi is done the first term in the integral uses
only ∆m = +ν, and the scond uses onky ∆m = −ν. That is, the first term Kronecker delta selects
only mi = mf − ν, the second selects only mi = mf + ν. These select the same values of ωif , etc.,
as before, to go in the denominator. The final state occupation is the same for all the transitions
for a selected mf , based on the final state energy:

Ef = h̄

(

x− 1

2
mf ωB

)

. (7.49)

The occupation function depends on this energy relative to the Fermi energy:

gmf
(x) = wi − wf = 1 − F (Ef − EF ) = 1 − F (x,mf ). (7.50)

Both terms have this same factor! That is good and convenient. Note that the energy difference
is dominated by h̄(ωg + s2 − ωF ), where EF = h̄ωFD defines a Fermi frequency. Near the point
where ωg + s2 − ωF ≈ 0, which is somewhere in the conduction band, the differences due to the
magnetic frequency will be important. Away from that region, not so important. The best way to
do the theory will be to keep these effects. In the end, small differences in this effect for the two
polarizations could be important in the Faraday rotation.

With the total occupation effect included, now we write this with the sum over final azimuthal
number mf still to be done, (and remove or set to 1 the old gm on its prefactor)

Iν =
1

2

∑

mf

∫ xF

ωg

dx gmf
(x) · (x− ωg)

3/2

{

1

ων − x
− 1

ων + x

}

(7.51)

Because there is only one common factor of gmf
, the same rearranging used earlier can bring it to

the following form:

Iν =
∑

mf

∫ xF

ωg

dx gmf
(x) · (x− ωg)

3/2 · x

ω2
ν − x2

. (7.52)

The sum is still present over mf . Suppose that is a p-band with mf = −1, 0,+1. Suppose the
lower band is a d-band. It has five states, mi = −2,−1, 0,+1,+2. But it doesnt matter what the
initial states were, they have already been accounted for. For each final state mf , only the states
mi = mf ± ν have contributed to Sν . If the final state is a p-state, there will be three separate
integrals like this, with slightly different results. Or, the sum over mf could be placed inside the
integral.

One more comment could be important. An interesting case is when the initial state is in an
s-band (mi = 0 only) and then the final state must be in a p-band (mf = −1, 0,+1). [This may
also apply to other cases where the final state has the higher angular momentum.] We do need to
sum over all initial and final m. When mf = 0, there is no mi from which the transition takes
place. When mf = +1, then the only initial state is mi = 0, which has ∆m = +1. On the other
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hand, when mf = −1, of course the initial state is only mi = 0 and ∆m = −1. So there are not
two possibilities for each case, only one! The calculation really depends on the function inside the
integrand,

f =
∑

mi,mf

gmf
(x) ·

{

δmi=mf−ν

ων − x
− δmi=mf+ν

ων + x

}

(7.53)

Consider left polarization, ν = +1. If we fix mf = +1, then only the first term can be satisfied
(with mi = 0), because the s-band does not have mi = 2 as required by the second delta. We get
absolutely nothing when fixing mf = 0. If we fix mf = −1, then only the second term can be
satisfied (mi = 0), and the first cannot be satisfied because the s-band does not have mi = −2. So
we get this result, doing the sum over mf as well as mi:

f1 =
g1(x)

ω1 − x
− g−1(x)

ω1 + x
(7.54)

Consider instead right polarization, ν = −1. Now the first term needs mf = −1 and the second
needs mf = +1. They are swapped. Now we get

f−1 =
g−1(x)

ω−1 − x
− g1(x)

ω−1 + x
(7.55)

Then we can see these combine into the one formula for both values of ν,

fν =
gν(x)

ων − x
− g−ν(x)

ων + x
(7.56)

Then the integral for Iν takes a slightly different form than before, for this special case of s → p
interband transitions only,

Iν =
1

2

∫ xF

ωg

dx (x− ωg)
3/2

{

gν(x)

ων − x
− g−ν(x)

ων + x

}

(7.57)

That’s an interesting very simple result. In the constant that will multiply Iν one cant forget to
remove the factor of gm that was used earlier to do the transition counting, which is corrected by
this new approach, that correctly include the Fermi-Dirac distribution of the final states.

7.3.2 Analytic continuation of the integrals

Technically, that last expression (7.41) is the closed form solution for SR (without thermal effects).
But from the numerical point of view, evaluation of its real and imaginary parts is slightly difficult
and ugly. One can simplify the difference of integrals, using the values only at the upper limit (the
lower limits give zero),

[I2(a2) − I1(a1)]
sF

0
= −2

3
s3F + 2ωgsF − a3

1 tan−1

(

sF

a1

)

+ ia3
2 tan−1

(−isF

a2

)

. (7.58)

One simplification used is that a2
1 − a2

2 = 2ωg. For the remaining parts the analytic continuation
needs to be done. To do that, base it on the expression for inverse tangent with a complex argument,
as

tan−1
( s

a

)

=
i

2
ln

(

a− is

a+ is

)

(7.59)

It will be convenient to denote the real combinations that appear in the integrals,

ω1 = ω + ωg −
1

2
ωB, ω2 = ω − ωg − 1

2
ωB, (7.60)

Then one needs the following square roots, which were worked out in Dielectrics: Part A,

a1 =
√

ω1 + iγ =

√

1

2

(

√

ω2
1 + γ2 + ω1

)

+ i

√

1

2

(

√

ω2
1 + γ2 − ω1

)

≡ x1 + iy1. (7.61)
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a2 =
√

ω2 + iγ =

√

1

2

(

√

ω2
2 + γ2 + ω2

)

+ i

√

1

2

(

√

ω2
2 + γ2 − ω2

)

≡ x2 + iy2. (7.62)

For computations, one gets here the real and imaginary parts. Then for the inverse tangents, their
real and imaginary parts can be worked out in terms of the x and y. For the term in I1 one needs

tan−1

(

s

a1

)

= tan−1

[

s

x1 + iy1

]

=
i

2
ln

[

x1 + iy1 − is

x1 + iy1 + is

]

=
1

2
tan−1

[

2x1s

x2
1 + y2

1 − s2

]

+
i

4
ln

[

x2
1 + (y1 − s)2

x2
1 + (y1 + s)2

]

(7.63)

The term from I3 is a little bit different,

tan−1

(−is
a2

)

= tan−1

[ −is
x2 + iy2

]

=
i

2
ln

[

x2 + iy2 − s

x2 + iy2 + s

]

= −1

2
tan−1

[

2y2s

x2
2 + y2

2 − s2

]

+
i

4
ln

[

(x2 − s)2 + y2
2

(x2 + s)2 + y2
2

]

(7.64)

All of this is to be evaluated at s = sF . It’s enough to calculate SR, however, there is nothing pretty
about the final formulas, which must be evaluated numerically from here.

7.3.3 Using the limit of sF → ∞
The limit of the letting the upper limit be very large is discussed in more detail in Section 7.9. With
that limit, these inverse tangents give

lim
s→∞

tan−1

(

s

a1

)

=
π

2
+ i0, (7.65)

lim
s→∞

tan−1

(−is
a2

)

= −π
2

+ i0. (7.66)

These are reasonable, since these are the usual limits for real arguments. If one expects that it is OK
to let the upper integration limit go to infinity, then the result for the IR function can be simplified.
First, the linear and cubic terms in s are roughly equal to an inverse tangent,

IR = I2(a2) − I1(a1) ≈ 2ω3/2
g tan−1

(

s
√
ωg

)

−
[

ω − ωB

2
+ ωg + iγ

]3/2

tan−1

(

s
√

ω − ωB

2
+ ωg + iγ

)

+ i
[

ω − ωB

2
− ωg + iγ

]3/2

tan−1

(

s
√

ω − ωB

2
− ωg + iγ

)

(7.67)

(See a later section for more explanation of the switch to all inverse tangents.) Then with letting s
go to infinity, this will be further approximated, to a good precision, likely, as

IR =
π

2

{

2ω3/2
g −

[

ω − ωB

2
+ ωg + iγ

]3/2

+ i
[

ω − ωB

2
− ωg + iγ

]3/2
}

. (7.68)

Then this expression produces both the real and imaginary parts of the dielectric response under
these approximations, in just this one expression. The next section shows how these could have been
derived separately in the limit of very weak damping. For now, this will lead to the following result
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for susceptibility,

χR = −2e2gm

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg
·

√
ωg

ω(ω + iγ)

2

π
× IR.

= −2e2gm

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg

×
√
ωg

ω(ω + iγ)

{

2ω3/2
g −

[

ω − ωB

2
+ ωg + iγ

]3/2

+ i
[

ω − ωB

2
− ωg + iγ

]3/2
}

. (7.69)

The last expression is split into dimensionless physical factors × a dimensionless function of the
frequencies. The last term is the imaginary part, in the limit of weak damping.

7.4 Finding SR for 3D bands, limit of zero damping, current averaging

To take the limit of very weak damping, we use the Sokchatsky-Weierstrass theorem for the denom-
inators, in the form,

lim
γ→0+

1

x+ iγ
= p.v.

(

1

x

)

− iπδ(x) (7.70)

Applied to the first term in expression (7.22) for SR it gives

1

ω + iγ + ω−
if

−→ p.v.

(

1

ω + ω−
if

)

− iπδ(ω + ω−
if ), (7.71)

whereas, on the second term the effect is

1

ω + iγ − ω+

if

−→ p.v.

(

1

ω − ω+

if

)

− iπδ(ω − ω+

if ), (7.72)

7.4.1 The imaginary parts–delta functions

Now the transition frequency ωif is negative, as long as the magnetic frequency ωB is much less than
the gap frequency. So only the δ(ω+ω−

if ) will be satisfied at some particular wavevector magnitude
k. The deltas produce the imaginary part of SR– explained physically as resonant absorption. That
imaginary part from (7.22) is

Im{SR} = (−iπ)
|M |2h̄V
3π2me

∑

mi

∫ kF

0

dk k4 δ(ω + ω−
if ) (7.73)

The delta helps to do the integral, most easily if its argument is linear in the variable of integration.
So it is helpful to switch to a new integration variable x = −ω−

if , and then solve for the corresponding
value of k, through the transition frequency expression,

x = −ω−
if = ωg +

h̄k2

2m̃
+

1

2
ωB =⇒ k(x) =

√

2m̃

h̄

(

x− ωg − 1

2
ωB

)

. (7.74)

Also with

dx =
h̄

m̃
k dk (7.75)

this transforms the integral to

Im{SR} = (−i) |M |2h̄V
3πme

∑

mi

∫ xF

0

dx
m̃

h̄
k3(x) δ(ω − x) (7.76)
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The delta picks off only x = ω, the excitation frequency. That chooses the particular wavevector k0 =
k(ω) from the above expression that satisfies energy conservation. Including also the multiplicity of
the azimuthal transitions, gm ≡ (li + lf ), one gets

Im{SR} = (−i) |M |2h̄V
3πme

gm
m̃

h̄
k3
0 = −i |M |2gmm̃

3πme
V k3

0 (7.77)

The result is dimensionless, as it should be, and negative, as expected for absorption (it will get
multiplied by -1 to make a positive contribution to the imaginary part of εR). The only question
not clear is the normalization, especially, what volume goes here, and perhaps it is the volume per
electron?? If that were the case, it would explain how the density of electrons affects the result.

Also write its net contribution to the susceptibility, to compare with other results. That is

Im{χR} =
−ne2
meω2

Im{SR} = i
ne2

meω2

gm

3π

m̃

me
|M |2V

[

2m̃

h̄

(

ω − ωg − ωB

2

)

]3/2

. (7.78)

I still have some confusion about the V , however, note that in CGS the susceptibility is dimensionless,
and that is seen to work out correctly with this expression, even with the number density n present.
However, this woudl still be correct if that number density were an inverse volume. But then, the
result would not have a dependence on the number of electrons, which would not make sense. So
the result is a little curious. On the other hand, the integrations over k are officially up to the Fermi
wave vector, which is dependent on concentration of electrons. The point is that the sum is the sum
over all electrons, even if an explicit dependence on n did not appear. My best guess right now is
that I need nV → 1 here.

Let me take that guess and place this into a scaled form.

Im{χR} = igm
2e2

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg

√

ωg

ω

[

ω − ωg − 1

2
ωB

ω

]3/2

. (7.79)

Surprisingly, this is almost the same as that obtained with the polarization averaging in the absence
of the magnetic field, except primarily for the presence of the magnetic frequency ωB increasing the
effective gap. There is also an extra factor of 2, and a factor of azimuthal multiplicity gm that I
did not have before. But these are both different from Dielectrics: Part A because there I did not
worry about summing over ml for any states, although I should have included that. In fact, if done
correctly, the sum for SR should be about half of that for Sxx, since SR includes only the ∆m = −1
transitions, which are half of the total possible transitions.

If the calculation is repeated for SL, the only change will be that the Kronecker deltas switch
places, and that means we use instead use δ(ω + ω+

if ). The net result is that this changes the sign
of ωB in the final answer, but nothing else is modified:

Im{χL} = igm
2e2

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg

√

ωg

ω

[

ω − ωg + 1

2
ωB

ω

]3/2

. (7.80)

It seems like an insignificant difference, however, when these are subtracted to give χxy = (χR −
χL)/2i or better, to give εxy, which determines the Faraday rotation, one will see that the Faraday
effects will depend on the scale of ωB relative to ω−ωg. It is fairly clear that at least this imaginary
part of εxy should be proportional to ωB at small magnetic field, as one expects! [If ωB = 0, then
the imaginary parts of χR and χL will become the same, leading to χxy = 0. One could expand the
radicals for small ωB.]

One more thing to note is that finding these by the formulas from averaging of the electric
polarization will lead to the identical results, because the presence of the delta functions pick off
exactly the one frequency ω = −ω±

fi where the appropriate denominator goes to zero. So there is
no need to do that comparison for these imaginary parts.
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7.4.2 The real parts–principal value

Next is to do the real part of SR, that comes from the principal valued integral. From (7.22) that is

Re{SR} =
|M |2h̄V
3π2me

∑

mi

p.v.

{

∫ kF

0

dk k4

[

1

ω + ω−
if

− 1

ω − ω+

if

]}

(7.81)

Now since both transition frequencies are negative, only the first term has a pole; the second de-
nominator never goes to zero. So the principal part is not really needed on the second term; it is a
normal integral. These integrals are aided by transforming to the variable s introduced earlier for
integral (7.28). Here, the integral is like (7.28), but pure real with γ = 0, so the algebra is simpler.

Re{SR} =
|M |2h̄V
3π2me

[

2m̃

h̄

]
5
2

gm p.v.

{
∫ sF

0

ds s4
[

1

ω − ωg − ωB

2
− s2

− 1

ω + ωg − ωB

2
+ s2

]}

(7.82)

The second term was already found, and since no p.v. is needed, it is the function I1(a1), where
a2
1 = ω + ωg − ωB

2
, i.e.,

I1(a) =

∫ sF

0

ds
s4

a2 + s2
=

1

3
s3F − a2sF + a3 tan−1

(sF

a

)

. (7.83)

The first term also was found in Dielectrics: Part A, but let me repeat part of that here. The basic
indefinite integral is the function I2(a2) introduced earlier here, where a2

2 = ω − ωg + ωB

2
, and

I2(a) =

∫

ds
s4

a2 − s2
= −1

3
s3 − a2s+ a3L

( s

a

)

= F2(s), L(x) =
1

2
ln

( |1 + x|
|1 − x|

)

. (7.84)

For the p.v. integral, jump over the point s = a = a2 which is singular. Do this by combining the
two integrals,

p.v.

∫ sF

0

ds = lim
γ→0

{
∫ a−γ

0

ds+

∫ sF

a+γ

ds

}

(7.85)

This means the following evaluations,

p.v.

∫ sF

0

ds = lim
γ→0

{F2(a− γ) − F2(0) + F2(sF ) − F2(a+ γ)} (7.86)

The only part that is singular is the function L(s). Also, F2(0) = 0. So this is the same as

p.v.

∫ sF

0

ds = lim
γ→0

a3

{

L

(

a− γ

a

)

− L

(

a+ γ

a

)}

+ F2(sF )

= lim
γ→0

a3

2

{

ln

∣

∣

∣

∣

1 + (1 − γ
a )

1 − (1 − γ
a )

∣

∣

∣

∣

− ln

∣

∣

∣

∣

1 + (1 + γ
a )

1 − (1 + γ
a )

∣

∣

∣

∣

}

+ F2(sF )

= lim
γ→0

a3

2
ln

{∣

∣

∣

∣

2 − γ
a

γ
a

∣

∣

∣

∣

·
∣

∣

∣

∣

γ
a

2 + γ
a

∣

∣

∣

∣

}

+ F2(sF ) −→ F2(sF ). (7.87)

The principal value just removes the singularity, and all that is left is the function at the ends of
the interval. So then the combination of the two integrals over s is

p.v.

∫ sF

0

ds = I2(a2) − I1(a1) = −1

3
s3F − a2

2sF + a3
2L

(

sF

a2

)

−
[

1

3
s3F − a2

1sF + a3
1 tan−1

(

sF

a1

)]

(7.88)
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We have that a2
1 − a2

2 = 2ωg, and L(x) is the hyperbolic inverse cotangent, coth−1(x) when x > 1
or inverse hyperbolic tangent, tanh−1(x) for x < 1, so

p.v.

∫ sF

0

ds = −2

3
s3F + 2ωgsF +

[

ω − ωg − ωB

2

]
3
2

L

(

sF
√

ω − ωg − ωB

2

)

−
[

ω + ωg − ωB

2

]
3
2

tan−1

(

sF
√

ω + ωg − ωB

2

)

(7.89)

Interestingly, this is very close to a result found from polarization averaging in the absence of the
magnetic field. An inverse tangent term there is approximately equal to the cubic and linear terms
in s here. So one can see that current averaging and polarization averaging give almost the same
result. The connection would be that, approximately, the first two terms are related to inverse
tangent, whose expansion begins

2ω3/2
g tan−1

(

sF√
ωg

)

= 2ωgsF − 2

3
s3F +

2

5

s5F
ωg

− ... (7.90)

Therefore, the two approaches are closer to each other, provided the ratio
s2

F

ωg
is small enough. But

h̄s2F is an effective Fermi energy for the bands (but not the true Fermi energy in the middle of the
gap), so for a given material situation, this ratio can be calculated and checked whether it is much
less than 1.

One can note a way to make this result just like the result for zero magnetic field. That is to
define an effective Faraday frequency for the optical field, that depends on the circular polarization.
For right polarization, let me define that frequency as

ωR ≡ ω − ωB

2
. (7.91)

Then the p.v. integral above (and also the delta integral result) involves this combination, and it
becomes

p.v.

∫ sF

0

ds = −2

3
s3F + 2ωgsF + [ωR − ωg]

3/2
L

(

sF√
ωR − ωg

)

− [ωR + ωg]
3/2

tan−1

(

sF√
ωR + ωg

)

(7.92)

These are the same form as without the magnetic field, except for this shifted optical frequency. It is
as if the right circular polarization photons have a lower effective energy for causing transitions and
other physical effects. The first term, that depends only on the gap, however, has no dependence on
the magnetic field. For left circular polarization, the effective Faraday frequency is instead increased
compared to the optical frequency,

ωL ≡ ω +
ωB

2
. (7.93)

These photons have a shorter way to get across the gap, hence their effect is greater, in some sense.
In many subsequent formulas I could use these effective Faraday frequencies, however, for the most
part I left them with the magnetic frequency explicitly displayed.

Excitation above the gap, ω > ωg: The calculation so far assumed this condition. Then
including the other physical factors, the right polarization sum is

Re{SR} =
|M |2h̄V
3π2me

[

2m̃

h̄

]
5
2

gm

{

−2

3
s3F + 2ωgsF

+
[

ω − ωg −
ωB

2

]
3
2

L

(

sF
√

ω − ωg − ωB

2

)

−
[

ω + ωg − ωB

2

]
3
2

tan−1

(

sF
√

ω + ωg − ωB

2

)}

(7.94)
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There are extra factors needed to convert to its contribution to the susceptibility, and that result is

Re{χR} =
−ne2
meω2

Re{SR} =
−ne2
meω2

|M |2h̄V
3π2me

[

2m̃

h̄

]
5
2

gm

{

−2

3
s3F + 2ωgsF

+
[

ω − ωg − ωB

2

]
3
2

L

(

sF
√

ω − ωg − ωB

2

)

−
[

ω + ωg −
ωB

2

]
3
2

tan−1

(

sF
√

ω + ωg − ωB

2

)}

(7.95)

Again I’ll take the guess that the normalization needs to be with nV → 1. Then we should try to
scale it to dimensionless form the same as for the imaginary part. That becomes

Re{χR} = = −gm
2e2

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg

× 2

π

√
ωg

ω2

{

−2

3
s3F + 2ωgsF +

[

ω − ωg − ωB

2

]
3
2

L

(

sF
√

ω − ωg − ωB

2

)

−
[

ω + ωg −
ωB

2

]
3
2

tan−1

(

sF
√

ω + ωg − ωB

2

)}

(7.96)

Here the factors in the first line are the same as the corresponding imaginary part. All the frequency
dependent parts are in the second and third lines.

There is one more approximation that probably makes a lot of sense, to take the limit of large
sF . But that can be done only if the cubic and linear terms are replaced by the inverse tangent. If
one does this, the inverse tangent terms give π/2, while the L(x) function becomes coth−1(x) which
goes to zero. So supposing this limit is good, it gives

Re{χR} ≈ −gm
2e2

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg
×

√
ωg

ω2

{

2ω3/2
g −

[

ω + ωg − ωB

2

]3/2
}

(7.97)

To get the result for χL for left circular polarization, reverse the sign on ωB.
Excitation below the effective gap, ω < ωg(B): Look at the I2 integral when the excitation

energy is below the band gap more carefully. The relevant integral is

I2(a2) = p.v.

∫

ds
s4

a2
2 − s2

= p.v.

∫

ds
s4

ω − (ωg + ωB

2
) − s2

. (7.98)

In one sense, the effective gap (for right circular photons) is the enhanced gap,

ωg(B) ≡ ωg +
ωB

2
. (7.99)

However, that is just an alternative way of thinking, rather than using the effective Faraday fre-
quency,

ωR = ω − ωB

2
< ωg. (7.100)

These are two different ways to state that the photons do not cause real transitions (i.e., absorbed).
More generally, I could say there is a Faraday frequency ωF that is either ωR or ωL, depending on
the choice of polarization, and “below the gap” excitation means,

ωF < ωg. (7.101)

I may use this way or the effective band gap concept alternatively.
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When ω < ωg(B) (or equivalently, ωF < ωg), all factors in the denominator of the I2 integrand
are negative, and the integral is not singular any more, so the p.v. is not needed. Indeed, now the
integral just becomes the negative of the I1 integral (but at a different argument b = ia2). So now
it is

I2(b) = −
∫ sF

0

ds
s4

b2 + s2
, where b =

√

ωg(B) − ω =
√

ωg − ωR = ia2. (7.102)

But that really is the same as

I2(b) = −I1(b) = −
[

1

3
s3F − b2sF + b3 tan−1

(sF

b

)

]

= −1

3
s3F + [ωg(B) − ω] sF − [ωg(B) − ω]

3/2
tan−1

(

sF
√

ωg(B) − ω

)

(7.103)

There is no change in the integral I1(a1). Now the combined integrals are
∫ sF

0

ds = I2(a2) − I1(a1) = −I1(b) − I1(a1)

= −1

3
s3F + b2sF − b3 tan−1

(sF

b

)

−
[

1

3
s3F − a2

1sF + a3
1 tan−1

(

sF

a1

)]

(7.104)

Inserting the physical arguments, the result from current averaging is
[
∫ sF

0

ds

]

〈J〉

= −2

3
s3F + 2ωgsF −

[

ωg +
ωB

2
− ω

]
3
2

tan−1

(

sF
√

ωg + ωB

2
− ω

)

−
[

ωg −
ωB

2
+ ω

]
3
2

tan−1

(

sF
√

ωg − ωB

2
+ ω

)

(7.105)

Also there is the approximate variation for averaging of the electric polarization, which changes the
first terms into an arctangent,

[
∫ sF

0

ds

]

〈P 〉

= 2ω
3
2
g tan−1

(

sF√
ωg

)

−
[

ωg +
ωB

2
− ω

]
3
2

tan−1

(

sF
√

ωg + ωB

2
− ω

)

−
[

ωg −
ωB

2
+ ω

]
3
2

tan−1

(

sF
√

ωg − ωB

2
+ ω

)

(7.106)

Now the susceptibility sum SR becomes

Re{SR} =
|M |2h̄V
3π2me

[

2m̃

h̄

]
5
2

gm

{

−2

3
s3F + 2ωgsF

−
[

ωg +
ωB

2
− ω

]
3
2

tan−1

(

sF
√

ωg + ωB

2
− ω

)

−
[

ωg − ωB

2
+ ω

]
3
2

tan−1

(

sF
√

ωg − ωB

2
+ ω

)}

(7.107)

With the factors needed to convert it to susceptibility, and nV set to 1, and scaling with dimensionless
factors, there is

Re{χR} = = −gm
2e2

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg

× 2

π

√
ωg

ω2

{

−2

3
s3F + 2ωgsF −

[

ωg +
ωB

2
− ω

]
3
2

tan−1

(

sF
√

ωg + ωB

2
− ω

)

−
[

ωg − ωB

2
+ ω

]
3
2

tan−1

(

sF
√

ωg − ωB

2
+ ω

)}

(7.108)
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Now finally for completeness, the value of sF really isn’t well defined. So one supposes it can be let
to go to infinity, but again with the assumption that the cubic and linear terms in sF become the
mentioned inverse tangent. These inverse tangents will tend towards the value of π/2, and we will
get the approximate but simplified result,

Re{χR} ≈ −gm
2e2

3πh̄c

m̃2

m2
e

|M |2
√

2m̃c2

h̄ωg

×
√
ωg

ω2

{

2ω3/2
g −

[

ωg +
ωB

2
− ω

]3/2

−
[

ωg − ωB

2
+ ω

]3/2
}

(7.109)

To reiterate, this applies only when the excitation photon has insufficient energy to be absorbed;
ωR = ω − ωB

2
< ωg. One can see we could have substituted the Faraday frequency ωR in here, and

the formula has the same form as in the absence of the magnetic field. To get the related results for
left circular polarization, reverse the sign on ωB, i,e., change ωR into ωL.

Even though there is no real absorption of photons, the electron gas is polarized by them and
there is a dielectric response. One can see that this agrees with the result for above-gap excitation,
at the crossover point, ω = ωg + ωB

2
, as it should! Also, this is only the interband contribution; there

is also a separate plasmon term, as usual.

7.5 Evaluating Sν, 3D bands with damping, polarization averaging

Now instead as a check, let’s do the same calculation but using the expression (7.17) from averaging
of the electric polarization, repeated here:

Sν = − 2ω

meh̄

o
∑

i

u
∑

f

(wi − wf )
|〈f |π̂x|i〉|2

ωif

{

δmf =mi+ν

ω + iγ + ωif
+

δmf =mi−ν

ω + iγ − ωif

}

(7.110)

If we install the matrix element as 〈f |π̂x|i〉 = h̄ki,xM and convert to the 3D integration over wave
vector, after summing over kf = ki, and using the approximation wi − wf = 1, we have

Sν = −2h̄ω|M |2
me

o
∑

mi

u
∑

mf

V

(2π)3

∫

dki k
2
i,x

1

ωif

{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

(7.111)

Doing the angular integration with dk = k2 dΩ dk and ki → k gives a factor or 4πk2/3 and leads to

Sν = −2h̄ω|M |2
me

V

(2π)3
4π

3

o
∑

mi

u
∑

mf

∫ kF

0

dk k4 1

ωif

{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

(7.112)

To proceed further requires the transition frequencies, which are recalled to be

ωif = −ωg −
h̄k2

i

2m̃
+ ∆m

eB

2mec
= −ωg − s2 +

1

2
∆mωB. (7.113)

It is important to keep in mind, for real negatively charged electrons, ωB < 0, which determines the
direction of the Zeeman energy shifts. The sum over mf is restricted according to the Kronecker
deltas, differently for the two terms. The first contains ∆m = +ν and the second has ∆m = −ν.
So in terms of the variable s, the integral needed is really a sum of two integrals, and letting the
overall constant be positive, and keeping the frequency in the needed integrals,

Sν = +
gmh̄|M |2V

3π2me

(

2m̃

h̄

)5/2

× [K1 +K2] , (7.114)

where the parts needed are

K1 = ω

∫ sF

0

−ds s4
(−ωg − s2 + 1

2
νωB)(ω + iγ − ωg − s2 + 1

2
νωB)

(7.115)

K2 = ω

∫ sF

0

−ds s4
(−ωg − s2 − 1

2
νωB)(ω + iγ + ωg + s2 + 1

2
νωB)

(7.116)
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I like to beautify these somewhat, using the following definition of the Faraday-shifted complex
optical frequency, ων and the polarization-effected Zeeman shift frequency ζ,

ων = ω + iγ +
1

2
νωB, ζ =

1

2
νωB. (7.117)

Then some simple manipulations rewrite these as

K1 = ω

∫ sF

0

−ds s4
(ωg + s2 − ζ)(ωg + s2 − ων)

(7.118)

K2 = ω

∫ sF

0

+ds s4

(ωg + s2 + ζ)(ωg + s2 + ων)
(7.119)

These have a nice symmetry. Note that the thermal occupation is in the semiconductor approxima-
tion, where gm = li + lf .

7.5.1 3D polarization integrals in the Inouye et al. variable x = ωg + s2

Before evaluating them, it is interesting to get K1 and K2 in terms of the Inouye et al. variable,
x = ωg + s2. Then with dx = 2s ds or ds = 1

2
dx/

√
x− ωg, we get

K1 =

∫ ωg+s2
F

ωg

dx
ω

2
√
x− ωg

−(x− ωg)
2

[x− ζ][x− ων ]
=

1

2

∫ xF

ωg

dx
−ω (x− ωg)

3/2

(x − ζ)(x − ων)
(7.120)

K2 =

∫ ωg+s2
F

ωg

dx
ω

2
√
x− ωg

+(x− ωg)
2

[x+ ζ][x+ ων ]
=

1

2

∫ xF

ωg

dx
+ω (x− ωg)

3/2

(x + ζ)(x + ων)
(7.121)

Best to combine into one integral, Iν = K1 +K2. Find the integrand as proportional to

f =
1

2

{ −1

(x− ζ)(x − ων)
+

1

(x+ ζ)(x + ων)

}

=
1

2

{ −(x+ ζ)(x + ων)

(x2 − ζ2)(x2 − ω2
ν)

+
(x− ζ)(x − ων)

(x2 − ζ2)(x2 − ω2
ν)

}

=
−x(ων + ζ)

(x2 − ζ2)(x2 − ω2
ν)
. (7.122)

But curiously the combination ων + ζ has an interesting value,

ων + ζ = ω + iγ +
1

2
νωB +

1

2
νωB = ω + iγ + νωB = ω2ν . (7.123)

It has double the Zeeman shift. Now the combined integral is

Iν =

∫ xF

ωg

dx (x− ωg)
3/2 · xω

x2 − 1

4
ω2

B

· ω2ν

ω2
ν − x2

. (7.124)

Since ν = ±1 its square is always 1 so ζ2 = 1

4
ω2

B. Only the last factor contains polarization
information. That last factor is positive for excitation above the gap. The factor between the dots
is close to 1/x, as in the Inouye et al. expression for no magnetic field. The 3/2 power on the other
factor will change to 1/2 when this is done for 1D, as in the Inouye problem. So this looks pretty
good, and equivalent to their result, when B → 0. The result is similar to the result found for
current averaging, but clearly not identical.

That does not have the thermal occupation number included. To put that back in, works the
same as we did earlier for the current density calculation. It will replace the factor gm =

∑

mi,mf

in Iν by doing the sum including the temperature effects. The sum is done first over mi, using the
Kronecker deltas, at fixed mf , which select only the values mi = mf −ν, for K1 and mi = mf +ν for
K2. We assume both those transitions exist (they don’t if the initial band is an s-band, for example).
Then each integral is weighted by the occupation factor depending on the final state energy,

Ef = h̄

(

x− 1

2
mf ωB

)

. (7.125)
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The occupation function depends on this energy relative to the Fermi energy:

gmf
(x) = wi − wf = 1 − F (Ef − EF ) = 1 − F (x,mf ). (7.126)

Since we take this as fixed in each integral, it simply goes into each integrand, and hence into their
combined integrand, together with the sum over the possible final values:

Iν =
∑

mf

∫ xF

ωg

dx gmf
(x) · (x− ωg)

3/2 · xω

x2 − 1

4
ω2

B

· ω2ν

ω2
ν − x2

. (7.127)

To be clear, this Iν is used in the usual expression, with these factors,

Sν = +
h̄|M |2V
3π2me

(

2m̃

h̄

)5/2

× Iν . (7.128)

If a material has the Fermi enery high into the upper band, the thermal effect must be taken into
account like this. Also keep in mind, if the upper band has the higher angular momentum, then this
is not quite right, see an earlier discussion about this where the current averaging calculation was
written in the Inouye et al. variable, x.

7.5.2 Evaluating the integrals, 3D+damping, when wi − wf (no thermal factors)

Now go back to the evaluation of the K1 and K2 integrals in terms of the variable s, ignoring the
thermal occupation effects, then the constant gm represents the multiplicity of allowed transitions.
Assume here the Fermi level is well within the gap, as in semiconductors. Consider using for K1 a
partial fraction expansion,

1

(ωg + s2 − ζ)(ωg + s2 − ων)
=

1

ων − ζ

[ −1

ωg + s2 − ζ
+

1

ωg + s2 − ων

]

(7.129)

But ων − ζ = ω + iγ, it has no Zeeman shift. For the K2 integral we need instead (switching the
signs on ων and ζ)

1

(ωg + s2 + ζ)(ωg + s2 + ων)
=

1

−ων + ζ

[ −1

ωg + s2 + ζ
+

1

ωg + s2 + ων

]

(7.130)

Then the integrals are now expressed as

K1 =
ω

ω + iγ

∫ sF

0

ds s4
[

1

s2 + ωg − ζ
− 1

s2 + ωg − ων

]

(7.131)

K2 =
ω

ω + iγ

∫ sF

0

ds s4
[

1

s2 + ωg + ζ
− 1

s2 + ωg + ων

]

(7.132)

They have a nice symmetry. One is obtained from the other by reversing the signs of ων and ζ.
We know how to do all of these integrals. Let me just write them as general complex integrals,

with the understanding that their analytic continuation can be done to extract the real and imaginary
parts. The basic needed integral is metioned earlier in Part B,

I1(a) =

∫

ds
s4

a2 + s2
=

1

3
s3 − a2s+ a3 tan−1

( s

a

)

. (7.133)

Really, only the second term in K1 has the likelihood of the parameter a being pure imaginary,
however, the damping in the frequency makes these all complex, in general. We can apply this
integral with that understanding that it defines some complex function. For K1 this apparently
gives

K1 =
ω

ω + iγ

{

1

3
s3 − (ωg − ζ)s+ (ωg − ζ)3/2 tan−1

(

s
√

ωg − ζ

)}

− ω

ω + iγ

{

1

3
s3 − (ωg − ων)s+ (ωg − ων)3/2 tan−1

(

s√
ωg − ων

)}

(7.134)
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These are evaluated at the upper limit, sF . It is wonderful that the cubic term cancel. It is curious
that the optical frequency does not enter in the first line (except in denominator). Combining the
two lines gives

K1

ω
= −s+

1

ω + iγ

{

(ωg − ζ)3/2 tan−1

(

s
√

ωg − ζ

)

− (ωg − ων)3/2 tan−1

(

s√
ωg − ων

)

}

(7.135)

The K2 integral is similar, as obtained changing the signs of ων and ζ,

K2

ω
= +s+

1

ω + iγ

{

(ωg + ζ)3/2 tan−1

(

s
√

ωg + ζ

)

− (ωg + ων)3/2 tan−1

(

s√
ωg + ων

)

}

(7.136)

We actually want the sum of these, Iν = K1 +K2, which is rather interesting. There are no cubic
nor linear terms in s. Only the inverse tangents survive.

Iν =
ω

ω + iγ
×

[

(ωg − ζ)3/2 tan−1

(

sF
√

ωg − ζ

)

+ (ωg + ζ)3/2 tan−1

(

sF
√

ωg + ζ

)

(7.137)

− (ωg − ων)3/2 tan−1

(

sF√
ωg − ων

)

− (ωg + ων)3/2 tan−1

(

sF√
ωg + ων

)]

That is not a bad result. However, it has an interesting feature that I was not sure would happen.
Indeed, it seems that instead of the Zeeman shifting the optical frequency, it makes more sense to
think of it as changing the effective gap. Suppose we group the ζ not with ω but instead with ωg.
Specifically, the ones involving the photon frequency are

ωg − ων = (ωg − ζ) − (ω + iγ), ωg + ων = (ωg + ζ) + (ω + iγ). (7.138)

However, the first line in Iν , that does not have the photon frequency, really shows how the magnetic
field affects the gap, regardless of the photon frequency. This type of term was present in the original
results with B = 0, that is, a term depending only on the gap frequency, not the photon.

Consider letting the upper limit of integration go to infinity. The limit of sF → ∞ is discussed
in Sec. 7.9. It may help first to reverse the order in one of the terms, i.e.,

ω + iγ

ω
Iν = (ωg − ζ)3/2 tan−1

(

sF
√

ωg − ζ

)

+ (ωg + ζ)3/2 tan−1

(

sF
√

ωg + ζ

)

(7.139)

− i(ων − ωg)
3/2 tan−1

(

isF√
ων − ωg

)

− (ωg + ων)3/2 tan−1

(

sF√
ωg + ων

)

This makes more sense, thinking that the photon energy is above the gap, although this isn’t actually
necessary. In Sec. 7.9 it is shown that the limits are

lim
s→∞

tan−1 s

a
→ sgn (Re{a}) π

2
, lim

s→∞
tan−1 is

a
→ sgn (Im{a}) π

2
, (7.140)

The optical frequency include +γ with positive γ. So for the imaginary term we have sgn (Im{a}) =
+1. Then we can see the limit with sF → ∞ becomes a simple expression:

Iν =
πω

2(ω + iγ)

{

(ωg − ζ)3/2 + (ωg + ζ)3/2 − i(ων − ωg)
3/2 − (ων + ωg)

3/2

}

. (7.141)

We can note that really it could have been left without the switching in the one term,

Iν =
πω

2(ω + iγ)

{

(ωg − ζ)3/2 + (ωg + ζ)3/2 − (ωg − ων)3/2 − (ων + ωg)
3/2

}

. (7.142)

That’s an incredibly simple result, compared to what we started with. Note that it is used
in (7.114) with K1 + K2 ≡ Iν . The main question about it will be, how much does the thermal
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population factor (that was set to a constant) affect this calculation? Are we really only doing
states that are far from the Fermi level and therefore not much affected by the Fermi-distribution?
Further, we split into occupied and unoccupied states. The distinction between them should be at
the Fermi level. Yet, we let the integration go to infinity, it is an inconsistency. The plan was to
integrate only over roughly the half of states |i〉 that are occupied. If we then integrate over all
states, it is a double counting.

Recall, however, that if the Fermi energy falls inside the upper hand, this approach is wrong,
and the Fermi occupation must be taken into account, as mentioned slightly above in this section.
Thus, the more correct approach takes care of most of these difficult questions.

Let me also write this result one more time, showing how really the gap gets shifts, rather than
the photon:

Iν =
πω

2(ω + iγ)

{

(ωg − ζν)3/2 + (ωg + ζν)3/2 (7.143)

− [(ωg − ζν) − (ω + iγ)]
3/2 − [(ωg + ζν) + (ω + iγ)]

3/2
}

.

I added the ν subscript to ζν = 1

2
νωB to show it depends on the polarization. Curiously, there are

terms where the gap is modified in both directions, for a chosen polarization. These come from the
symmetrization in terms of occupied/unoccupied states. One can imagine that some are absorptions
and some are emissions, because of the way the second terms were obtained by swapping i and f
indices. But one cannot just say that the gap gets shifted in a certain direction for each polarization.
There are terms in both directions! Thus it makes more sense to say that the primary effect is the
shift the photon frequency in opposite directions for the two polarization, although it is not the only
thing that happens.

7.6 Expression for SR for 1D bands with damping, current averaging

The application to 1D bands is an approximation to a full 3D band structure, along some direction
where there is a gap. For gold it was already discussed that there is a gap of about 2 eV in the 111
direction near the Fermi surface. Although the actual physical problem is 3D, one needs to reduce
to the important 1D direction and integration only of that degree of freedom. I have worked this
out in Dielectrics: Part A, as far as how to get down to a 1D integral. It is based on assuming N
electrons, but living in a cubical box rather than the usual spherical symmetry for wavevectors. One
can find the effective Fermi wavevector, along a Cartesian coordinate, needed to fill up N states in
a volume V = L3. If the wavevectors range from −kF to +kF along each Cartesian axis, then the
needed Fermi wave vector is

kF =

(

π3n

2

)1/3

. (7.144)

This was derived by setting

N = 2

(

L

2π

)3

(2kF )3. (7.145)

With that, any summation over allowed states first has its transverse integrations carried out, leaving
only the final longitudinal one (kx) along the band direction. It means a sum transforms as follows:

∑

k

→ 2V

(2π)3
(2kF )2

∫ +kF

−kf

dkx =
V k2

F

π3

∫ +kF

−kf

dkx. (7.146)

The first “2” counts spin states, and the squared factors of 2kF are due to the transverse integrations,
already carried out. By this type of transformation, the correct units will be preserved on all
quantities.

With that, consider the sum SR for a 1D band with the damping γ included. After using
momentum conservation to sum out the final wave vector, the sum with this transformation is

SR =
2|M |2h̄
me

∑

mi

∑

mf

V k2
F

(π)3

∫ +kF

−kF

dkx k
2
x (wi − wf )

{

δmf=mi−1

ω + iγ + ωif
− δmf =mi+1

ω + iγ − ωif

}

(7.147)
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There seems to be a lot of questionable approximation to get to this. Really, it is hard to understand
what is meant by kx here, that is, how does that direction relate to the direction in which the light
is propagating? Even when this calculation is carried out in the absence of magnetic field, there is
this unsettling question about the direction of kx relative to the direction of the light waves. There
is also of course lack of knowledge about the matrix element, which is probably connected to these
questions. I will ignore these difficulties here, for the time being.

The integral can be transformed to one over s =
√

h̄/2m̃ kx, which is my preferred variable, and
including the transition frequencies and sums over mi,mf , we have

SR =
4|M |2h̄
me

V k2
F

(π)3

(

2m̃

h̄

)3/2

× IR,

IR =
∑

mf

∫ +sF

0

ds gmf
(s2) s2

{

1

ω + iγ − ωB

2
− ωg − s2

− 1

ω + iγ − ωB

2
+ ωg + s2

}

(7.148)

The range of integration was modified because the integrand is an even function of s. I will evaluate
using this form, however, first it will be interesting to see how this looks in the x variable used by
Inouye et al., where x = ωg + s2 was its original definition. It looks as if one can try that same
definition here, since that same factor appears in both denominators. Also with ων ≡ ω + iγ − ωB

2

(this is right polarization or ν = −1), the factor in the braces here becomes

1

ων − x
− 1

ων + x
=

2x

ω2
ν − x2

=
2x

(

ω + iγ − ωB

2

)2 − x2
=

2x
(

ω − ωB

2

)2 − x2 − γ2 + 2iγ
(

ω − ωB

2

)

(7.149)
This is similar to the results at zero field, however, with the magnetic frequency subtracted from the
optical frequency, which is rather interesting. To compare with Inouye et al. it is best to bring the i
to the numerator so real and imaginary parts are separated, although it makes for an ugly formula,

1

ων − x
− 1

ων + x
= 2x

[

(

ω − ωB

2

)2 − x2 − γ2

]

− 2iγ
(

ω − ωB

2

)

[

(

ω − ωB

2

)2 − x2 − γ2

]2

+ 4γ2
(

ω − ωB

2

)2
(7.150)

Of course, this is the result of current averaging and Inouye et al. used polarization averaging, but
what can be seen as the main consequence of the magnetic field is the shift it gives to the optical
frequency. This is similar to what was seen earlier, that it effectively increases the band gap (or
reduces the effective photon energy).

The change from integration over s to integration over x = ωg + s2, with dx = 2s ds, is effected
by

∫ sF

0

ds s2f(s2) =
1

2

∫ xF

ωg

dx
√

x− ωg f(x− ωg) (7.151)

The upper limit is xF = ωg + s2F . So the integral IR in terms of x-integration is

IR =
∑

mf

∫ xF

ωg

dx gmf
(x)

√

x− ωg x

[

(

ω − ωB

2

)2 − x2 − γ2

]

− 2iγ
(

ω − ωB

2

)

[

(

ω − ωB

2

)2 − x2 − γ2

]2

+ 4γ2
(

ω − ωB

2

)2
(7.152)

Keep in mind, with the factors to produce the susceptibility contribution, this is applied as

χR =
−ne2SR

meω(ω + iγ)
=

−ne2(ω − iγ)

meω(ω2 + γ2)
× 4|M |2h̄

me

V k2
F

(π)3

(

2m̃

h̄

)
3
2

× IR. (7.153)

The definition of a real Faraday effective optical frequency, for right/left circular polarizations,

ωR ≡ ω − ωB

2
, ωL ≡ ω +

ωB

2
. (7.154)
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can be written generally with the effective real “Faraday frequency” (does not include the damping)

ωF = ω + ν
ωB

2
(7.155)

Then this integral is expressed more simply,

IR =
∑

mf

∫ xF

ωg

dx gmf
(x)

√

x− ωg x

[

ω2
R − x2 − γ2

]

− 2iγωR

[ω2
R − x2 − γ2]

2
+ 4γ2ω2

R

(7.156)

The result for left polarization is contained in the same formula, with ωL in the place of ωR. (Or just
put ωF in the place of ωR for general case.) These expressions are OK for numerical integration, and
should be very good because the temperature effects are included. If one wants the result ignoring
those factors (limit of wi − wf = 1), then use

∑

mf
gmf

(x) → gm = li + lf , as worked out earlier.

The IR integral here has dimensions of frequency1/2. I will assume the normalization gives
nV → 1. Knowing these, it may help also to express the sum and the susceptibility in terms of
dimensionless factors, which are expressions for either R or L polarization

SR|L =
4|M |2
π2

(

meV ω
2
g

h̄c

)

(

h̄kF

mec

)2 (

2m̃c2

h̄ωg

)3/2

· 1
√
ωg

2

π
IR|L (7.157)

χR|L = −4|M |2
π2

(

e2

h̄c

)(

h̄kF

mec

)2(

2m̃c2

h̄ωg

)3/2

· ω
3/2
g

ω(ω + iγ)

2

π
IR|L (7.158)

The last factors after the dot are the dimensionless form of IR|L that will have a convenient limit,
and all the frequency dependence is in that part.

7.7 Expressions for 1D bands with damping, electric polarization aver-
aging. I.

Here I discuss a calculation of the susceptibility, using the general complex optical frequency variable,
ων , that was introduced earlier. The section that follows discusses the same problem, but getting
an expression in terms of real variables.

I can start from the expression (7.147) from current averaging, but make the appropriate modifi-
cations for polarization averaging: add factor of −ω/ωif , and terms come with the same signs. I am
also going to include the thermal occupation terms here, which I have found to be more important
than I imagined earlier when writing these notes.

So for electric polarization averaging we have the sum for the ν polarization,

Sν = −2|M |2h̄
me

∑

mi

∑

mf

V k2
F

(π)3

∫ +kF

−kF

dkx k
2
x

ω(wi − wf )

ωif

{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

(7.159)

This can be transformed to the variable s =
√

h̄/2m̃ kx, and I will also keep track of the initial and
final angular momentum states:

Sν = −2|M |2h̄
me

V k2
F

(π)3

(

2m̃

h̄

)3/2
∑

mi

∑

mf

2ω

∫ +sF

0

ds s2
wi − wf

ωif

{

δmf =mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

(7.160)
But the transition frequency is

ωif = −ωg − s2 +
1

2
∆mωB. (7.161)

So there results a constant times the sum of two separate integrals K1 +K2 = Iν :

Sν =
2|M |2h̄
me

V k2
F

(π)3

(

2m̃

h̄

)3/2

× 2 × (K1 +K2) . (7.162)
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where the integrals include the minus sign and the ω and are

K1 = ω
∑

mi,mf

∫ sF

0

−ds (wi − wf ) s2 δmf=mi+ν
(

−ωg − s2 + 1

2
νωB

) (

ω + iγ − ωg − s2 + 1

2
νωB

) (7.163)

K2 = ω
∑

mi,mf

∫ sF

0

−ds (wi − wf ) s2 δmf=mi−ν
(

−ωg − s2 − 1

2
νωB

) (

ω + iγ + ωg + s2 + 1

2
νωB

) (7.164)

These are very similar to the expressions I had for K1 and K2 for 3D, and really the only main
change is the factor of s2 instead of s4. They can be written with

ων = ω + iγ +
1

2
νωB, ζ =

1

2
νωB. (7.165)

Then they are

K1 = ω
∑

mi,mf

∫ sF

0

−ds gmf
(s) s2 δmf=mi+ν

(ωg + s2 − ζ) (ωg + s2 − ων)
(7.166)

K2 = ω
∑

mi,mf

∫ sF

0

+ds gmf
(s) s2 δmf=mi−ν

(ωg + s2 + ζ) (ωg + s2 + ων)
(7.167)

Including the thermal population effects, the best way to write them for real calculations will
probably be in terms of the Inouye et al. variable x = ωg + s2. That becomes

K1 = −ω
2

∑

mi,mf

∫ ωg+s2
F

ωg

dx
gmf

(x)
√
x− ωg

(x − ζ)(x − ων)
δmi=mf−ν (7.168)

K2 = +
ω

2

∑

mi,mf

∫ ωg+s2
F

ωg

dx
gmf

(x)
√
x− ωg

(x + ζ)(x + ων)
δmi=mf+ν (7.169)

I changed the deltas here to show how they select certain mi for fixed mf . When the mi sum is
done first (it already selected the transitions in the denominators), it chose particular transitions.
We do this at fixed final mf . For a chosen mf , there are (usually) two mi, one corresponding to
each integral. Then both integrals have the same population factors then.5 When the population
factors are the same, the two integrals can be combined into one. The integrand depends on

f =
1

2

{ −1

(x− ζ)(x − ων)
+

1

(x+ ζ)(x + ων)

}

=
1

2

{−(x+ ζ)(x + ων) + (x− ζ)(x − ων)

(x2 − ζ2)(x2 − ω2
ν)

}

=
−x(ων + ζ)

(x2 − ζ2)(x2 − ω2
ν)
. (7.170)

This same factor was encountered in the 3D problem. So the rest of the calculation is very similar.
With ων + ζ = ω2ν , we have for the combined integral Iν = K1 +K2,

Iν =
∑

mf

∫ xF

ωg

dx gmf
(x) ·

√

x− ωg · xω

x2 − 1

4
ω2

B

· ω2ν

ω2
ν − x2

. (7.171)

This result for Iν should not be too bad to calculate, and usually it is customary to let the upper
limit go to infinity. At large x the integrand varies as x−5/2 so the integration should be convergent.
There still remains the sum over the final state, which modifies the population factor.

5Recall, however, if the higher band has the larger angular momnetum, this counting needs to be done differently.
We did the case of s to p transitions earlier. Even for, say, p to d transitions, if you have mf = +2, for example, there
is only one available mi = 1, because there will not be mi = +3 in a p-band.
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We note that the population factor is taken as

gmf
(x) = 1 − Fmf

(x), F (Ef ) =
1

exp{β(Ef − EF )} + 1
. (7.172)

where we need to insert the final state energy as

Ef = h̄

(

ωg + s2 − 1

2
mf ωB

)

= h̄

(

x− 1

2
mf ωB

)

. (7.173)

The final state energy depends on the Zeeman state, hence I keep the index mf on the occupation
factor.

Summarizing, this will give the sum for polarization averaging, in the 1D damped model,

Sν =
4|M |2h̄
me

V k2
F

(π)3

(

2m̃

h̄

)3/2

× Iν . (7.174)

All these constants will be typically renamed as some constant, say, Q as in the Scaffardi and Tocho
paper. It would be a fitting constant, made to match experiment.

7.8 Expressions for 1D bands with damping, electric polarization aver-
aging. II.

This part discusses an expression for IR|L in terms of real variables. In the previous section the
calculation was done in the complex more general notation using ων .

Let me note how χR works out instead if the expression from polarization averaging were used,
because that will be better for comparison with the theory in the absence of the magnetic field!
This requires the two terms for ∆m = ±1 to come in with the same sign, and the whole integrand
gets multiplied by a factor of −ω/ωif . Going back to the integrand for SR, Eq. (7.147), the part in
braces {...} now becomes

{...} → − ω

ωif

{

δmf=mi−1

ω + iγ + ωif
+

δmf=mi+1

ω + iγ − ωif

}

=

{

−ω
ω−

if (ω + iγ + ω−
if )

+
−ω

ω+

if (ω + iγ − ω+

if )

}

=
−ω

(−ωB

2
− ωg − s2)(ω + iγ − ωB

2
− ωg − s2)

+
−ω

(ωB

2
− ωg − s2)(ω + iγ − ωB

2
+ ωg + s2)

=
ω

(x+ ωB

2
)(ω + iγ − ωB

2
− x)

+
ω

(x− ωB

2
)(ω + iγ − ωB

2
+ x)

(7.175)

Here I am using the same definition, x = ωg +s2. The presence of different factors with the magnetic
frequency and x is interesting. It is probably simplest to keep the ∆m = ±1 terms separated, they do
not combine into anything too beautiful! But I like the result. If we rationalize each one separately,
there results

{...} =
ω

(x+ ωB

2
)
· (ω − ωB

2
− x− iγ)

(ω − ωB

2
− x)2 + γ2

+
ω

(x− ωB

2
)
· (ω − ωB

2
+ x− iγ)

(ω − ωB

2
+ x)2 + γ2

(7.176)

Just for the record, if instead we did put them together and rationalize, see what comes out:

{...} =
ω

x2 −
(

ωB

2

)2
·
{

x− ωB

2

ων − x
+
x+ ωB

2

ων + x

}

=
ω

x2 −
(

ωB

2

)2
·
{

(

x− ωB

2

)

(ων + x) +
(

x+ ωB

2

)

(ων − x)

ω2
ν − x2

}

=
ω

x2 −
(

ωB

2

)2
·
{

(2ων − ωB)x

ω2
ν − x2

}

=
2ωx(ω + iγ − ωB)

[

x2 −
(

ωB

2

)2
]

[

(ω + iγ − ωB

2
)2 − x2

]

(7.177)
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Again I used ων = ω + iγ − ωB

2
, where this example has ν = −1 for R polarization. Now finally get

it rationalized, ugh, with all the i’s in the top,

{...} =
2ωx(ω + iγ − ωB)
[

x2 −
(

ωB

2

)2
] ·

[

(

ω − ωB

2

)2 − x2 − γ2

]

− 2iγ
(

ω − ωB

2

)

[

(

ω − ωB

2

)2 − x2 − γ2

]2

+ 4γ2
(

ω − ωB

2

)2
(7.178)

The factor of “2” is taken out as a prefactor, then with real Faraday frequency ωR = ω − ωB

2
, the

integral that will be needed is now

IR =
∑

mf

∫ xF

ωg

dx gmf
(x)

√

x− ωg x · ω(ω + iγ − ωB)

x2 −
(

ωB

2

)2
·
[

ω2
R − x2 − γ2

]

− 2iγωR

[ω2
R − x2 − γ2]

2
+ 4γ2ω2

R

(7.179)

Obviously there is a similar expression for IL, changing ωR to ωL = ω + ωB

2
. This is the same as

the complex expression in the previous section, which is a good check of all this algebra. The part
between the dots is what is different from current averaging. However, one expects that the main
contribution to the integral comes from the region, x ≈ ωR. Then the factor between the dots is
close to “1” if the damping and magnetic field are small, as should be assumed. So this should not
be significantly different from the corresponding integral that came from current averaging. It may
be slightly prefered because it looks more convergent at large x, however, that is probably of little
importance, and, the current averaging expression is generally simpler.

7.9 Finding SR, 1D bands, with damping, current averaging

The last sections gave the expression for SR, but concentrated mostly on the integrals in terms of
the variable x = ωg + s2. For analytic evaluations, however, it is better to set up the integrals in
terms of s. Here I try to get their exact analytic results, where the main approximation not used by
Inouye et al. is that I have already set the occupation probabilities to 1 and zero for occupied and
unoccupied states.

So here I want to evaluate the integral needed for SR in expression (7.148), taking out a factor
of “2” to stay with the prefactor, which comes from converting to an integral only over positive s,
one needs

IR =

∫ sF

0

ds s2
{

1

ω + iγ − ωB

2
− ωg − s2

− 1

ω + iγ − ωB

2
+ ωg + s2

}

=

∫ sF

0

ds s2
{

1

ωR + iγ − ωg − s2
− 1

ωR + iγ + ωg + s2

}

(7.180)

As complex functions, these two integrals are of similar forms, whose integrations are quite simple.
The second term is simplest,

I1(a1) =

∫

ds
s2

a2
1 + s2

= s− a1 tan−1

(

s

a1

)

= s− ia1

2
ln

(

a1 − is

a1 + is

)

. (7.181)

The last form is a general analytic function for the inverse tangent, used earlier. The squared
parameter we have already met,

a2
1 = ωR + ωg + iγ ≡ ω1 + iγ, a1 =

√

ω1 + iγ (7.182)

and the square root of this is also known,

a1 = x1 + iy1 =

√

1

2

(

√

ω2
1 + γ2 + ω1

)

+ i

√

1

2

(

√

ω2
1 + γ2 − ω1

)

(7.183)
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These can be used to find the arctangent, there is no difference from the analysis already done for
3D damped bands, and one will get the same result,

tan−1

(

s

a1

)

= tan−1

[

s

x1 + iy1

]

=
i

2
ln

[

x1 + iy1 − is

x1 + iy1 + is

]

=
1

2
tan−1

[

2x1s

x2
1 + y2

1 − s2

]

+
i

4
ln

[

x2
1 + (y1 − s)2

x2
1 + (y1 + s)2

]

(7.184)

For the other integral with −s2, let its parameter be a2, defined as

a2
2 = ωR − ωg + iγ ≡ ω2, a2 =

√

ω2 + iγ (7.185)

and the square root is given by the same algorithm as for a1. The integral itself is aided by the
transformation s = iz, which converts it to

I2(a2) =

∫

ds
s2

a2
2 − s2

= −i
∫

dz
z2

a2
1 + z2

= −i
[

z − a2 tan−1

(

z

a2

)]

= −s+ ia2 tan−1

(−is
a2

)

= −s− a2

2
ln

(

a2 − s

a2 + s

)

(7.186)

Again the inverse tangent can be evaluated using the real and imaginary parts, which was

tan−1

(−is
a2

)

= tan−1

[ −is
x2 + iy2

]

=
i

2
ln

[

x2 + iy2 − s

x2 + iy2 + s

]

= −1

2
tan−1

[

2y2s

x2
2 + y2

2 − s2

]

+
i

4
ln

[

(x2 − s)2 + y2
2

(x2 + s)2 + y2
2

]

(7.187)

Then the combination to get the needed integral IR is

IR = I2(a2) − I1(a1) =

[

−sF + ia2 tan−1

(−isF

a2

)]

−
[

sF − a1 tan−1

(

sF

a1

)]

= i
√

ωR − ωg + iγ tan−1

(

−isF
√

ωR − ωg + iγ

)

+
√

ωR + ωg + iγ tan−1

(

sF
√

ωR + ωg + iγ

)

− 2sF (7.188)

Of course, the inverse tangents are defined above for these complex arguments. These results apply
no matter whether the excitation frequency is above or below the gap, due to the way this way
derived, with generalized complex square roots. The only possible difficulty, is the choice of the
upper limit, sF , especially, what to do about the linear term.

Based on results in Dielectrics: Part A, the main change for polarization averaging will be that
instead of the term −2sF , there is

−2sF −→ −2
√
ωg tan−1

(

sF√
ωg

)

. (7.189)

For taking the limit sF → ∞, this would go over to −π√ωg, rather than diverging, which could
be a useful approximation. What about the other inverse tangents as sF → ∞? This must be
done carefully, else they seem to give zero. But those tangents do go to zero, however, while their
denominators are negative. So tan−1(y/x) gives an angle in the second quadrant if y is positive while
x is negative, and in the third quadrant if y is negative while x is also negative. That is, the form
tan−1(y/x) → π sgn(y) for x → −∞. For the square roots used here, all the factors x1, y1, x2, y2
are taken as positive numbers. Then there are the following simple limits:

lim
s→∞

1

2
tan−1

[

2x1s

x2
1 + y2

1 − s2

]

=
1

2
π sgn(x1) =

π

2
, (7.190)
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lim
s→∞

−1

2
tan−1

[

2y2s

x2
2 + y2

2 − s2

]

= −1

2
π sgn(y2) = −π

2
, (7.191)

The logarithmic parts of the complex inverse tangents vanish in the same limits, so we have

lim
s→∞

tan−1

(

s

a1

)

=
π

2
+ i0, (7.192)

lim
s→∞

tan−1

(−is
a2

)

= −π
2

+ i0, (7.193)

So if one takes the upper limit sF to infinity, the IR integral becomes approximately,

IR = [I2(a2) − I1(a1)]sF →∞ = −π√ωg + ia2 ·
−π
2

+ a1 ·
π

2

IR =
π

2

[

a1 − ia2 − 2
√
ωg

]

=
π

2

[

√

ωR + ωg + iγ − i
√

ωR − ωg + iγ − 2
√
ωg

]

(7.194)

That clearly shows how one integral is the complex rotation of the other, due to the i on a2. To get
the similar result for left polarization, it is necessary to switch ωR = ω − ωB

2
to ωL = ω + ωB

2
.

7.9.1 Getting the effective sums

Going back to (7.148) and equations following it, the sum that goes to the susceptibility is written,
with the dimensionless factors as

SR = gm
2|M |2
π2

(

meV ω
2
g

h̄c

)

(

h̄kF

mec

)2(

2m̃c2

h̄ωg

)3/2

· 1
√
ωg

2

π
IR (7.195)

= gm
2|M |2
π2

(

meV ω
2
g

h̄c

)

(

h̄kF

mec

)2(

2m̃c2

h̄ωg

)3/2
[

√

ωR + ωg + iγ
√
ωg

− i

√

ωR − ωg + iγ
√
ωg

− 2

]

The associated susceptibility contribution is

χR = −gm
2|M |2
π2

(

e2

h̄c

)(

h̄kF

mec

)2 (

2m̃c2

h̄ωg

)3/2
ω

3/2
g

ω(ω + iγ)

[

√

ωR + ωg + iγ − i
√

ωR − ωg + iγ − 2
√
ωg

]

(7.196)
One can check this in the limit of small damping, letting γ → 0, it goes over to

χR ≈ −gm
2|M |2
π2

(

e2

h̄c

)(

h̄kF

mec

)2(

2m̃c2

h̄ωg

)3/2
ω

3/2
g

ω2

[√

ωR + ωg − 2
√
ωg − i

√

ωR − ωg

]

(7.197)

I changed the order to keep the real and imaginary parts separated. But one must keep in mind
that the last term is imaginary (as written) if the excitation is above the gap, but it becomes real if
the excitation is below the gap. This is to be expected, as below-the-gap excitation does not have
any physical absorption. As a check of this, we can do the integrals, taking the limit of γ → 0 first,
as shown in the next section.

7.10 Finding SR, 1D bands, limit of zero damping, current averaging

Again we want to apply the zero damping limit, using the SW theorem before integration,

lim
γ→0+

1

x+ iγ
= p.v.

(

1

x

)

− iπδ(x) (7.198)

Applied to the first term in the integrand for IR, (7.180), for the 1D bands model, it gives

1

ωR + iγ − ωg − s2
−→ p.v.

(

1

ωR − ωg − s2

)

− iπδ(ωR − ωg − s2), (7.199)
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whereas, on the second term the effect is

1

ωR + iγ + ωg + s2
−→ p.v.

(

1

ωR + ωg + s2

)

− iπδ(ωR + ωg + s2), (7.200)

There is also an additional factor of s2 in the integrand.

7.10.1 The imaginary part – integration of the delta functions

I am doing this slightly differently than what was done for the zero damping limit in 3D bands.
This time, switch to the variable x = ωg + s2, which is present in both integrands. Now one has
dx = 2sds and there results some trivial integration steps,

Im{IR} = −iπ
∫ sF

0

ds s2
[

δ(ωR − ωg − s2) − δ(ωR + ωg + s2)
]

= −iπ
∫ xF

ωg

dx
1

2

√

x− ωg [δ(ωR − x) − δ(ωR + x)]

= −iπ
2

√

ωR − ωg. (7.201)

Because x > ωg, the second delta is never satisfied, so only the first one gives any contribution. It
is a fantastically simple result. Recall, ωR = ω − 1

2
ωB. There is the opposite sign on ωB to get ωL

and hence the integral IL. This is clearly consistent with the results from the previous section in
the limit γ → 0.

7.10.2 The real part – principal valued integration

Now one wants the real part,

Re{IR} = p.v.

∫ sF

0

ds s2
[

1

ωR − ωg − s2
− 1

ωR + ωg + s2

]

(7.202)

It is best to leave these in terms of s, which we know how to integrate. The second integral is not
singular and p.v. is not necessary there. With my usual definitions,

a2
1 = ωR + ωg, a2

2 = ωR − ωg, (7.203)

These are easily integrated with some simple rearranging,

Re{IR} = p.v.

∫ sF

0

ds

[−a2
2 + s2 + a2

2

a2
2 − s2

− a2
1 + s2 − a2

1

a2
1 + s2

]

= p.v.

∫ sF

0

ds

[

−2 +
a2
2

a2
2 − s2

+
a2
1

a2
1 + s2

]

= −2sF + a1 tan−1

(

sF

a1

)

+ a2 p.v.

∫ sF /a2

0

dx
1

1 − x2
(7.204)

The latter integral gives an inverse hyperbolic tangent where x < 1, but it gives an inverse hyperbolic
cotangent where x > 1. It is possible to express this as a single function introduced earlier, most
usefully written using a logarithm,

∫

dx

1 − x2
= L(x) =

1

2
ln

( |1 + x|
|1 − x|

)

. (7.205)

When the p.v. is taken, it simply ignores anything singular happening at x = 1. Only the upper
limit ends up contributing, so we get very simply (assuming sF > a2),

Re{IR} = −2sF + a1 tan−1

(

sF

a1

)

+ a2 coth−1

(

sF

a2

)

(7.206)

= −2sF +
√

ωR + ωg tan−1

(

sF√
ωR + ωg

)

+
√

ωR − ωg coth−1

(

sF√
ωR − ωg

)

.
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If a good estimate of sF is known, this is then easy to evaluate. On the other hand, if one wants to
let sF → ∞, that does not work unless the first term is replaced by the approximation appropriate
for eletric polarization averaging, as seen earlier,

2sF ≈ 2
√
ωg tan−1

(

sF√
ωg

)

. (7.207)

Then this expression does have a finite limit for large sF , of 2
√
ωg × π/2. If one didn’t think this is

a reasonable approximation, another possibility for choosing the upper limit of integration is to use
the value from the following equalitiy,

sF ≈ √
ωg
π

2
, (7.208)

although this is of some questionable justification. Nevertheless, if the polarization averaging ap-
proximation is used, one gets while letting the upper limit go to to infinity,

Re{IR} ≈ π

2

[√

ωR + ωg − 2
√
ωg

]

(7.209)

because the limit of the inverse hyperbolic cotangent vanishes. That is also in complete agreement
with the real part of IR as obtained in the earlier section where γ was let to vanish at the end of
the calculation.

7.10.3 The net integral for 1D bands, zero damping limit, discussion

Combining the real and imaginary parts for the integral from current density averaging, one gets

IR ≈ π

2

[√

ωR + ωg − 2
√
ωg − i

√

ωR − ωg

]

IR ≈ π

2

[
√

ω − ωB

2
+ ωg − 2

√
ωg − i

√

ω − ωB

2
− ωg

]

(7.210)

As always, switch the sign of ωB to get the corresponding result for left circular polarization. This
last formula summarizes very succintly what I wanted to find when I started this quest! After scaling
with the physical factors, it will determine the main features of a DC magnetic field acting on the
interband transitions in a metal, such as gold, that I was interested in. It is even simpler than I
could have imagined, considering the amount of theory that was needed to arrive here. Note that
it gets multiplied by a negative constant to produce χ. Also, the second term would typically be
the largest. As the frequency increases, the first two (real) terms tend to cancel more so, up to the
point ω ≈ 3ωg, where they just about cancel. Both the real and imaginry contributions to χ appear
to be positive. When the excitation is below gap, the last term also becomes a real contribution;
there is no true absorption when ω − 1

2
ωB < ωg.

Need to keep in mind, however, that this above result applies only under the approximation,
wi − wf = 1. It does not have the important thermal effects that would be present in the Fermi
level falls in the upper band, as should be the case for metals, like gold, silver, copper.

The dependence on the circular polarization is very interesting. It seems to show that the right
circular photons have a lower effective energy, because the magnetic frequency subtracts from the
photon frequency in that case. Conversely, the left circular photons have to cross a smaller effective
gap, or, they have an enhanced ability to cross the band gap. Of course, these effects are very
small, but they have implications for the Faraday rotation. Perhaps experimentalists have thought
of ways to excite with one polarization or the other, and measure different responses, to exploit the
differences of the two polarizations, besides looking at the Faraday rotation.

So this calculation seems to be pretty complete, in that we know how the band-to-band transitions
influence the susceptibility and dielectric functions in the presence of a DC magnetic field. All that
is left to do is check how it works with some real physical constants included, for a real application.
Further, there might be some other additional analysis of the effects these results predict for the
Faraday rotation.
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7.10.4 More about the Faraday effect contributions–1D, current averaging

One knows that the bulk Faraday rotation angle depends on the following combination, ignoring
some numerical factors,

θF ∝ Exy√
εxx

(7.211)

But these Cartesian components are related to the circular permittivity components by

εR = εxx + Exy, εL = εxx − Exy, (7.212)

or solved the other way,

εxx =
1

2
(εR + εL), Exy =

1

2
(εR − εL). (7.213)

So without keeping track of all physical factors, one can extract the dependence on magnetic field
by just using the results for the IR and IL integrals, because εR and εL are proportional to those
(for only the band-to-band parts here). The main thing to look at is the off diagonal permittivity.
Assuming weak enough magnetic field, do expansions,

IR =
π

2

{

√

ω + ωg

[

1 − 1

2

ωB

ω + ωg

]1/2

− 2
√
ωg − i

√

ω − ωg

[

1 − 1

2

ωB

ω − ωg

]1/2
}

≈ π

2

{

√

ω + ωg − 2
√
ωg − i

√

ω − ωg − ωB

4

[

1√
ω + ωg

− i√
ω − ωg

]}

(7.214)

The same approximations for IL lead to

IL ≈ π

2

{

√

ω + ωg − 2
√
ωg − i

√

ω − ωg +
ωB

4

[

1√
ω + ωg

− i√
ω − ωg

]}

(7.215)

Therefore the contribution to the diagonal part of permittivity has little dependence on magnetic
field,

Ixx =
1

2
(IR + IL) ≈ π

2

{√

ω + ωg − 2
√
ωg − i

√

ω − ωg

}

(7.216)

The contribution to the off-diagonal part is approximately linear in the magnetic field,

Ixy =
1

2
(IR − IL) ≈ −πωB

8

{

1√
ω + ωg

− i√
ω − ωg

}

(7.217)

This last combination is most important for the Faraday rotation, as

Exy =
1

2
(εR − εL) ∝ 1

2
(IR − IL) (7.218)

If the excitation is above the gap, then the formula shows both a real and imaginary part, however,
the imaginary part will contribute to the ellipticity effect. On the other hand, if the excitation
is below the gap, then both terms here become real and both give contributions to the Faraday
rotation. This suggests that there could be a very interesting crossover effect from the one regime
to the other. Possibly the F.R. rapidly reduces (with the square root dependence on excitation
frequency) as the gap energy is crossed. However, these must be well-known effects, and my interest
is otherwise, in the eventual implications for affecting the dielectric properties of magnetic particles
covered with a gold shell (also a system where the band theory is questionable, oh well..).

7.11 Finding Sν, 1D bands, with damping, polarization averaging

This part looks at evaluating the integral (7.162) for Sν for the 1D band model from polarization
averaging, in the limit where the thermal population factor is wi − wf = 1. To do this, look at the
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K1 and K2 integrals, which combine into Iν = K1 +K2, supposing that the sums over mi,mf are
already done, and give a factor of gm = li + lf included in the constants,

K1 = ω

∫ sF

0

−ds s2
(ωg + s2 − ζ) (ωg + s2 − ων)

(7.219)

K2 = ω

∫ sF

0

+ds s2

(ωg + s2 + ζ) (ωg + s2 + ων)
(7.220)

The usual definitions ων = ω + iγ + ζ and ζ = ν ωB

2
are used here. Recall the partial fraction

expansion for K1’s integrand,

1

(ωg + s2 − ζ)(ωg + s2 − ων)
=

1

ων − ζ

[ −1

ωg + s2 − ζ
+

1

ωg + s2 − ων

]

(7.221)

Then this has ων − ζ = ω + iγ, no Zeeman term in the first factor. For the other integral we need
to switch the signs on ων and ζ, so

1

(ωg + s2 + ζ)(ωg + s2 + ων)
=

1

−ων + ζ

[ −1

ωg + s2 + ζ
+

1

ωg + s2 + ων

]

(7.222)

Then we get nearly the same as in 3D expressions earlier,

K1 =
ω

ω + iγ

∫ sF

0

ds s2
[

1

s2 + ωg − ζ
+

1

ων − ωg − s2

]

(7.223)

K2 =
ω

ω + iγ

∫ sF

0

ds s2
[

1

s2 + ωg + ζ
− 1

s2 + ωg + ων

]

(7.224)

I wrote the second term in K1 in such a way that is convenient, thinking that ων > ωg. These are
all integrals found earlier, for example,

I1(a1) =

∫

ds
s2

a2
1 + s2

= s− a1 tan−1

(

s

a1

)

= s− ia1

2
ln

(

a1 − is

a1 + is

)

. (7.225)

For the one with the reversed sign on s2 we showed in Part A

I3(a1) =

∫

ds
s2

a2
1 − s2

= −s+ a1 tanh−1

(

s

a1

)

, (7.226)

where this requires the complex continuation of the inverse function. Thus we can write out each
one and sum the two integrals. We have (with s→ sF later)

K1 =
ω

ω + iγ

[

s−
√

ωg − ζ tan−1 s
√

ωg − ζ
− s+

√

ων − ωg tanh−1 s√
ων − ωg

]

(7.227)

K2 =
ω

ω + iγ

[

s−
√

ωg + ζ tan−1 s
√

ωg + ζ
− s+

√

ωg + ων tan−1 s√
ωg + ων

]

(7.228)

The linear term in s drops out; only the arctangents survive. Then the total integral Iν is their sum,

Iν =
ω

ω + iγ
×

[

−
√

ωg − ζν tan−1 sF
√

ωg − ζν
−
√

ωg + ζν tan−1 sF
√

ωg + ζν

+
√

ων − ωg tanh−1 sF√
ων − ωg

+
√

ωg + ων tan−1 sF√
ωg + ων

]

(7.229)

I added the ν on ζν = ν ωB

2
to show that it depends on the polarization.
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We can suppose as earlier that the upper integration limit can be let to go to infinity. Only the
term with ωνωg gives any difficulty here. I think the case of most interest is when ων is above the
gap (ignoring the damping). That is why I reversed the order in the term. But we know from Part

A that the limit is

lim
sF →∞

√

ων − ωg tanh−1 sF√
ων − ωg

= −i
√

ων − ωg
π

2
. (7.230)

On the other hand, if we didn’t do this switch, the expression would come out π
2

√
ωg − ων , but that

is equivalent, regardless of the relative sizes of ωg and ων (one needs some consistent way to choose
which square root is being used, however). So there is no absolute need to do this, really. Then I
can take the limit sF → ∞ and get the approximate but simple result,

Iν =
πω

2(ω + iγ)

[

−
√

ωg − ζν −
√

ωg + ζν − i
√

ων − ωg +
√

ων + ωg

]

(7.231)

This is very similar to the formula in 3D, however, the powers are 1/2 instead of 3/2. One can write
it to highlight the shifts in the gap, in some sense, but these go both directions:

Iν =
πω

2(ω + iγ)

[

−
√

ωg − ζν −
√

ωg + ζν − i
√

(ω + iγ) − (ωg − ζν) +
√

(ω + iγ) + (ωg + ζν)

]

(7.232)
So it is not really possible to say that the Faraday effect simply raises or lowers the gap for each
polarization. It does affect the photon frequency oppositely for the two polarizations, but in addition,
there are the first two terms that do not involve the photon frequency. This result is different than
the result from current averaging!

We can also easily take the limit, additionally, of zero damping, and compare later with a more
direct approach to that. As γ → 0, we have ων → ω + ζν. This gives

Iν → π

2

[

−
√

ωg − ζν −
√

ωg + ζν − i
√

(ω + ζν) − ωg +
√

(ω + ζν) + ωg

]

(7.233)

The third term is the only imaginary part, assuming the excitation is above the gap. It is correct
as far as having a negative sign: it gives a positive contribution to χ after multiplying by a negative
constant. The combination ω + ζν is just the real Faraday frequency ων . Furthermore, in the limit
that ω → 0 now, the whole expression vanishes. So the terms that do not explicitly have the photon
present, can be thought of as giving this zero normalization at zero frequency (together with γ = 0).

7.11.1 About tan−1 and tanh−1 at complex arguments.

I saw above some confusion when the argument inside these functions changes from real to imaginary.
This is a short section to clarify some math. Note the factor we had above that started out with√
ωg − ων . It is perfectly fine, however, the more physical limit will be when ων > ωg, so it does

make sense to reverse inside the square root. This produces:

tan−1 s√
ωg − ων

= tan−1 s

i
√
ων − ωg

= tan−1 −is√
ων − ωg

. (7.234)

Now look at the function tanh ix. We have

tanh ix =
sinh ix

cosh ix
=
eix − e−ix

eix + e−ix
=
i sinx

cosx
= i tanx. (7.235)

Now consider the inverse tangent:

y = tanx⇒ x = tan−1 y. (7.236)

Alternatively,

y = tanx = −i tanh ix⇒ iy = tanh ix⇒ ix = tanh−1 iy = i tan−1 y. (7.237)
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So both tanh and tanh−1 of an imaginary argument give i times the circular function.

tanh ix = i tanx, tanh−1 ix = i tan−1 x. (7.238)

Instead, change x→ ix to go the other direction, using the oddness of these functions:

tan ix = i tanhx, tan−1 ix = i tanh−1 x. (7.239)

Applying this to the term in Iν , this gives

√

ωg − ων tan−1 s√
ωg − ων

= i
√

ων − ωg tan−1 −is√
ων − ωg

=
√

ων − ωg tanh−1 s√
ων − ωg

. (7.240)

Unfortunately, this seems to hide that the limit at large argument is imaginary. Indeed, the difficulty
is that tanhx ≤ 1. So this is undefined at large argument, while the tan−1 does not have this difficulty
at large argument. Instead, need to transform to an expression with coth−1 x.

Actually, most of what I needed now appears at the end of Part A, concerning the real and
imaginary parts of the complex functions tan−1 and tanh−1.

7.12 Finding Sν, 1D bands, limit of zero damping, polarization averaging

Again we want to apply the zero damping limit for the case of polarization averaged expressions.
This can be applied only under the approximation of no thermal factor, wi−wf = 1, in the expression
for the Sν integral, (7.162). We use again the SW theorem before integration,

lim
γ→0+

1

x+ iγ
= p.v.

(

1

x

)

− iπδ(x) (7.241)

Applied to the second term in the integrand for K1, (7.163), for the 1D bands model, it gives

1

ω + iγ − ωg − s2 + ζν
−→ p.v.

(

1

ω − ωg − s2 + ζν

)

− iπδ(ω − ωg − s2 + ζν), (7.242)

whereas, on the second term in the integrand for K2, the effect is

1

ω + iγ + ωg + s2 + ζν
−→ p.v.

(

1

ω + ωg + s2 + ζν

)

− iπδ(ω + ωg + s2 + ζν), (7.243)

There is also an additional factor of s2 in the integrand, and the sum over mi,mf produces the
mulitplicity factor gm that goes to the constants. As mentioned, wi − wf is set to 1. There is also
the factor of −ωs2 and the reciprocals of

(

−ωg − s2 ± ζν
)

.

7.12.1 The imaginary parts – delta functions.

The imaginary part of K1 and K2 comes from using the delta functions. These can be combined
into the imaginary part of Iν = K1 +K2. For K1 this is

Im {K1} = (−iπ)(ω)

∫ sF

0

ds
−s2

−ωg − s2 + ζν
δ(ω − ωg − s2 + ζν) (7.244)

Using the variable x = ωg + s2, and dx = 2s ds, this is converted to an integral that selects only the
Faraday point, x = ω + ζν = ων . Note that this requires the assumption that ων > ωg, otherwise,
this integral will be zero:

Im {K1} = iπω

∫ xF

ωg

1

2
dx

√
x− ωg

−x+ ζν
δ(ω − x+ ζν) = −iπ

2
gm

√

ων − ωg (7.245)
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For the K2 integral we have something similar,

Im {K2} = (−iπ)(ω)

∫ sF

0

ds
−s2

−ωg − s2 − ζν
δ(ω + ωg + s2 + ζν) (7.246)

Then converted to integration over x, the delta selects the negative Faraday frequency, x = −ω−ζ =
−ων. But that point is outside the range of integration, so the integral is zero:

Im {K2} = −iπω
∫ xF

ωg

1

2
dx

√
x− ωg

x+ ζν
δ(ω + x+ ζν) = 0. (7.247)

Therefore the combination gives for R or L polarizations, a very simple result,

Im
{

IR|L

}

= −iπ
2

√

ωR|L − ωg. (7.248)

Note, the sign is correct. This is multiplied by a negative constant to get the contribution to
susceptibility. This applies only when ωR|L > ωg, above the gap excitation. If the excitation is
below the gap, ωR|L < ωg, there is no imaginary part to IR|L. This is equal to the result in the
previous section, in the limit of zero damping, good!

7.12.2 The real parts – principal valued integral.

Now do the calculation of the principal valued integral from K1. We need

Re {K1} = ω p.v.

∫ sF

0

ds
−s2

(−ωg − s2 + ζν)(ω − ωg − s2 + ζν)
(7.249)

This involves the combination ωG ≡ ωg − ζν , so it can be slightly changed to

Re {K1} = ω p.v.

∫ sF

0

ds
s2

(ωG + s2)(ω − ωG − s2)
(7.250)

The usual partial fraction expansion will help,

1

(ωG + s2)(ω − ωG − s2)
=

1

ω

[

1

ωG + s2
+

1

ω − ωG − s2

]

(7.251)

Further, this gets multiplied by s2 so just do the following as well before integrating:

s2

ωG + s2
=

ωG + s2 − ωG

ωG + s2
= 1 − ωG

ωG + s2
. (7.252)

s2

ω − ωG − s2
=

−ω + ωG + s2 + ω − ωG

ω − ωG − s2
= −1 +

ω − ωG

ω − ωG − s2
. (7.253)

This gives the partial fraction expansion of the whole integrand as

s2

(ωG + s2)(ω − ωG − s2)
=

1

ω

[ −ωG

ωG + s2
+

ω − ωG

ω − ωG − s2

]

. (7.254)

We are assuming above gap excitation, ω − ωG > 0. Now the integral is

Re {K1} = p.v.

∫ sF

0

ds

[ −ωG

ωG + s2
+

ω − ωG

ω − ωG − s2

]

(7.255)

The first part has no singularity and p.v. is not needed there–it gives an inverse tangent.

∫ sF

0

ds
−ωG

ωG + s2
= −√

ωG tan−1 sF√
ωG

. (7.256)
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The second term has a singularity at s1 =
√
ω − ωG, assumed to be on the real axis with ω > ωG.

Recall how this was done in Dielectrics, Part A. Setting a2 = ω − ωG, we can use the indefinite
integral

∫

ds
a2

a2 − s2
=
a

2

∫

ds

(

1

s+ a
− 1

s− a

)

=
a

2
ln

[

s+ a

s− a

]

=

{

a tanh−1 s
a for s < a,

a coth−1 s
a for s > a.

(7.257)

I have it in terms of inverse hyperbolic functions, but the log is easier to think about. But we saw
in Part A that the singular point is just passed right through, and we need only the result at the
upper limit. Check how that worked. Note that if the upper limit sF < a, then no p.v. is needed,
and the integral is

∫ sF

0

ds
a2

a2 − s2
=
a

2

{

ln

[

sF + a

sF − a

]

− ln

[

0 + a

0 − a

]}

=
a

2
ln

[

a+ sF

a− sF

]

. (7.258)

On the other hand, when sF > a we pass through the singular point and the p.v. is done as
follows:

p.v.

∫ sF

0

ds
a2

a2 − s2
= lim

ε→0

{
∫ a−ε

0

+

∫ sF

a+ε

}

(7.259)

Then inserting the limits, we get for sF > a,

p.v. =
a

2

{

− ln

[

0 + a

0 − a

]

+ ln

[

a− ε+ a

a− ε− a

]

− ln

[

a+ ε+ a

a+ ε− a

]

+ ln

[

sF + a

sF − a

]}

=
a

2

{

+ ln

[

−1 × 2a− ε

−ε
ε

2a+ ε

]

+ ln

[

sF + a

sF − a

]}

→ a

2
ln

[

sF + a

sF − a

]

. (7.260)

One sees that the two cases are equivalent if always the absolute value is used within the log.
Inserting the value a =

√
ω − ωG with ω > ωG assumed, this gives for either sF < a or sF > a,

p.v.

∫ sF

0

ds
a2

a2 − s2
=

1

2

√
ω − ωG ln

∣

∣

∣

∣

sF +
√
ω − ωG

sF −√
ω − ωG

∣

∣

∣

∣

. (7.261)

Then combining the results, we have for the total principal valued integral,

Re {K1} =

[

−√
ωG tan−1 sF√

ωG
+

1

2

√
ω − ωG ln

∣

∣

∣

∣

sF +
√
ω − ωG

sF −√
ω − ωG

∣

∣

∣

∣

]

. (7.262)

Inserting the value ωG = ωg − ζν , this is

Re {K1} =

[

−
√

ωg − ζν tan−1 sF
√

ωg − ζν
+
√

ων − ωg ln

∣

∣

∣

∣

sF +
√
ων − ωg

sF −√
ων − ωg

∣

∣

∣

∣

]

, (7.263)

where ων = ω + ζν was used.
Next for the K2 principal valued integral, there is

Re {K2} = ω p.v.

∫ sF

0

ds
−s2

(−ωg − s2 − ζν)(ω + ωg + s2 + ζν)
. (7.264)

In this case, the gap shifted frequency is ωG = ωg + ζν . The integral looks like

Re {K2} = ω p.v.

∫ sF

0

ds
s2

(ωG + s2)(ω + ωG + s2)
. (7.265)

This is nearly the same as the K1 integral, but in the second term instead of ω−ωG there is ω+ωG.
But there is nothing singular here and no p.v. is needed! The partial fractions gives:

s2

(ωG + s2)(ω + ωG + s2)
=

1

ω

[ −ωG

ωG + s2
+

ω + ωG

ω + ωG + s2

]

. (7.266)
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Then here both integrations just give inverse tangents directly, and the non-p.v. integral is

Re {K2} =

[

−√
ωG tan−1 sF√

ωG
+
√
ω + ωG tan−1 sF√

ω + ωG

]

. (7.267)

Then inserting the new value of ωG = ωg + ζν gives

Re {K2} =

[

−
√

ωg + ζν tan−1 sF
√

ωg + ζν
+
√

ων + ωg tan−1 sF√
ων + ωg

]

. (7.268)

Then finally the results get combined to get the real part of Iν :

Re {Iν} =

{

−
√

ωg − ζν tan−1 sF
√

ωg − ζν
−
√

ωg + ζν tan−1 sF
√

ωg + ζν
(7.269)

+
√

ων − ωg ln

∣

∣

∣

∣

sF +
√
ων − ωg

sF −√
ων − ωg

∣

∣

∣

∣

+
√

ων + ωg tan−1 sF√
ων + ωg

}

(7.270)

Also there is the presence of the Faraday shifted frequency here. This is nearly the same as the γ → 0
limit of an expression found earlier for this problem. The only difference is in the log term. However,
those two terms are probably the same, when calculated more carefully, taking into account all the
possibilities of the real and imaginary parts for the previous result.

7.12.3 Total Iν at zero damping and sF → ∞ limit.

So we have obtained the following for the 1D bands model from polarization averaging, in the limit
of zero damping:

Iν = −
√

ωg − ζν tan−1 sF
√

ωg − ζν
−
√

ωg + ζν tan−1 sF
√

ωg + ζν
(7.271)

+
√

ων − ωg ln

∣

∣

∣

∣

sF +
√
ων − ωg

sF −√
ων − ωg

∣

∣

∣

∣

+
√

ων + ωg tan−1 sF√
ων + ωg

− i
π

2

√

ων − ωg.

Then when the limit sF → ∞ is done, the result simplifies, as all the tan−1 → π/2, the ln → 0,

Iν =
π

2

[

√

ων + ωg −
√

ωg − ζν −
√

ωg + ζν − i
√

ων − ωg

]

. (7.272)

That is identical to what was derived from the more general calculation in a previous section, which
is very good. The last part could become real, however, for below the gap excitation. In that case,
it would imply no absorption, as there would be no imaginary part in the permittivity.

In comparing to the expression (7.210) from current averaging, the only difference is the presence
of the magnetic frequency and polarization factor (ζν) in the constant terms involving the gap, but
not the photon. These are somewhat strange terms. This will not make much difference between
current averaging and polarization averaging at usual optical frequencies. Significant differences are
present only as the frequency goes towards zero.

Summarized, the contribution to the susceptibility comes from dimenionless Sν as normalized in
(7.159) and (7.162),

Sν =
4|M |2h̄
me

V k2
F

(π)3

(

2m̃

h̄

)3/2

× Iν . (7.273)

Then this gives the actual interband transitions contribution to χ according to

χν =
−ne2

meω(ω + iγ)
Sν . (7.274)

Also can point out that it is easy to put the damping back into the expression for Iν . The
factor iγ adds linearly into ωnu, without really affecting ωg. Also, one can re-install the prefactor
ω/(ω + iγ) on the whole expression, which became 1 in the zero damping limit.
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7.12.4 Faraday effect from 1D band model – polarization averaging

We know the small changes in electric susceptibility with magnetic field lead to the Faraday rotation.
Let me expand the integral Iν (or equivalently, IR and IL) in the limit of a weak applied magnetic
field. Do this using the eletric polarization averaging expressions without damping. This has some
extra terms due to the gap plus/minus zeta parts:

Iν =
π

2

{

√

ω + ωg

[

1 +
ν

2

ωB

ω + ωg

]1/2

− i
√

ω − ωg

[

1 +
ν

2

ωB

ω − ωg

]1/2

−√
ωg

(

1 − ν

2ωg
ωB

)1/2

−√
ωg

(

1 +
ν

2ωg
ωB

)1/2
}

≈ π

2

{

√

ω + ωg − 2
√
ωg − i

√

ω − ωg +
νωB

4

[

1√
ω + ωg

− i√
ω − ωg

]}

(7.275)

However, those extra terms cancel out in linear order in B, which is all we usually need. So the
Faraday rotation results will be the same as in the calculation from averaging of the current density,
as found earlier. Of course, keep in mind that these are only very approximate results. It will be best
to keep the damping parameter γ > 0 and especially important to include the thermal population
factor, which requires the full integrals be done with

∑

mf
gmf

(x) present.
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