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Summary

The complex and frequency-dependent dielectric function ε(ω) describes how light
interacts when propagating through matter. It determines the propagation speed, disper-
sion effects, absorption, and more esoteric phenomena such as Faraday rotation when a
DC magnetic field is present. Of particular interest here is the description of ε(ω) in con-
ductors using quantum mechanics, so that intrinsically quantum mechanical systems can
be described. The goal is an appropriate understanding of the contributions from band-
to-band transitions, such as in metals and semiconductors, with or without an applied DC
magnetic field present.

Part A discusses the general theory of ε(ω) for a medium only in the presence of the optical
electric field. The approach is to find how this electric field modifies the density matrix.
It is applied to band-to-band transitions in the absence of an applied magnetic field.

In this Part, the effect of a DC magnetic field is discussed generally, with respect to
how it causes Faraday rotation. For free electrons, it causes quantized Landau levels for
the electrons; the dielectric function is found for that problem, and related problems are
discussed.

In Part C, the important problem is how to include the effect of a DC magnetic field on
the band-to-band transitions, such as those in metals and semiconductors. Results are
found for 1D and 3D band models, with and without a phenomenolgical damping.

Taken together, these theories should be complete enough to describe Faraday rotation

effects in gold, whose dielectric function is strongly dependent on band-to-band transitions

for wavelengths below 600 nm.

1Last updated February, 2012, Florianópolis, Brazil
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3 Dielectrics in a DC Magnetic Field

Here is the main topic why I am interested in dielectric response: I want to understand what
happens in the presence of a constant magnetic field, in addition to the optical field, because many
interesting and curious effects then take place. Classically, the electrons tend to move in circular
cyclotron orbits. But in the combination of the DC magnetic field and the AC fields of light, there
is a competition, especially if the light is circularly polarized. So I want to get an accurate QM
theory of the dielectric function, ε(ω) for this situation. It will be important for describing mainly,
the Faraday rotation. It should provide input into describing FR in small metallic and magnetic
particles in composites.
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3.1 Classical electron motion in a DC magnetic field

For simplicity consider the case where an EM wave is incident on electrons in a metal. The electrons
are assumed to be damped (parameter γ) and bound by some local harmonic potential (spring
constant meω

2
0). The DC magnetic field, denoted by B̄ to distinguish it from the field in the EM

waves, points in the same direction (along ẑ) as the waves are propagating. This is the situation
that leads to Faraday rotation. Assume the usual e−iωt time dependencies for the optical field. The
transverse EM waves have x and y components. We concentrate primarily on the motion of an
electron in the xy plane. The electron position is r = (x(t), y(t)). Its equation of motion is

mer̈ = eE+
e

c
ṙ× B̄−meω

2
0r−meγṙ, or −meω

2r = eE+
−iωe
c

r× B̄−meω
2
0r+meγiωr. (3.1)

The force of the optical magnetic field on the electron can be ignored in a first approximation. It is
convenient to re-arrange so that the applied E is the source on the RHS,

[

me(ω
2
0 − ω2 − iωγ) − iωe

c
B̄×

]

r = eE (3.2)

In terms of components, this simple situation gives a matrix eigenvalue problem. That a matrix is
helpful can be seen because of the presence of the cross product operator with B̄. Note that the
magnetic field has only a z-component, B = Bẑ. Then by components, there is

along x̂ : me(ω
2
0 − ω2 − iωγ)x+ iω eB

c y = eEx

along ŷ : me(ω
2
0 − ω2 − iωγ)y − iω eB

c x = eEx
(3.3)

Put this into a more usual matrix form:
[

me(ω
2
0 − ω2 − iωγ) iω eB

c

−iω eB
c me(ω

2
0 − ω2 − iωγ)

] [

x
y

]

=

[

eEx

eEy

]

(3.4)

Now, so far it is just mathematics. We could grind along and solve for the position by inverting
the square matrix on the LHS. While that would work for any source field (Ex, Ey), it is not very
enlightening. It is more interesting to suppose that the applied field is arranged in such a way that it
is an eigenvector of that square matrix. If that were the case, the solution for the position is trivial.
Eventually, knowledge of r(t) will give the electric polarization and hence the dielectric function.

Before doing that, do note one thing, the appearance of the classical cyclotron frequency,

ωB =
eB

mec
(3.5)

With that, it is convenient to rewrite the matrix relationship as

[

(ω2
0 − ω2 − iωγ) iωωB

−iωωB (ω2
0 − ω2 − iωγ)

] [

x
y

]

=

[ e
me
Ex

e
me
Ey

]

(3.6)

The matrix M on the LHS contains only different frequencies; the source on the RHS is scaled with
the charge to mass ratio of the electron.

Look for the eigenspectrum of the matrix on the LHS, call it M . Denote the factors on the
diagonal as D = ω2

0 − ω2 − iωγ. Look for eigenvectors u of

M · u = λu, M =

[

D iωωB

−iωωB D

]

. (3.7)

The determinant needed is

det(M − λI) = (D − λ)2 − (−iωωB)(iωωB) = (D − λ)2 − ω2ω2
B = 0. (3.8)

The eigenvalues come out trivially,

λ1 = D + ωωB, λ2 = D − ωωB. (3.9)
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For the first eigenvalue, the components of its eigenvector are found from,

(D − λ1)ux + iωωBuy = 0, or − ux + iuy = 0,=⇒ uy = −iux (3.10)

For the second eigenvalue, the components of its eigenvector are found from,

(D − λ2)ux + iωωBuy = 0, or ux + iuy = 0,=⇒ uy = iux (3.11)

Therefore the normalized eigenspectrum is summarized:

û1 = 1√
2
(x̂ − iŷ), λ1 = D + ωωB, û∗1 · û1 = 1, û∗2 · û1 = 0,

û2 = 1√
2
(x̂ + iŷ), λ1 = D − ωωB, û∗2 · û2 = 1, û∗1 · û2 = 0.

(3.12)

We are solving the matrix equation,

M · r =
e

me
E. (3.13)

But what is the source field E is already known in terms of its eigenvector components, that is, we
have the expansion,

E = E1û1 + E2û2, where E1 = û∗1 ·E, E2 = û∗2 ·E. (3.14)

Then the solution r also could be expanded in the eigenvectors the same way, like r = r1û1 + r2û2.
The orthogonality of the two eigenvectors leads to some trivial dynamics solution:

M · (r1û1 + r2û2) = (λ1r1û1 + λ2r2û2) = e
m (E1û1 + E2û2)

r1 = eE1/meλ1, r2 = eE2/meλ2.
(3.15)

The solution is essentially separated. Let write it out as if the original EM waves were specified by
their x and y components. Then we have

E1 = û∗1 ·E =
1√
2
(x̂ − iŷ)∗ · (Exx̂+ Ey ŷ) =

1√
2
(Ex + iEy) (3.16)

E2 = û∗2 ·E =
1√
2
(x̂ + iŷ)∗ · (Exx̂+ Ey ŷ) =

1√
2
(Ex − iEy) (3.17)

It means we are expressing the field as this combination, which obviously works out:

E = E1û1 + E2û2 =
1√
2
(Ex + iEy) ·

1√
2
(x̂− iŷ) +

1√
2
(Ex − iEy) · 1√

2
(x̂+ iŷ) (3.18)

Then the corresponding position of the electron is doing the following:

r =
eE1

meλ1
û1 +

eE2

meλ2
û2 (3.19)

=
e/me

D + ωωB

1√
2
(Ex + iEy)

1√
2
(x̂− iŷ) +

e/me

D − ωωB

1√
2
(Ex − iEy)

1√
2
(x̂+ iŷ)

It’s a mess because going back to the Cartesian coordinates isn’t really natural for the problem, the
eigen vectors make more sense and simplicity, that’s what they are there for. Nevertheless, look at
its Cartesian components, if you like:

x(t) =
e

2me

[

Ex + iEy

D + ωωB
+
Ex − iEy

D − ωωB

]

=
e

2me

[

(Ex + iEy)(D − ωωB) + (Ex − iEy)(D + ωωB)

D2 − ω2ω2
B

]

(3.20)
Finally it simplifies to

x(t) =
e

me

(

DEx − iωωBEy

D2 − ω2ω2
B

)

(3.21)
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Similarly for the y component,

y(t) =
ie

2me

[−(Ex + iEy)

D + ωωB
+
Ex − iEy

D − ωωB

]

=
ie

2me

[−(Ex + iEy)(D − ωωB) + (Ex − iEy)(D + ωωB)

D2 − ω2ω2
B

]

(3.22)
This simplifies to

y(t) =
e

me

(

iωωBEx +DEy

D2 − ω2ω2
B

)

(3.23)

But these last expressions really aren’t totally enlightening. Yes they tell you the motion. No, they
don’t give much insight. However, these do show that the induced dipole moment d = er is not
parallel to the applied field, instead, the relation involves a matrix:

d = er = e

[

x(t)
y(t)

]

=
e2

me(D2 − ω2ω2
B)

[

D −iωωB

iωωB D

]

·
[

Ex

Ey

]

(3.24)

The 2x2 array (along with pre-factors) is the microscopic polarizability for one electron, d/E, so in
fact, this calculation does show how that matrix relation arises. Note that the terms on the diagonal
are the same, and the off-diagnonal terms are not complex conjugate of each other, but they are
of opposite signs. When the DC magnetic field is zero, the matrix returns to diagonal form, and
becomes equivalent to a scalar. Further, the response gets large if the optical frequency ω matches
the cyclotron frequency ωB, especially in the limit of no damping and no binding (ω0 = 0).

IF the applid field, however, only had one of the eigen components present, say, the û1 comonent,
then the solution is very simple: the solution for r is directly proportional to that applied field
component E1. It would imply a separate polarizability for the two different eigen solutions. These
solutions are present only when the applied field is rotating, as in a wave of circular polarization.
See this as follows. Look at the Cartesian components in time. For the λ1 solution, the space and
time dependent field is

E(r, t) = Re

{

E0√
2
(x̂− iŷ)ei(kz−ωt)

}

=
E0√

2
[x̂ cos(kz − ωt) + ŷ sin(kz − ωt)] (3.25)

When viewed looking back towards the source of these waves, at a fixed point in space, the electric
vector rotates clockwise with time. If you point your right thumb towards the source, your right
hand fingers curl the same way as E is rotating, which is why it is called a wave with right circular
polarization. However, its angular momentum points opposite to its wave vector. So it has negative
helicity, h = k̂ · L̂ = −1. Also, if you point your right thumb along k̂, your right-hand fingers curl in
the sense that E does through space, at fixed tme. The amount of induced electric dipole for this
wave is

d1 = er1 =
e2

meλ1
E1 =

e2/me

D + ωωB
E1. (3.26)

This means the microscopic polarizability for right circular polarization is

α1 −→ αR =
e2/me

D + ωωB
(3.27)

I use an R subscript to indicate that it applies only to right circular polarization. Note that in the
limit of zero binding (free electrons, ω0 = 0), the parameter D becomes

D = −ω(ω + iγ) (3.28)

Then the corresponding result for this polarizability is

αR = − e2/me

ω(ω + iγ − ωB)
(3.29)

The negative sign shows that the induced electric dipoles are opposite to the applied field, no matter
what the sign of the charges e. There may be a phase shift, however, due to the presence of the
complex term with γ. The behavior of αR with frequency is shown in Fig. 1.
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Figure 1: The microscopic polarizabilities versus frequency, showing the differences that might be
expected for the two circular polarizations. The real parts are bold curves, the imaginary parts are
the finer curves. The magnetic frequency ωB = 2 is set at a very large value so that the differences
can be enhanced. The damping parameter is γ = 0.2. Note that the polarizability for right circular
polarization is affected the most.

6



On the other hand, the other eigensolution corresponds to circular motion in the opposite direc-
tion, because it gives

E(r, t) = Re

{

E0√
2
(x̂+ iŷ)ei(kz−ωt)

}

=
E0√

2
[x̂ cos(kz − ωt) − ŷ sin(kz − ωt)] (3.30)

Now you can point your left thumb back towards the source, then your left hand fingers curl in the
sense that E rotates with time at a fixed point in space. This wave has left circular polarization,
and its angular momentum is parallel to its wave vector, hence the helicity is positive, h = k̂ ·L̂ = +1.
By analogy, the microscopic polarizability is now different,

α2 −→ αL =
e2/me

D − ωωB
(3.31)

Again, the subscript L indicates that this applies only to left circular polarization. Because this is
different from the other polarization, it leads to a different speed of propagation for the two different
polarizations, if one analyzes Maxwell’s equations with the complex dielectric function that results.
In the limit of zero binding, with the limiting value of D substituted, there results

αL = − e2/me

ω(ω + iγ + ωB)
(3.32)

This is still generally negative, regardless of the sign of the charges. Also keep in mind that the
optical frequency is typically much greater than the magnetic frequency ωB. The only difference
from αR is that the sign on the magnetic frequency is reversed. We will see that this is generally
true for all the formulas. When switching from a formula for right circular polarization to the
equivalent one for left circular polarization, change the sign on ωB. The polarizabilities for the two
polarizations are compared in Fig. 1, for an unrealistically high value of the magnetic frequency, so
that their differences can be noted. One sees that αR is affected much more by the magnetic field
than αL is affected.

3.2 Classical dielectric function with a DC magnetic field

The resulting dielectric permittivity tensor ε̃ is hinted at in the previous part, see the result (3.24) for
the induced dipole moment of one electron. The resulting electric dipole moment per unit volume,
for N electrons in volume V , is the electric polarization

P =
N

V
d = χ̃ ·E, ε̃ = 1 + 4πχ̃. (3.33)

This implicitly defines the susceptibility, which then gives the dielectric function. One can see here
the matrix for the transverse suscpetibility, for n = N/V electrons per unit volume, is

χ̃ =
ne2

me(D2 − ω2ω2
B)

[

D −iωωB

iωωB D

]

=

[

χxx χxy

−χxy χxx

]

=

[

χxx iXxy

−iXxy χxx

]

(3.34)

There are only two numbers needed to define the matrix, the diagonal and off-diagonal elements:

χxx =
ne2D

me(D2 − ω2ω2
B)

=
ne2

me
· ω2

0 − ω2 − iωγ

[ω2
0 − ω2 − iωγ]2 − ω2ω2

B

χxy =
−ine2 ωωB

me(D2 − ω2ω2
B)

=
ne2

me
· −iωωB

[ω2
0 − ω2 − iωγ]2 − ω2ω2

B

≡ iXxy (3.35)

The factor of i is taken in this definition because it simplifies later results. Then it is clear that the
dielectric tensor has a similar structure,

ε̃ = 1 + 4πχ̃ =

[

εxx εxy

−εxy εxx

]

=

[

εxx iExy

−iExy εxx

]

(3.36)
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The elements are obviously defined as

εxx = 1 + 4πχxx = 1 +
4πne2D

me(D2 − ω2ω2
B)

= 1 +
4πne2

me
· ω2

0 − ω2 − iωγ

[ω2
0 − ω2 − iωγ]2 − ω2ω2

B

εxy = iExy = 4πχxy =
−4πne2 iωωB

me(D2 − ω2ω2
B)

=
4πne2

me
· −iωωB

[ω2
0 − ω2 − iωγ]2 − ω2ω2

B

(3.37)

For future reference, also give the result when the binding frequency is not present (free electrons).

εxx = 1 − 4πne2

meω
· ω + iγ

(ω + iγ)2 − ω2
B

εxy = iExy = −i4πne
2

meω
· ωB

(ω + iγ)2 − ω2
B

(3.38)

One can see that the diagonal part (εxx) goes to the correct limit when ωB = 0. The off-diagonal
part (εxy) is approximately proportional to the magnetic field at weak field strength.

The off-diagonal elements go to zero when the magnetic field is turned off. When it is turned
on, the permittivity tensor causes an anisotropic response to the electric field. Note, however, that
this works in a simple way, if the applied electric field is expanded in the eigenvectors of ε̃. But we
already know those eigenvectors. They are actually the û1 and û2 vectors found for the M matrix.
Check this! The eigenvalue problem is

[

εxx iExy

−iExy εxx

] [

Ex

Ey

]

= λ

[

Ex

Ey

]

. (3.39)

The determinant needed to get the eigenspectrum of ε̃ is

D′ = (εxx − λ)2 − (−iExy)(iExy) = (εxx − λ)2 − E2
xy = 0 (3.40)

The eigenvalues are found as

λ = εxx ± Exy =⇒ λ1 = εxx + Exy, λ2 = εxx − Exy. (3.41)

Then one sees that for each choice of eigenvalue we get it eigenvector. Change the notation slightly:

λ1 = εR = εxx + Exy : Ey = −iEx, ûR =
1√
2
(x̂− iŷ), (right circular)

λ2 = εL = εxx − Exy : Ey = +iEx, ûL =
1√
2
(x̂+ iŷ). (left circular) (3.42)

The eigenvalues themselves determine how light propagates. They determine the complex wave
vectors for a given frequency, for the two independent circular polarizations. Generally, the off-
diagonal term is small, because it is roughly proportional to an applied magnetic field. But that
small correction leads to differences in the propagation of the two polarizations, which is what causes
the Faraday rotation. The wave vectors for the two polarizations are

kR =
ω

c

√
µεR =

ω

c

√

µ(εxx + Exy)

kL =
ω

c

√
µεL =

ω

c

√

µ(εxx − Exy) (3.43)

Without saying how B points, one cannot say which wave vector is larger, besides, they are complex.
But the important thing is that these two components will gradually get out of phase as a wave
propagates; they have slightly different phase velocities and wave lengths.
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3.3 Matrix algebra for circular polarizations

The unit vectors for right and left circular polarizations already appeared twice. Here I summarize
their properties and the transformations between linear and circular polarization bases.

The right and left circular basis vectors are repeated here, along with the reverse tranform,

ûR =
1√
2
(x̂− iŷ), x̂ =

1√
2
(ûR + ûL),

ûL =
1√
2
(x̂+ iŷ), ŷ =

i√
2
(ûR − ûL). (3.44)

As already mentioned, either basis can be used to express the transverse components of an electric
field (in an EM wave).

E = Exx̂+ Ey ŷ = ERûR + ELûL. (3.45)

Because the basis vectors are complex, they have interesting algebraic properties that must be kept
in mind when finding components. The normalization scalar products are

û∗R · ûR = û∗L · ûL = ûR · ûL = 1, û∗R · ûL = ûR · û∗L = ûR · ûR = ûL · ûL = 0. (3.46)

Then applying either û∗R or û∗L onto the electric field expression pulls out the desired circular polar-
ization component:

ER = û∗R ·E =
1√
2
(x̂− iŷ)∗ · (Exx̂+ Ey ŷ) =

1√
2
(Ex + iEy) (3.47)

EL = û∗L ·E =
1√
2
(x̂ + iŷ)∗ · (Exx̂+ Ey ŷ) =

1√
2
(Ex − iEy) (3.48)

Can go the other way obviously by scalar products with x̂ and ŷ,

Ex = x̂ · E = x̂ · (ERûR + ELûL) =
1√
2
(ER + EL) (3.49)

Ey = ŷ · E = ŷ · (ERûR + ELûL) =
−i√

2
(ER − EL) (3.50)

The relations can be expressed using matrices. Let me call the matrix that gives the circular
components in terms of the Cartesian components, matrix T . One has





ER

EL



 =







1√
2

i√
2

1√
2

−i√
2











Ex

Ey



 , or E′ = T · E (3.51)

In the last form, the prime indicates the column vector of circular polarization components, and
unprimed is the column vector of Cartesian components. One can see that the T -matrix is composed
from the R/L components of the Cartesian basis vectors, as column vectors:

T =







1√
2

i√
2

1√
2

−i√
2











xR yR

xL yL



 =
(

x̂ ŷ
)

. (3.52)

The inverse transformation matrix can be seen to be composed from the Cartesian components of
the right/left basis vectors, as column vectors:





Ex

Ey



 =





1√
2

1√
2

−i√
2

i√
2









ER

EL



 , or E = T−1 · E′ (3.53)
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The inverse matrix is

T−1 =





1√
2

1√
2

−i√
2

i√
2



 =





uR,x uL,x

uR,y uL,y



 =
(

ûR ûL

)

. (3.54)

The matrix T is unitary, its inverse is its Hermitian conjugate (the complex conjugate of its trans-
pose), T−1 = T̃ ∗. The determinant of T is −i, complex but of unit magnitude.

Now one wants to know how the dielectric tensor changes with this transformation. The dielectric
function gives the electric displacement, as a column vector of Cartesian components, as D = εE.
Can apply the transformation into this equation as follows:

D′ = TD = T εE = T εT−1TE = (T εT−1)(TE) = ε′E′, where ε′ = T εT−1. (3.55)

The matrix ε′ is the dielectric function as represented in the circular polarization components. This
is a usual similarity transformation. One can check exactly what comes out here, using the matrices:

ε′ =







1√
2

i√
2

1√
2

−i√
2











εxx iExy

−iExy εxx









1√
2

1√
2

−i√
2

i√
2



 (3.56)

This becomes

ε′ =
1

2





1 i

1 −i









εxx + Exy εxx − Exy

−i(εxx + Exy) i(εxx − Exy)



 =





εxx + Exy 0

0 εxx − Exy



 (3.57)

The array is diagonal, as expected, and the diagonal elements are just εR = εxx + Exy = εxx − iεxy

and εL = εxx−Exy = εxx+iεxy, for the two independent (and somehow, fundamental) circular polar-
izations. These were the eigenvalues already encountered for the dielectric matrix. Transformation
to circular polarization components brings the matrix to diagonal form, as it should! The circular
states are the eigenstates, and propagate unchanged. On the other hand, the linear polarization
states are superpositions of these two different eigenstates, hence, a linear polarization state evolves
as it propagates, because the eigenstates interfere with each other.

3.4 Faraday Rotation

Suppose an incident wave enters a medium, travelling in the z-direction, and polarized in the x-
direction. It can be considered as a linear combination of equal amounts of right and left polariza-
tions. This is represented by the mathematics,

Einc = Eincx̂ = Einc
1√
2
(ûR + ûL) (3.58)

That is the wave at a point z = 0. After it propagates some distance z, over a time interval t, each
part gets a phase shift by ei(kz−ωt), using the appropriate wave vector for each polarization. The
result arriving at a receiver at position z is

E(z) =
Einc√

2

[

ûRe
i(kRz−ωt) + ûLe

i(kLz−ωt)
]

=
Einc√

2
· 1√

2

[

(x̂− iŷ)eikRz + (x̂+ iŷ)eikLz
]

e−iωt

=
1

2
Einc

[

(ekRz + ekLz)x̂+
1

i
(ekRz − ekLz)ŷ

]

e−iωt (3.59)
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This shows the amount of light still polarized along x̂, versus the amount that now is polarized along
ŷ. It helps to make some definitions or notation,

k ≡ 1

2
(kR + kL), ∆k ≡ kR − kL

kR = k +
1

2
∆k, kL = k − 1

2
∆k. (3.60)

Then the signal becomes

E(z) =
1

2
Einc

[

1

2
(ei∆k

2
z + e−i∆k

2
z)x̂+

1

2i
(ei∆k

2
z − e−i∆k

2
z)x̂

]

eikze−iωt

= Einc

[

x̂ cos
∆k

2
z + ŷ sin

∆k

2
z

]

ei(kz−ωt) (3.61)

One can see from this that the electric field is now polarized at angle ∆k
2 z to the x-axis. This is the

simple calculation, assuming that the wave vectors are real. The Faraday rotation angle is then

θ =
∆k

2
z =

1

2
(kR − kL) z. (3.62)

Another way this is sometimes written would be in terms of the indices of refraction for the two
polarizations, nR =

√
µεR and nL =

√
µεL,

θ =
ω

2c
(nR − nL) z. (3.63)

The farther the wave travels in the medium, the greater is the rotation. This happens because a
linear polarization state is not an eigenstate of the EM field. Only the circular polarization states
are the eigenstates, and they propagate unchanged.

One would like to know, most importantly, how the rotation of the polarization depends on the
applied magnetic field. Do an expansion of the wave vectors, assuming the off-diagonal part of the
dielectric tensor is small, and εxx and Exy are real (this is not exactly true, I will correct this later):

θ =
z

2
(kR − kL) =

z

2

ω

c

√
µ

[

√

εxx + Exy −
√

εxx − Exy

]

≈ z

2

ω

c

√
µεxx

[(

1 +
1

2

Exy

εxx

)

−
(

1 − 1

2

Exy

εxx

)]

=
ω

2c

√

µ

εxx
Exy z. (3.64)

Since Exy is approximately proportional to the magnetic field, for small fields, the Faraday rotation
is also proportional to the magnetic field strength along the propagation direction of the light. The
approximate expression could be found from using the results for ε.

In the more general case where the wave vectors are complex, because there is absorption, one can
show that not only is there a Faraday rotation, but also an ellipticity is generated in the polarization.
This means that the polarization is not circular when it arrives at a receiver. Instead, the ratio of its
semi-minor axis b to semi-major axis a is different from 1. The ratio is characterized by an ellipticity
angle χ = tan−1(b/a). Then, one gets a complex rotation angle, where the real part is the usual
Faraday rotation θ, and the imaginary part is the ellipticity angle χ. The relation becomes

θ + iχ =
∆k

2
z =

1

2
(∆k′ + i∆k′′) z (3.65)

The prime and double prime indicate the real and imaginary parts. Those also can be translated
into the real and imaginary parts of the indices of refraction. To prove this is an excercise in the
plane geometry of ellipses, which I will not do here! It is still true, however, that this leads to

θ + iχ ≈ ω

2c

√

µ

εxx
Exy z. (3.66)

To apply it requires inserting and evaluating with the real and imaginary parts of the dielectric
functions.

All of this has been classical mechanics. The rest of these notes is concerned with how dielectrics
in a magnetic field work in the quantum world.
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4 Quantum electron dynamics with a DC magnetic field

An electron in a uniform DC magnetic field plus an applied optical field will have a Hamiltonian as
discussed previously

H =
1

2me

[

p − e

c
Atot(r, t)

]2

+ eφ(r, t) + U(r). (4.1)

Now, however, the vector potential must include both that due to the optical field and that due
to the DC magnetic field. Further, for simplicity, we take the scalar potential as zero (Coulomb
gauge for the optical field). The crystal potential U(r) leads to states in bands, however, we try to
ignore that for the time being. This will lead to something analogous to the classical treatment just
discussed (quasi-free electrons).

I can consider the vector potential as a sum of DC part A plus AC part Ã:

Atot = A + Ã (4.2)

Then each of these can interact with the momentum operator, as well as with each other when the
square is taken. I’ll ignore those quadratic interaction terms, but keep the term due to squaring
the DC vector potential. The reason is, we suppose the DC magnetic field is much much stronger
than that in the light waves. The DC field leads to the so-called Landau levels which can resemble
classical cyclotron motion. They have an energy scaled dependent on B̄ and we really want to take
them into account. The optical field here will be first treated as a classical time-dpendent field. So
the Hamiltonian to currently consider is

H =
1

2me

(

p− e

c
A

)2

− e

mec
Ã · p. (4.3)

The first term is considered the original Hamiltonian H0, the second term is a perturbation.

4.1 Landau Levels

One wants to understand the eigen states of the system before the optical field is applied. It is
assumed that the DC magnetic field B points along the z-axis. Then its vector potential only needs
to depend on x and y coordinates, at most. It makes sense to writeH0 using the dynamic momentum
operator,

H0 =
1

2me
~π2, ~π = p− e

c
A. (4.4)

This operator is very interesting because its components do not commute with each other! That is
because the vector potential depends on position. One gets commutators

[πx, πy] = [px − e

c
Ax, py − e

c
Ay] = −e

c
([px, Ay] + [Ax, py]) (4.5)

In the coordinate represention, the momentum operator is p = −ih̄~∇, so the action on some arbitrary
wave function ψ is

[px, Ay]ψ = (−ih̄∂x)(Ayψ) − (Ay)(−ih̄∂xψ)

= (−ih̄) [(∂xAy)ψ +Ay(∂xψ) −Ay(∂xψ)] = −ih̄(∂xAy)ψ (4.6)

The other one is

[Ax, py]ψ = Ax(−ih̄∂yψ) − (−ih̄∂y)(Axψ)

= (−ih̄) [Ax(∂yψ) − (∂yAx)ψ −Ax(∂yψ)] = ih̄(∂yAx)ψ (4.7)

Then the commutator of two components of ~π is

[πx, πy] = −e
c
(−ih̄)[∂xAy − ∂yAx] =

ieh̄

c
(~∇× A)z = ih̄

eB

c
(4.8)
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Note that in fact, the combination eB/mec is the classical cyclotron frequency,

ωB =
eB

mec
(4.9)

So the basic commutator here is
[πx, πy ] = ih̄meωB. (4.10)

This is curiously very much like the fundamental canonical commutator [x, px] = ih̄, except for
the scale proportional to the applied magnetic field. Further, this Hamiltonian bears a very close
mathematical resemblance to that of a simple harmonic oscillator:

H0 =
1

2me
(π2

x + π2
y); HSHM =

1

2me
(p2

x +m2
eω

2x2). (4.11)

This means that the electron in Bz can be quantized just the same way that a harmonic oscillator
is quantized. The easiest and best approach is to re-arrange H0 so it can be written in terms of
creation and annihilation operators. Based on the structure, try the following (operator version of
taking the square root):

H0 =
1

2me
· 1

2
[(πx + iπy)(πx − iπy) + (πx − iπy)(πx + iπy)] (4.12)

Then this is symmetrized, and introduce creation and annihilation operators that must be scaled
correctly to give a unit commutator,

a = N0(πx + iπy), a† = N0(πx − iπy), [a, a†] = 1. (4.13)

N0 is the normalization factor, and is found by applying (4.8):

[a, a†] = N2
0 [πx + iπy, πx − iπy] = N2

0 (−i[πx, πy] + i[πy, πx]) = N2
0 (−2i)

(

ih̄
e

c
Bz

)

= 1. (4.14)

This gives

N0 =

√

c

2h̄eB
=⇒ a =

√

c

2h̄eB
(πx + iπy), a† =

√

c

2h̄eB
(πx − iπy). (4.15)

The factors on the creation/annihilation operators involve the cyclotron frequency and take the same
form as those on the momentum in the SHO.

a =

√

1

2meh̄ωB
(πx + iπy), a† =

√

1

2meh̄ωB
(πx − iπy). (4.16)

The inverse relations are

πx =

√

meh̄ωB

2
(a+ a†), πy =

1

i

√

meh̄ωB

2
(a− a†), (4.17)

Then the Hamiltonian is

H0 =
1

4me
· (2meh̄ωB)(aa† + a†a) =

1

2
h̄ωB(aa† + a†a). (4.18)

It can also be expressed in terms of the usual number operator, a†a, via the commutation relation,
as

H0 = h̄ωB

(

a†a+
1

2

)

. (4.19)

The quantized states of this Hamiltonian are the Landau levels. Since the eigenvalues of the number
operator are positive integers (and 0), the energy levels are just like those of a harmonic oscillator,

En =

(

n+
1

2

)

h̄ωB, n = 0, 1, 2, 3, ... (4.20)
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The derivation implicitly assumed the product eB > 0. Normally we would be interested in
electrons, then, it would make sense here for the magnetic field pointing in the −ẑ direction. If you
did do the problem of a negative charge with B in the positive ẑ direction, you’ll find it useful to
swap πx and πy in the definition of the creation/annihilation operators, and see that the sign of ωB

is negative, and there results H0 = −h̄ωB

(

a†a+ 1
2

)

. So the most general result is to put absolute
value on ωB, and then (4.19) works for any choice of sign of charge or direction of B.

4.1.1 Landau Levels and Constants of the Motion

I don’t want to discuss all possible aspects of Landau levels, just those ideas I need to talk about
their effect on the dielectric function ε(ω). Because they can have a role due to transitions between
them, we need also to discuss their degeneracy. This is not so obvious. The states of a 1D harmonic
oscillator are non-degenerate. But here, the system is two-dimensional, yet the Hamiltonian appears
to be like a 1D Hamiltonian now. It’s as if a dimension was lost, but it’s not actually lost, it’s
just that these levels have a degeneracy. It can be seen because there are constants of the motion
associated with an arbitrary choice of the center of the cyclotron motion. This is probably easiest
to see from looking at the classical problem. A classical electron affected just by a magnetic field
has dynamics from

mev̇x =
e

c
vyBz, mev̇y = −e

c
vxBz (4.21)

This is the same as writing
v̇x = ωBvy, v̇y = −ωBvx (4.22)

And the combination of the equations gives usual harmonic motion:

v̈x = −ω2
Bvx, v̈y = −ω2

Bvy (4.23)

An integration as follows gives two constants of the motion (two integration constants):

∫

dt v̇x = ωB

∫

dt vy =⇒ vx(t) = ωB(y(t) − Y ) =⇒ Y = y(t) − vx(t)

ωB
. (4.24)

∫

dt v̇y = −ωB

∫

dt vx =⇒ vy(t) = ωB(x(t) −X) =⇒ X = x(t) +
vy(t)

ωB
. (4.25)

These integration constants X and Y don’t change during the cyclotron motion. Indeed, the solution
for the velocities is found easily. Try harmonic functions:

vx(t) = v1 cosωBt+ v2 sinωBt, =⇒ v̇x = ωBvy = ωB(−v1 sinωBt+ v2 cosωBt) (4.26)

Then it is easy to see that the constants here are just v1 = vx(0) and v2 = vy(0). The solution for
velocity and position is then

vx(t) = vx(0) cosωBt+ vy(0) sinωBt, vy(t) = −vx(0) sinωBt+ vy(0) cosωBt,
x(t) = 1

ωB
[vx(0) sinωBt− vy(0) cosωBt] + c1, y(t) = 1

ωB
[vx(0) cosωBt+ vy(0) sinωBt] + c2.

(4.27)
Try to evaluate the above constants of integration in terms of the initial velocities and these new
integration constants c1 and c2. One gets

Y = y(t) − vx(t)

ωB
=

1

ωB
[vx(0) cosωBt+ vy(0) sinωBt] + c2

− 1

ωB
[vx(0) cosωBt+ vy(0) sinωBt] = c2. (4.28)

X = x(t) +
vy(t)

ωB
=

1

ωB
[vx(0) sinωBt− vy(0) cosωBt] + c1

+
1

ωB
[−vx(0) sinωBt+ vy(0) cosωBt] = c1. (4.29)
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Of course, the point (X,Y ) = (c1, c2) is the average position, which is just the center of the cyclotron
orbit! It does not change with time, it is a constant of the motion. In addition to this, the size of
the orbit is determined by the initial velocity components. Consider the deviation of the position
from its average:

ρ2 = [x(t) −X ]2 + [y(t) − Y ]2

=
1

ω2
B

{

[vx(0) sinωBt− vy(0) cosωBt]
2 + [vx(0) cosωBt+ vy(0) sinωBt]

2
}

=
v2

x(0) + v2
y(0)

ω2
B

, =⇒ |v(0)| = ωBρ. (4.30)

It shows that the initial speed determines the size (and energy) of the orbit.
Now how to find the equivalent conserved objects like X and Y for the quantum problem? The

simplest approach is to construct the corresponding quantum operators, and see their properties.
But be careful: the velocity is connected to the kinetic momentum ~π, not to the canonical momentum
p. Replacing velocity by kinetic momentum over mass, one can define new quantum operators,

X = x+
πy

meωB
, Y = y − πx

meωB
. (4.31)

Check the commutator between them:

[X,Y ] =

[

x+
πy

meωB
, y − πx

meωB

]

=
1

meωB

(

−[x, πx] + [πy, y] −
1

meωB
[πy , πx]

)

=
1

meωB

[

−ih̄− ih̄− 1

meωB
(−ih̄meωB)

]

=
−ih̄
meωB

.(4.32)

This is similar to the non-commutation of ~πx and ~πy , except that the sign is negative, and, the
magnetic field is in the denominator! This non-commutation gets weaker with increasing magnetic
field. This also shows that these objects cannot be simultaneously specified to arbitrary precision.

Check also some other commutation relations. Try these with the kinetic momentum.

[X,πx] =

[

x+
πy

meωB
, πx

]

= [x, πx] +
1

meωB
[πy, πx] = ih̄+

1

meωB
(−ih̄meωB) = 0. (4.33)

[X,πy] =

[

x+
πy

meωB
, πy

]

= [x, πy ] +
1

meωB
[πy, πy] = 0. (4.34)

Then the other two like this are also zero: [Y, πy] = [Y, πx] = 0. So X and Y are new operators that
can be specified independently of the kinetic momenta. Furthermore, since they commute with the
kinetic momenta, they commute with the Hamiltonian, so they are constants of the motion. They
lead to the degeneracy of the Landau levels.

Based on their mutual commutator, X and Y can be combined into another kind of creation and
annihilation operators. Consider the obvious combinations that form the squared central position
of a cyclotron orbit, denoted with ∆2:

∆2 = X2 + Y 2 =
1

2
[(X − iY )(X + iY ) + (X + iY )(X − iY )] ∝ (bb† + b†b) (4.35)

Then the new operators are

b = M0(X − iY ), b† = M0(X + iY ) (4.36)

The choice of signs is based on the negative sign in the result, [X,Y ] = −ih̄/meωB. M0 is the
normalization to be chosen so that [b, b†] = 1. Let’s determine that:

[b, b†] = M2
0 [X − iY,X + iY ] = iM2

0 ([X,Y ] − [Y,X ]) = iM2
0 (−2ih̄/meωB) = 1. (4.37)
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This leads to M0 =
√

meωB/2h̄, and the creation/annihilation operators are

b =

√

meωB

2h̄
(X − iY ), b† =

√

meωB

2h̄
(X + iY ). (4.38)

What do they do for us? For one thing, they determine the location of the center of the cyclotron
motion, which is the operator ∆2. It can be expressed

∆2 = X2 + Y 2 =
1

2

2h̄

meωB

(

bb† + b†b
)

=
2h̄

meωB

(

b†b+
1

2

)

. (4.39)

This isn’t a Hamiltonian, yet it resembles one. The b† operator will raise the amount of ∆2 in the
system, and b reduces it. The minimum is the zero point value seen here, ∆2 ≥ h̄/meωB, the same
number as that appearing in the commutator of X and Y . As (X,Y ) classically is the center of the
cyclotron motion, one can see that different values of this position will all have the same energy,
hence there is great degeneracy. But the size of 2h̄/meωB determines the scale of that degeneracy.
Also, it’s seen that all the Landau levels will have the same degeneracy, because they all have the
same choices for possible centers.

4.1.2 What about angular momentum?

Before figuring out the amount of degeneracy, consider what else is physically related to b and b†.
Classical cyclotron motion is clearly associated with an angular momentum. Look at the angular mo-
mentum for the quantum problem. But again, it seems a little tricky, because there is the canonical
momentum and the kinetic momentum, and each could be used to construct an angular momentum.
This is really confusing and for certain problems those things are the same, for other problems they
are different. But generally, canonical momentum is not physical (or kinetic) momentum, rather, it
is more of a device for calculations.

Consider an angular momentum based on the kinetic momentum,

L̃ = r × ~π, L̃ = L̃z = xπy − yπx. (4.40)

Only the z component is important for this effectively 2D problem. Check if it commutes with the
Hamiltonian (maybe, based on the rotational symmetry in operator ~π), via the following:

[L̃, πx] = [xπy − yπx, πx] = [xπy, πx] − [yπx, πx] = x[πy , πx] + [x, πx]πy − [y, πx]πx (4.41)

= x(−ih̄meωB) + (ih̄)πy − 0 = ih̄(−meωBx+ πy).

And the square,

[L̃, π2
x] = πx[L̃, πx] + [L̃, πx]πx = πx[ih̄(−meωBx+ πy)] + [ih̄(−meωBx+ πy)]πx

= ih̄[−meωB(xπx + πxx) + (πxπy + πyπx)] (4.42)

[L̃, πy] = [xπy − yπx, πy ] = [xπy , πy] − [yπx, πy] = [x, πy ]πy − y[πx, πy] − [y, πy]πx (4.43)

= 0 − y(ih̄meωB) − (ih̄)πx = −ih̄(meωBy + πx).

[L̃, π2
y ] = πy [L̃, πy] + [L̃, πy]πy = πy [−ih̄(meωBy + πx)] + [−ih̄(meωBy + πx)]πy

= ih̄[−meωB(yπy + πyy) − (πxπy + πyπx)] (4.44)

So somewhat surprisingly, the total of these is not zero, and this L̃ does not commute with H0:

[L̃, π2
x + π2

y] = −ih̄meωB(xπx + πxx+ yπy + πyy) 6= 0. (4.45)

Instead, try the usual (canonical) angular momentum. Let

L = r× p, L = Lz = xpy − ypx. (4.46)
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Let me use the basic fact about the momentum operator in coordinate representation, that is

[px, f(x)] = −ih̄∂f
∂x

= −ih̄∂xf = pxf (4.47)

and the fact that, for example, πx = px − (e/c)Ax. Then the first commutator we need is

[L, πx] = [xpy − ypx, πx] = [xpy, πx] − [ypx, πx]

= x[py, πx] + [x, πx]py − y[px, πx] − [y, πx]px

= x(−ih̄−e
c
∂yAx) + (ih̄)py − y(−ih̄−e

c
∂xAx) − 0px

= ih̄py − ih̄
−e
c

(x∂y − y∂x)Ax = ih̄py − e

c
(LAx) (4.48)

The operation rotated px into py and affected the vector potential That is also the expected action
of the angular momentum operator in the coordinate representation. Continuing,

[L, π2
x] = πx[L, πx] + [L, πx]πx = ih̄(πxpy + pyπx) − e

c
[πx(LAx) + (LAx)πx]. (4.49)

Doing some similar algebra for πy we have

[L, πy] = [xpy − ypx, πy] = [xpy, πy] − [ypx, πy]

= x[py, πy] + [x, πy]py − y[px, πy] − [y, πy]px

= x(−ih̄−e
c
∂yAy) + 0py − y(−ih̄−e

c
∂xAy) − (ih̄)px

= −ih̄px − ih̄
−e
c

(x∂y − y∂x)Ay = −ih̄px − e

c
(LAy) (4.50)

Then with the squared,

[L, π2
y] = πy [L, πy] + [L, πy]πy = −ih̄(πypx + pxπy) − e

c
[πy(LAy) + (LAy)πy ]. (4.51)

Put it all together,

[L, π2
x + π2

y] = ih̄ · −e
c

[Axpy + pyAx −Aypx − pxAy ]

−e
c
[πx(LAx) + (LAx)πx + πy(LAy) + (LAy)πy ]. (4.52)

At this point, I can’t get a simple result. This is too much algebra without thinking.

4.1.3 Choices of vector potential

The difficulty is, that the Hamiltonian, in general, is not rotationally invariant, because of the
presence of the vector potential. Hence the algebra above is not simple. The both weird and
beautiful thing about this problem, is that this dependence on the vector potential means there are
different solutions to the problem, depending on the choice of the gauge. The simplest would be to
choose a gauge that is rotationally invariant. Let me consider that.

The (uniform) magnetic field is derived from the vector potential, and in circular coordinates,
the equations needed is

Bz = B = (~∇× A)z =
1

r

[

∂

∂r
(rAφ) − ∂

∂φ
Ar

]

(4.53)

There is an infinite family of solutions. Two of the simplest are either to choose a solution where
only Aφ is present or where only Ar is present. Suppose you tried Aφ = 0, then solve

B = −1

r

∂

∂φ
Ar =⇒ Ar = −Brφ+ C. (4.54)
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This is not rotationally invariant, although it gives a uniform magnetic field. Try instead with
Ar = 0, and solve

B =
1

r

∂

∂r
(rAφ) =⇒ Aφ =

1

2
Br + C. (4.55)

This is ”better” in the sense that it is invariant under rotations around the origin. Drawn out, the
vector field looks like a whirlpool, with longer arrows farther from the origin. But really, it is just
another arbitrary choice that will give the uniform magnetic field we want. Usually it might be
quoted in Cartesian coordinates. Then we have the ”symmetric gauge”,

Ax = Ar cosφ−Aφ sinφ = −1

2
Br sinφ = −1

2
By

Ay = Ar sinφ+Aφ cosφ = +
1

2
Br cosφ = +

1

2
Bx (4.56)

Also note the action of the canonical angular momentum on this. In circular coordinates, the angular
momentum operator is L = Lx = −ih̄(∂/∂φ). Then it is interesting that

LAφ = 0, LAx = −ih̄
(

1

2
Br cosφ

)

= ih̄Ay, LAy = −ih̄
(

1

2
Br sinφ

)

= −ih̄Ax, (4.57)

So even though the original Aφ is a zero eigenfunction of L, the Cartesian components are not. In
fact, one can form some linear combinations, that are other eigenfunctions of L, namely,

L · (x + iy) = −ih̄ ∂

∂φ
(r cosφ+ ir sinφ) = −ih̄ ∂

∂φ
(re+iφ) = +h̄(re+iφ) = +h̄(x+ iy). (4.58)

L · (x − iy) = −ih̄ ∂

∂φ
(r cosφ− ir sinφ) = −ih̄ ∂

∂φ
(re−iφ) = −h̄(re−iφ) = −h̄(x − iy). (4.59)

There are also asymmetric choices for the vector potential, for example, one with only an Ax

component is sometimes a popular choice:

A = (Ax, Ay) = (−By, 0), then Bz = (∂xAy − ∂yAx) = B. (4.60)

The other simple choice is one with only an Ay component,

A = (Ax, Ay) = (0, Bx), then Bz = (∂xAy − ∂yAx) = B. (4.61)

Or, you could even choose a vector potential that only has a component perpendicular to an axis at
angle β to the x-axis. This would be a rotation of one of these last choices, like

A = (Ax, Ay) = (−B(cosβ)[y cosβ + x sinβ],−B(− sinβ)[y cosβ + x sin β])

= −B([y cos2 β + x sinβ cosβ], [−x sin2 β − y sinβ cosβ]) (4.62)

This was performed by rotating the vector and rotating the coordinates. Check the field it produces:

Bz = (∂xAy − ∂yAx) = −B
(

− sin2 β − cos2 β
)

= B. (4.63)

In fact, there are extra ”un-needed terms” after the rotation. But for example, if you remove the
un-needed terms, and say, put the angle β = 45◦, then this vector potential becomes the same as
that in the symmetric gauge. But with the un-needed terms, it is another form for A that does not
look like a whirlpool, but rather, a set of parallel arrows whose length increases away from the line
at angle β to the x-axis.

Just for curiousity, what do you get if you do this same β-rotation of the vector potential of the
symmetric gauge? There results under the same operations, for example, to be more specific how
the rotation is done,

Ax′(x′, y′) = Ax cosβ +Ay sinβ =
B

2
(−y cosβ + x sinβ)

=
B

2
(−[y′ cosβ + x′ sinβ] cosβ + [x′ cosβ − y′ sinβ] sinβ) =

−B
2
y′. (4.64)
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Ay′(x′, y′) = −Ax sinβ +Ay cosβ =
B

2
(y sinβ + x cosβ)

=
B

2
([y′ cosβ + x′ sinβ] sinβ + [x′ cosβ − y′ sinβ] cosβ) =

B

2
x′. (4.65)

This is what is meant by rotationally invariant. The form of the potential in the rotated coordinates
is unchanged from the original coordinates.

These different choices of vector potential all give the same magnetic field. They can give different
wave functions for the Landau levels, although once expectation values of real problems are taken,
the results should not depend on the specific choice of gauge.

4.1.4 Connection between angular momentum and b, b†?

We know from the form of (4.39) that b and b† control the squared position of the center of the
motion. Here I consider a commutation relation between canonical L and b or b†, just to see what
comes out. To do that, it is easiest to consider a particular gauge. First suppose we are in the
symmetric gauge. Look at the expressions,

b = M0(X − iY ) = M0

{

x+
πy

meωB
− i

(

y − πx

meωB

)}

= M0

{

x− iy +
i

meωB
(πx − iπy)

}

(4.66)

b† = M0(X+iY ) = M0

{

x+
πy

meωB
+ i

(

y − πx

meωB

)}

= M0

{

x+ iy − i

meωB
(πx + iπy)

}

(4.67)

The commutators of L with x± iy were already found. We also have

[L, πx − iπy] = ih̄py − e

c
(LAx) − i

[

−ih̄px − e

c
(LAy)

]

= −h̄(px − ipy) −
e

c
L · (Ax − iAy) (4.68)

[L, πx + iπy] = ih̄py − e

c
(LAx) + i

[

−ih̄px − e

c
(LAy)

]

= +h̄(px + ipy) −
e

c
L · (Ax + iAy) (4.69)

Now one sees that these linear combinations of components of A could give simple results, if, for
example, they were eigenfunctions of L. Imagine if that is enforced. The best choice would be

L · (Ax − iAy) = −h̄(Ax − iAy), L · (Ax + iAy) = +h̄(Ax + iAy), (4.70)

because these will give back the kinetic momentum components on the RHS of (4.69) and (4.68).
But these linear combinations are the same as

Ax − iAy = (Ar cosφ−Aφ sinφ) − i(Ar sinφ+Aφ cosφ) = (Ar − iAφ)e−iφ (4.71)

Ax + iAy = (Ar cosφ−Aφ sinφ) + i(Ar sinφ+Aφ cosφ) = (Ar + iAφ)e+iφ (4.72)

The first will have eigenvalue −h̄ and the second will have eigenvalue +h̄, if the combinations
(Ar ± iAφ) are independent of φ. The simplest way to accomplish that would be to choose Ar = 0,
then we are forced to the symmetric gauge with Aφ ∝ r. So for the symmetric gauge, relations
(4.70) hold, and there results commutators

[L, πx − iπy] = −h̄(πx − iπy), [L, πx + iπy] = +h̄(πx + iπy). (4.73)

Finally, the commutators with these creation/annihlation operators are now determined, in the
symmetric gauge,

[L, b] = −h̄b, [L, b†] = +h̄b†. (4.74)

These then show that b destroys one quantum of angular momentum, while b† creates one quantum
of angular momentum. For instance, if the state |l〉 has L-eigenvalue of lh̄, then for the state b† |l〉,

L(b†|l〉) = (Lb† − b†L+ b†L)|l〉 = (+h̄b† + b†L)|l〉 = (l + 1)h̄(b†|l〉). (4.75)
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So b†|l〉 is the raised state with one more quantum of angular momentum. Similarly, b |l〉 is the
lowered state with more less quantum of angular momentum. Therefore, one sees also that for this
gauge, changing the angular momentum is associated with changing ∆2. But these do not involve a
change in the energy.

What about one of the non-symmetric gauges, like (4.60), where there is only an x-component
to the vector potential? With A = (−By, 0), one has

L · (Ax − iAy) = L · (Ax + iAy) = L · (−By) = L · (−Br sinφ) = −ih̄(−Br cosφ) = ih̄Bx. (4.76)

This doesn’t give a simple commutation relation between L and b or b†. This leads one to believe,
that the properties to do with the canonical angular momentum for this problem, are not physically
too important, because of this gauge dependence.

4.1.5 Relation between a, b, and L operators?

Now I assume the discussion only concerns the symmetric gauge, so that the action of b and b† is to
reduce or increase the angular momentum. Also, by the above derivations, we can see immediately
that a and a† not only change the energy, but they also change the angular momentum. Since
a ∝ (πx + iπy) is a positive angular momentum eigenfunction and a† ∝ (πx − iπy) is a negative
angular momentum eigenfunction [the result (4.73)], one can see that

[L, a] = +h̄a, [L, a†] = −h̄a†. (4.77)

This is in contrast to the action with the b and b† operators, which I repeat here:

[L, b] = −h̄b, [L, b†] = +h̄b†. (4.78)

This is somehow very curious. If there was a ground state of a of zero angular momentum, then by
acting with a† on that state to raise the energy, its action of lowering L would bring it to a negative
angular momentum component along z. On the other hand that original ground state of a could
be acted upon by the b† operator, raising its Lz without changing its energy. It means there are
multiple ground states of the a operator, that differ in their angular momenta, which is equivalent
to differing in their squared radius, ∆2. When they get acted on by a†, their energy is raised while
their L is lowered to a more negative value. But because there are many different states of different
Lz for the same energy, there is degeneracy. However, the energy of the system is not dependent on
its canonical angular momentum.

Keep in mind, however, based on their construction, the a and b operators commute as follows:

[a, b] = [a, b†] = [a†, b] = [a†, b†] = 0. (4.79)

But of course, within each family,
[a, a†] = [b, b†] = 1. (4.80)

To summarize this, both the a and b operators change angular momentum. But only the a operators
change the energy, without changing ∆2, while only the b operators change ∆2, without changing
the energy.

4.1.6 Counting the degeneracy

Consider some eigenstate of the Hamiltonian, i.e., and eigenstate of the number operator a†a, denoted
as |n〉, with energy En = h̄ωB(n+1/2). We can already see that this enough enough to fully specify
the state, because there are many such states, with different eigenvalues corresponding to the ∆2

number operator, b†b. We originally solved this problem as if the system is infinitely extended in the
x and y directions. If that is the case, then ∆2 has no upper limit. But in a real system, there will
be a limit, because ∆2 cannot be larger than the size of the system squared. So without actually
trying to solve exactly for the states in a finite system, one can still estimate their degeneracy.
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For greatest simplicity in this, suppose the system is circular, of radius R. Then it can be roughly
expected that there is a limit on the expectation value of the operator ∆2, according to

〈∆2〉 < R2, or

〈

2h̄

meωB
(b†b+ 1/2)

〉

< R2. (4.81)

Suppose the eigenvalue of the number operator b†b is nb. Then ignoring the factor of 1/2. this shows
that the maximum value for nb is on the order of

nb,max ≈ meωBR
2

2h̄
=
R2

r20
, r0 ≡

√

2h̄

meωB
. (4.82)

This is then the estimate of the degeneracy of any energy eigenstate. The parameter r0 is the scale
of the squared radus operator ∆2. It is very interesting to express the degeneracy in terms of the
magnetic flux ΦB =

∫

dS ·B passing through the cross section of the system.

nb,max ≈
me

eB
mecπR

2

2πh̄
=

e

2πh̄c
· (πR2B) =

e

hc
· ΦB =

ΦB

Φ0
. (4.83)

This is written in terms of the fundamental quantum of magnetic flux!

Φ0 ≡
(

hc

e

)

(CGS)

=

(

h

e

)

(SI)

≈ 4.136× 10−15 Tm2. (4.84)

Note that for SI units the cyclotron frequency needed to be substituted as ωB = eB/me. It is clear
that for even small magnetic field strength, the degeneracy is going to be very large. It corresponds
vaguely to having the center of the cyclotron motion in many differeny locations in the system. With
stronger magnetic field, there is even greater degeneracy.

What is the effect of this degeneracy, in general? We are talking about electrons, which are
fermions. Therefore, including spin, only two electrons can be placed into any fundamental Landau
level, specified by the quantum numbers n and nb. However, each Landau energy level (specified by
only n), when degeneracy is included, can hold an enormous number (nb,max) of electrons. There-
fore, if the system has few electrons, in some sense, a large fraction of them can be in the lowest
energy Landau levels. This can lead to interesting behavior, that changes with the strength of the
magnetic field, as the degeneracy is changed. At very strong magnetic field, most electrons can
be allowed to stay in the lowest energy level. As the magnetic field becomes weaker, the electrons
are forced to populate higher energy Landau levels. Obviously, these effects will be more apparent
at low temperature, where the tendency will be to populate only the lowest energy levels. Higher
temperature would already cause the higher Landau levels to be thermally populated and smear out
the interesting quantum effects. This behavior leads to the ”quantum Hall effects”, but I will not
delve into the details of that here.

The existence of the flux quantum Φ0, and its appearance in this problem, is intriguing. The
result suggests that at very weak magnetic field, the electron’s wave function is very spread out,
trying to fill up a large area of the system. An individual electron (for each choice of spin, up
or down) is ”allowed” to spread out over an area through which one quantum of flux passes. At
stronger magnetic field, the electron has to fill a much smaller area. It is as if each electron has to
stay close to one ”line” of the magnetic field passing through the system. The electrons get squeezed
closer together as the magnetic field strength is increased.

4.1.7 Landau level state and wave functions

The actual wave functions of electrons in Landay levels will depend on the choice of the gauge for
the vector potential. Even so, it is interesting to see their form in some situations. Here I use
the symmetric gauge. Some expressions for the general state vectors can also be found, that don’t
necessarily depend on the gauge.
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Suppose state vectors are written as |n, nb〉, where n is the eigenvalue of a†a and determines the
energy, and nb is the eigenvalue of b†b and determines squared radius ∆2. Because the destruction
operator has a lowest energy eigenstate, use it to define a ground state, specified by energy quantum
number n = 0, and ∆2 quantum number nb:

a|0, nb〉 = 0 (4.85)

Of course, this ground state has degeneracy and is not unique. Thus the presence of the second
quantum number nb, the eigenvalue of b†b, which plays no role in determining the energy. Suppose
in fact one starts with also nb = 0. Then application of b† will keep the energy fixed, but raise the
∆2 and the angular momentum. This can be done a number of times, and make use of the basic
identity, as would be found for any harmonic oscillator operator,

b†|n, nb〉 =
√
nb + 1 |n, nb + 1〉 (4.86)

This follows from the basic commutation relations, and the fact that b† is a raising operator. Doing
this repeatedly on the state with nb = 0, one will have

|n, nb〉 =
(b†)nb

√
nb!

|n, 0〉 (4.87)

or more specifically, the different ground states (with n = 0) can be found this way by acting on the
ground state of smallest ∆2, that has nb = 0,

|0, nb〉 =
(b†)nb

√
nb!

|0, 0〉 (4.88)

Further, the other creation operator can also be applied to raise instead the energy, thus a general
state vector can be obtained from this lowest ground state:

|n, nb〉 =
(a†)n

√
n!

(b†)nb

√
nb!

|0, 0〉 (4.89)

The operators a† and b† commute, so the order here is unimportant.
The wave functions give more physical insight, perhaps. In the coordinate representation the a

operator can be expressed

a =
πx + iπy√
2meh̄ωB

=
1√

2meh̄ωB

{

px + ipy − e

c
(Ax + iAy)

}

(4.90)

Now consider some different coordinate systems. The problem has some circular symmetry, especially
in the symmetric gauge. And these kinds of combinations also tend to help. Recall some different
transformations, just for the record. To go to polar coordinates, we need

(x, y) = (r cosφ, r sinφ), (r, φ) = (
√

x2 + y2, tan−1(y/x)) (4.91)

To transform the derivatives, we need

∂r

∂x
=
x

r
= cosφ,

∂φ

∂x
=

−y/x2

y2 + x2
=

−y
x2 + y2

=
− sinφ

r
,

∂r

∂y
=
y

r
= sinφ,

∂φ

∂y
=

1/x

y2 + x2
=

x

x2 + y2
=

cosφ

r
. (4.92)

Then there are the relations,

∂x =
∂

∂x
=

∂r

∂x

∂

∂r
+
∂φ

∂x

∂

∂φ
= cosφ

∂

∂r
− sinφ

r

∂

∂φ

∂y =
∂

∂y
=

∂r

∂y

∂

∂r
+
∂φ

∂y

∂

∂φ
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ
(4.93)
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Using polar coordinates, this is fairly simple, because

px + ipy = −ih̄(∂x + i∂y) = −ih̄eiφ

(

∂r +
i

r
∂φ

)

(4.94)

Now with the vector potential of the symmetric gauge applied, there also is

Ax + iAy =
−B
2

(y − ix) =
iB

2
(x+ iy) =

iB

2
reiφ. (4.95)

So the destruction operator can be written some different ways, for instance,

a =
1√

2meh̄ωB

{

px + ipy − ieB

2c
(x+ iy)

}

=
eiφ

√
2meh̄ωB

{

−ih̄
(

∂r +
i

r
∂φ

)

− ieB

2c
r

}

(4.96)

4.1.8 Ground state wave functions

The last is not so pretty, however, consider it applied to a wave function ψ, which gives zero. The
ground states are its solutions:

{

∂r +
i

r
∂φ +

eB

2h̄c
r

}

ψ(r, φ) = 0. (4.97)

A circularly symmetric solution would be a good place to start, with ∂φψ = 0. Then the equation
is easy to integrate,

dψ

dr
= − eB

2h̄c
rψ =⇒ dψ

ψ
= − eB

2h̄c
r dr =⇒ ψ(r) = Ce−

eB
4h̄c

r2

. (4.98)

That is a beautiful solution that is localized over a radius of the order of r0 =
√

2h̄c/eB. With greater
magnetic field, ψ gets more strongly localized, as was suggested earlier based on the degeneracy
arguments. Another way to write this length scale is

√

2h̄/meωB, it is the same as the scale r0 that
determines the squared radius operator ∆2. Because ψ is circularly symmetric, it has zero angular
momentum. Get the constant for normalization:

∫

d2r |ψ|2 = C2

∫ ∞

0

2πr dr e
− r2

r2
0 = C2πr20

∫ ∞

0

d(
r2

r20
)e

− r2

r2
0 = C2πr20 = 1 =⇒ C =

1√
π r0

.

(4.99)
So this normalized ground state is

ψ0 =
1√
π r0

exp

{

− r2

2r20

}

, r0 =

√

2h̄c

eB
. (4.100)

Based on the differential equation (4.97) for aψ = 0, there should also be solutions with az-
imuthal dependence on φ varying as eilφ, where l is an integer (the quantum number for the angular
momentum). So with the separation of ψ(r, φ) = eilφψl(r), other ground states must satisfy

{

d

dr
− l

r
+
eB

2h̄c
r

}

ψl(r) = 0, or

{

d

dρ
− l

ρ
+ ρ

}

ψl(ρ) = 0, ρ =
r

r0
. (4.101)

Luckily, this equation is very easy to solve! Since we know the solution when l = 0, try a slight
modification with an unknown power s:

ψl(ρ) = Cρse−ρ2/2, then
dψl

dρ
=

(

s

ρ
− ρ

)

ψl. (4.102)

Inserted into the ODE, the function works exactly if s = l. Now get the normalization also,
∫

d2r |ψ|2 = C2

∫ ∞

0

2πr20 ρ dρ ρ
2le−ρ2

= C2πr20

∫ ∞

0

du ule−u = C2πr20(l!) = 1 (4.103)
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The variable u = ρ2 was used, as well as the basic integral that will be used various times,
∫ ∞

0

du ule−u = l! (4.104)

Then this normalization constant is

C =
1

√

π(l!) r0
. (4.105)

Then the general ground state wave function that corresponds to the state vector |0, l〉 is

ψl(ρ, φ) =
1

√

π(l!) r0
eilφρle−ρ2/2, ψl(r, φ) =

1
√

π(l!) rl+1
0

eilφrle−r2/2r2

0 . (4.106)

The solution is valid only if l ≥ 0. Its angular momentum is clearly +lh̄. Then there are no
negative angular momentum ground states! If desired, one could have obtained ψl from applying
the coordinate representation of operator b† onto ψ0. I’ll assume that all works out; this way was
much simpler.

The probability of finding the electron at some scaled radius ρ is proportional to 2πρdρ |ψl|2. A
short calculation shows where this peaks:

d

dρ

[

ρ |ψl|2
]

∝ d

dρ

[

ρ2l+1e−ρ2
]

=
[

(2l + 1)ρ2l − 2ρρ2l+1
]

e−ρ2

= ρ2l
[

2l + 1 − 2ρ2
]

e−ρ2

= 0 (4.107)

Thus the most likely place to find the electron is at

ρmax =

√

l +
1

2
, or rmax =

√

l +
1

2
r0. (4.108)

This increases with the canonical angular momentum in the state.
What about some of the ground state properties or expectation values? Look at the value

of its squared radius. Its center is clearly at the origin. So r2 can be averaged, which should be the
same as doing the average of ∆2. By design, however, we should have

∆2|0, l〉 = r20(b
†b+ 1/2)|0, l〉 = r20(l + 1/2)|0, l〉. (4.109)

That is, it is an eigenstate, and the eigenvalue is (l + 1/2)r20. Check if that works out by the more
elementary approach, actually calculating

〈r2〉 =

∫

d2r ψ∗
l r

2ψl =

∫

2πr dr r2
r2le−r2/r2

0

π(l!)r
2(l+1)
0

=
r20
l!

∫ ∞

0

du ul+1e−u =
r20
l!

(l + 1)! = (l + 1)r20.

(4.110)
Curiously, this is not the same as the eigenvalue of ∆2. However, we could also check whether indeed
this is an eigenstate of ∆2. This takes more work. Look at the definition,

∆2 = X2 + Y 2 =

(

x+
πy

meωB

)2

+

(

y − πx

meωB

)2

(4.111)

The squares can be easily expanded because the operators inside them commute. Then we get some
interesting parts,

∆2 = (x2 + y2) +
1

m2
eω

2
B

(π2
x + π2

y) +
2

meωB

[

(xpy − ypx) − e

c
(xAy − yAx)

]

(4.112)

The first factor is just r2, the second is related to the energy operator, so ψ is an eigenfunction of
that, the third part is the angular momentum operator, and again ψ is one of its eigenfunctions.
But the last part is, in the symmetric gauge,

xAy − yAx = x

(

B

2
x

)

− y

(−B
2
y

)

=
B

2
(x2 + y2) =

B

2
r2. (4.113)
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Then the total for the squared radius operator is

∆2 = r2 +
1

m2
eω

2
B

(2meH0) +
2

meωB

[

L− e

c
· B

2
r2

]

=
2

meω2
B

(H0 + ωBL) . (4.114)

The dependence on coordinate r2 cancelled internally. Write this in dimensionless format,

∆2 =
2h̄

meωB

(

H0

h̄ωB
+
L

h̄

)

= r20

(

H0

h̄ωB
+
L

h̄

)

. (4.115)

Now the state with wave function ψl found above has the minimum energy eigenvalue, H0ψl =
(h̄ωB/2)ψl, and it angular momentum eigenvalue is lh̄. So it is indeed an eigenfunction (or eigenstate)
of ∆2, and that eigenvalue is

∆2 = r20

(

h̄ωB/2

h̄ωB
+
lh̄

h̄

)

= (l + 1/2)r20. (4.116)

So indeed, the expectation of r2 is actually different (and larger) than the eigenvalue of ∆2 for these
states. But they measure different things. 〈r2〉 is the spread of the probability for the electron around
the origin, while ∆2 relates to the its center position (X,Y ) for the cyclotron motion. Regardless
of which average is looked at, it increases linearly with l, the angular momentum. One might also
consider further at a later point, how to construct other ground states where X and Y are somehow
separately controlled (probably by some linear combinations of the states found here).

From the Hamiltonian and the original expression (4.39) for ∆2, compared with these last results,
we can find the following for the angular momentum,

∆2

r20
= a†a+

1

2
+
L

h̄
= b†b+

1

2
=⇒ L = h̄

(

b†b− a†a
)

. (4.117)

Thus here is the explicit demonstration that the angular momentum is determined by the number
of ”b-quanta” (this is nb) minus the number of ”a-quanta” (this is n). Starting from the ground
states, and then acting with a† to go to excited states, involves going towards more negative angular
momentum. Also the angular momentum eigenvalue is then

l = nb − n. (4.118)

The number eigenvalues nb and n are both greater than or equal to zero. So one sees an interesting
result, that the angular momentum can only be positive in the ground state (n = 0). To get
a negative angular momentum (clockwise motion in the xy-plane for a positive electron) requires
n > 0, i.e., an excited state.

Some good questions to ask at this point are: Is there motion of the electron in the ground
states? In which direction? Does it agree with the direction for classical cyclotron motion? Does
the motion correspond to an electric current? Do the ground states with higher l (or higher nb) have
a higher current? To answer these, one needs to consider the velocity operator, which is v = ~π/me.
Expand it out to get the components, in the symmetric gauge,

vx =
1

me

[

px − e

c

(−B
2
y

)]

, vy =
1

me

[

py − e

c

(

+B

2
x

)]

. (4.119)

Due to the symmetry of the solution, it would make sense to look instead at the velocity components
in circular coordinates. Let me just check the transformation carefully. The transformation is based
on the transformation of the unit vectors,

r̂ = x̂ cosφ+ ŷ sinφ, x̂ = r̂ cosφ− φ̂ sinφ,

φ̂ = −x̂ sinφ+ ŷ cosφ, ŷ = r̂ sinφ+ φ̂ cosφ. (4.120)

Any vector can be expanded in either system,

v = vxx̂+ vy ŷ = vr r̂ + vφφ̂ (4.121)

25



So then transforming from Cartesian to circular,

v = vx

(

r̂ cosφ− φ̂ sinφ
)

+ vy

(

r̂ sinφ+ φ̂ cosφ
)

= (vx cosφ+ vy sinφ) r̂ + (−vx sinφ+ vy cosφ) φ̂. (4.122)

So the radial and azimuthal components can be read off this last line. Now applying these, together
with x = r cosφ and y = r sinφ,

vr =
1

me
[cosφ πx + sinφ πy]

=
1

me

[

cosφ

(

px +
eB

2c
y

)

+ sinφ

(

py − eB

2c
x

)]

=
1

me
[cosφ px + sinφ py] (4.123)

=
−ih̄
me

[

cosφ

(

cosφ ∂r −
sinφ

r
∂φ

)

+ sinφ

(

sinφ ∂r +
cosφ

r
∂φ

)]

=
−ih̄
me

∂

∂r
=

pr

me
.

vφ =
1

me
[− sinφ πx + cosφ πy ]

=
1

me

[

− sinφ

(

px +
eB

2c
y

)

+ cosφ

(

py − eB

2c
x

)]

=
1

me

[

(− sinφ px + cosφ py) −
eB

2c
r

]

=
−ih̄
me

[

− sinφ

(

cosφ ∂r −
sinφ

r
∂φ

)

+ cosφ

(

sinφ ∂r +
cosφ

r
∂φ

)]

− eB

2mec
r.

=
−ih̄
mer

∂

∂φ
− eB

2mec
=

pφ

me
− eB

2mec
=

1

me

(

1

r
Lz −

eB

2c
r

)

. (4.124)

Here the obvious radial and azimuthal momentum operators come out, as could be expected, but
there is an extra azimuthal contribution due to the vector potential. Furthermore, to apply these,
however, one needs to remember that the physical current is real, and the quantum probability
current is determined from the real part of a product. So the electric current density components
in the ground states (4.106) found above are given by

Jr = Re{ψ∗(evr)ψ}, Jφ = Re{ψ∗(evφ)ψ}. (4.125)

Look first at the radial component, which naively might be expected to be zero, because classically
one would think there is just some orbital cyclotron motion of the electron. I can get the radial
derivative from the differential equation for ψl, and find

vrψl =
−ih̄
me

∂ψl

∂r
=

−ih̄
me

(

l

r
− eB

2h̄c
r

)

ψl (4.126)

Combining with ψ∗ gives

ψ∗
l vrψl =

−ih̄
me

(

l

r
− eB

2h̄c
r

)

|ψl|2. (4.127)

OK, the result is pure imaginary. There is then no radial current density in any of the ground states.
Naive intuition was correct. Now for the azimuthal component, the ground states are eigenstates of
L, so this is simple:

vφψl =
1

me

(

lh̄

r
− eB

2c
r

)

ψl. (4.128)

Then the result for this component is indeed nonzero:

Jφ = Re{ψ∗
l (evφ)ψl} =

e

me

(

lh̄

r
− eB

2c
r

)

|ψl|2 =
eh̄

mer0

(

l − r2

r20

)

r0
r
|ψl|2. (4.129)

This is a remarkable result! Near the origin, the current density is in the positive sense (for l > 0).
[The positive sense is counterclockwise when viewed looking down onto the usual xy-plane, with

26



the z-axis and magnetic field towards the observer.] But beyond the radius r >
√
l r0, the current

flows in the negative sense around the origin. This negative sense is what is expected for a classical
electron (positively charged) with the magnetic field in the positive z-direction. So over most of the
area of the xy-plane the current goes in the same direction as in the classical system. It is somehow
forced to go ”backwards” over a small region near the origin with an area of about πlr20 . Obviously,
for l = 0, the current only flows around in the expected negative azimuthal direction. But it is very
curious that all of these different configurations end up having identical energies.

Obviously for large enough radius the current is practically zero, due to the exponential factor.
The functional dependence on radius can be summarized:

Jφ(ρ) =
eh̄

mer0

(

l − ρ2
) 1

ρ

ρ2le−ρ2

π(l!)r20
=

eh̄

π(l!)mer30

(

l − ρ2
)

ρ2l−1e−ρ2

. (4.130)

Consider the current direction at the most probable radius to find the electron. That is at the radius
ρ2 = l+ 1/2. At that point, it is seen that the current flows in the negative sense, as expected from
classical considerations.

These ground states should create a magnetic dipole, due to the circulating current. That is
defined by the current times the area it encircles ((1/c)iπr2, scaled by c in CGS units). This
can be found here, by summing over the circular current contributions at each radius. This current
”density” has dimensions of current per length. The current travels in the φ̂ direction, perpendicular
to r̂. So the element of current is di = Jφdr. Then the total magnetic dipole µl in one of the ground
state wave functions is

µl =
1

c

∫

di πr2 =

∫

dr
Jφ

c
πr2 =

∫ ∞

0

dr πr2
eh̄

π(l!)mecr30

(

l − ρ2
)

ρ2l−1e−ρ2

.

=
eh̄

(l!)mec

∫ ∞

0

dρ
(

l − ρ2
)

ρ2l+1e−ρ2

=
eh̄

2mec(l!)

∫ ∞

0

du (l − u)ule−u (4.131)

=
eh̄

2mec(l!)
[l(l!) − (l + 1)!] = − eh̄

2mec
. (4.132)

(The transformation u = ρ2 was used to do the integrations.) That’s also an amazing result: it
doesn’t depend on which ground state l, and the value is exactly negative one Bohr magneton (µB),
the atomic unit of orbital magnetic moment. This value of µ would usually be associated with an
electron moving with an orbital angular momentum of h̄. The negative here is the sign expected for
the direction of the classical cyclotron motion in the clockwise sense.

4.1.9 Excited state wave functions

There are some different ways to find the excited states. One way is to apply the raising operator
a† to any of the ground states, a number of times equal to the energy excitation quanta that are
desired. The expression for that is somewhat complicated:

a† =
πx − iπy√
2meh̄ωB

=
1√

2meh̄ωB

{

px − ipy − e

c
(Ax − iAy)

}

=
e−iφ

√
2meh̄ωB

{

−ih̄
(

∂r −
i

r
∂φ

)

+
ieB

2c
r

}

(4.133)
Applying this many times to any function could be tedious. It may actually be simpler to find the
excited states by solving Schrodinger’s equation. Using the symmetric gauge, it is simple to write
the Hamiltonian out,

H0 =
~π2

2me
=

1

2me

{

−h̄2(∂2
x + ∂2

y) +
ih̄eB

c
(x∂y − y∂x) +

(

eB

2c

)2

(x2 + y2)

}

. (4.134)

The first operator is the Laplacian, ∇2. The operator in the middle is the angular momentum. The
last part is just squared radius. It is clear, for this gauge, that H0 commutes with L = Lz. So the
eigenstates will have again an index l related to the angular momentum, and a separated form like
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ψ(r, φ) = eilφψnl(r). Here the radial w.f. can depend on two indices, one that determines the energy
and the other for the angular momentum.

This is probably easyist to look at in circular coordinates, where we want to solve H0ψ = Eψ,

[−h̄2

2me

(

∂2
r +

1

r
∂r +

1

r2
∂2

φ

)

− eB

2mec
Lz +

e2B2

8mec2
r2

]

ψ = Eψ (4.135)

The angular momentum is L = lh̄. This also appears as part of the Laplacian. Further, the energy is
known to be E = En = h̄ωB(n+ 1/2). If needed, this can be helpful for finding the wave functions.

For just the radial wave function, there results,

[−h̄2

2me

(

∂2
r +

1

r
∂r −

l2

r2

)

− eBlh̄

2mec
+

e2B2

8mec2
r2

]

ψ = Eψ (4.136)

It is put into a convenient dimensionless form by multiplying by 4/h̄ωB, and using the variable
ρ = r/r0, where r0 =

√

2h̄/meωB:

[

−∂2
ρ − 1

ρ
∂ρ +

l2

ρ2
− 2l+ ρ2

]

ψ =
4E

h̄ωB
ψ = 4εψ (4.137)

Here ε is introduced as the energy in units of h̄ωB. The asymptotics of this equation call for a
solution varying as ψ ∼ e−ρ2/2 for large radius. This suggests making a transformation to a different
form,

ψ = f(ρ)e−ρ2/2, ψ′ = (f ′ − ρf)e−ρ2/2, ψ′′ = (f ′′ − 2ρf ′ − f + ρf )e−ρ2/2,

ψ′′ +
1

ρ
ψ′ =

[

f ′′ + (
1

ρ
− 2ρ)f ′ + (ρ2 − 2)f

]

e−ρ2/2 (4.138)

With that, the asymptotic dependence is removed, and the ODE becomes

−f ′′ +

(

2ρ− 1

ρ

)

f ′ +
l2

ρ2
f = (4ε+ 2l− 2)f (4.139)

Although it may look intimidating, this is actually a fun equation to solve. A single power of ρ does
not work. But a power series in ρ sounds like a good idea. Let that be

f(ρ) =
∑

k

akρ
k, f ′ =

∑

k

akkρ
k−1, f ′′ =

∑

k

akk(k − 1)ρk−2 (4.140)

This produces in the ODE

∑

k

ak

[

(−k2 + k − k + l2)ρk−2 + 2kρk
]

=
∑

k

ak[4ε+ 2l− 2]ρk (4.141)

Shifting k → k + 2 on the term with ρk−2, this leads to a recursion relation for the coefficients,

[

l2 − (k + 2)2
]

ak+2 = 2[2ε+ l − 1 − k]ak. (4.142)

This recursion could go in either direction: towards higher k or towards lower k. But for that to
work, the terms in the brackets can’t be zero. Of course, if one of them goes to zero, it leads to
a terminatin of the recursion, and an end to the series. This is a good thing when it happens,
because it will lead to constrants on the solution that determine both the energy eigenvalues and
the limitations on the allowed k. Also, it is clear, k always jumps by 2. So the solution either has
all even or all odd powers of ρ. However, one thing to be aware of: in the end, the solution for ψ
cannot have negative powers of ρ, which would diverge at the origin.

Angular momentum parameter l is already some chosen integer (positive or negative). Look at
the bracket on the LHS of (4.142). It will go to zero at index value k = l− 2 and k = −l− 2. These
two solutions means we need to be a little careful.
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Positive angular momentum solutions. Suppose first that l is positive, then the important
solution is k = l− 2 (the other is a negative power, not allowed). The equation then says al−2 = 0.
That is one end of the series. This means the first nonzero coefficient is for k = kmin = l. So the first
nonzero term in the series has to be al 6= 0. For a state of angular momentum h̄l, the lowest power
of ρ is ρl. That is consistent with the ground state solutions (4.106) already determined earlier.

Now consider iterating to larger values of k. That iteration will terminate when the bracket on
the RHS of (4.142) is zero, at some particular k = kmax, which gives

2ε+ l − 1 − kmax = 0 =⇒ ε =
1

2
(kmax − l + 1) . (4.143)

This is basically what was wanted. l is already chosen and kmax is another integer that differs from
l by an even integer (k is incremented in steps of 2). Check that this works correctly if l = 0:
The energy is found to be ε = (kmax + 1)/2. But kmax has to be an even integer, so the correct
energy levels will indeed come out. For the general case, suppose there are n ”steps” of the iteration
(incrementing k by 2) to generate akmax

starting from al. Then write this as

kmax = kmin + 2n = l + 2n (4.144)

where n is a positive integer, and including zero. This gives the dimensionless energy as

ε =
1

2
(l + 2n− l+ 1) = n+

1

2
(4.145)

which is the expected result.
Negative angular momentum solutions. Now what if l is a negative number? Then the

termination on the LHS of (4.142) is due to k = −l − 2. The first nonzero term should now be
kmin = −l, which is a positive power. The first term in the power series is a−lρ

−l, but because
l < 0 there is no divergence at the origin. These states cannot be ground states, but still one can
determine their wave functions via the power series. Their solution can be found almost the same
as that for positive l. But there is one caveat. The minimum index can be written kmin = −l = |l|.
The maximum iteration index is then

kmax = kmin + 2n = |l| + 2n (4.146)

Then for the negative l solutions, the energy formula is different than for positive l:

ε =
1

2
(kmax − l + 1) =

1

2
(|l| + 2n− l + 1) = n+ |l| + 1

2
(4.147)

The formula, however, is the same as that for the positive angular momentum solutions, if we rename
n + |l| as the principal quantum number ”n”, and, make the stipulation that this new n must be
at least as large as |l|, ie, ε = n + 1/2, with n ≥ |l|. This is an interesting restriction only on the
negative angular momentum states. However, one can see it makes sense, if really the new n
is n = nb + |l|, meaning, the original n that counted the steps of the iteration was actually nb, and
then the principle quantum number is related to l by the expected relation, n = nb − l → nb + |l|.

Now this all shows that the energy levels come out as one would like:

ε =
1

2
(|l| + 2n− l+ 1) → n+

1

2
=⇒ En = h̄ωB

(

n+
1

2

)

. (4.148)

That the energy levels come out correct is a good check of the solution. Indeed, there is no explicit

dependence on l. But there is an implicit dependence on l, because the negative l states must have
n ≥ |l|. This is a really subtle and interesting point.

The construction of the wave functions is summarized as follows.

1. Choose l, it could even be negative. But if it is negative, the state being constructed cannot
be a groud state.
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2. Choose the number of energy quanta to put into the system, n ≥ −l (see pt. 4 below). The
power series will start with the term a|l|ρ

|l| and end with the term a|l|+2nρ
|l|+2n.

3. Generate the expansion coefficients starting from al = 1 by iterating the recursion relation,
which can be expressed as

ak+2 =
−2[2n+ l − k]

(k + 2)2 − l2
ak =

−2[kmax − k]

(k + 2)2 − l2
ak. (4.149)

The terms oscillate in sign.

4. From the series that is formed, normalize the wave function. The wave function that results
corresponds to the state vector |n, l〉 introduced earlier. The value for the squared central
position will be

∆2 = r20

(

n+ l +
1

2

)

(4.150)

The number of ”a-quanta” is n and the number of ”b-quanta” is n+ l. This looks like another
constraint, n+ l ≥ 0. Or, in fact, one needs to choose n ≥ −l to get allowed states. But this
has no bearing on the positive l states, and is the same as the constraint found for the negative
l states, n > |l|. In other words, if it is a negative angular momentum state, it has to have
a number of energy quanta at least as large as the number of negative angular momentum
quanta.

Example: n = 1 for any l. The solutions for negative l look technically the same as those for
positive l, the only difference being what values of n can be chosen. For n = 1, the only allowed
choice of negative l is l = −1. For any value of l the beginning term is kmin = |l|. The first
term is a|l|ρ

|l|. There is only one iteration step, which will generate a|l|+2ρ
|l|+2. With k = |l| and

kmax = |l| + 2, that iteration gives

a|l|+2 =
−2 × 2

(|l| + 2)2 − l2
a|l| =

−4a|l|
2(|l| + 2)

=
−2a|l|
|l| + 2

. (4.151)

Then the solution for the radial w.f. becomes

ψ(r) = a|l|

(

1 − 2

|l| + 2
ρ2

)

ρ|l|e−ρ2/2 (4.152)

and the total w.f. would be ψ = ψ(r)eilφ. To get it normalized one has the integral,

I =

∫

2πr20 ρ dρ a
2
|l|

(

1 − 4

|l| + 2
ρ2 +

4

(|l| + 2)2
ρ4

)

ρ2|l|e−ρ2

= 1. (4.153)

With u = ρ2, this is

I = πr20a
2
|l|

∫ ∞

0

du

(

1 − 4

|l| + 2
u+

4

(|l| + 2)2
u2

)

u|l|e−u

= πr20a
2
|l|

[

|l|! − 4

|l| + 2
(|l| + 1)! +

4

(|l| + 2)2
(|l| + 2)!

]

= πr20a
2
|l||l|! = 1

a|l| =
1

√

π|l|! r0
. (4.154)

Then the normalized w.f. for the n = 1, l ≥ −1 excited states is

ψ(ρ, φ) =
eilφ

√

π|l|! r0

[

1 − 2ρ2

|l| + 2

]

ρ|l|e−ρ2/2, for l ≥ −1. (4.155)

Apparently w.f.s for higher n can be found the same way, and it just becomes a matter of tedious
calculations. Probably with some more elegant mathematics, the solutions could be analyzed and
organized into a simpler format, in terms of some standard polynomials.
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To check some property of the solution, look at its current density and then its net magnetic
dipole moment. The current density is given from (4.129), which becomes in this case

Jφ =
eh̄

mer0

(

l − ρ2
) 1

ρ
|ψl|2 =

eh̄

mer0

(

l − ρ2
) ρ2|l|−1e−ρ2

π(|l|!)r20

[

1 − 2ρ2

|l| + 2

]2

(4.156)

=
eh̄

π|l|!mer30
ρ2|l|−1e−ρ2 (

l − ρ2
)

[

1 − 4ρ2

|l| + 2
+

4ρ4

(|l| + 2)2

]

=
eh̄

π|l|!mer30
ρ2|l|−1e−ρ2

[

l −
(

1 +
4|l|

|l| + 2

)

ρ2 +

(

4

|l| + 2
+

4|l|
(|l| + 2)2

)

ρ4 − 4

(|l| + 2)2
ρ6

]

Do a little more arranging of the part in brackets,

Jφ ∼ [...] = l −
(

1 +
4|l|

|l| + 2

)

ρ2 +
8(|l| + 1)

(|l| + 2)2
ρ4 − 4

(|l| + 2)2
ρ6 (4.157)

Multiplication by πr2/c and integration over radius gives the magnetic dipole moment,

µl =

∫

dr
Jφ

c
πr2 =

eh̄

mec|l|!

∫ ∞

0

dρ ρ2|l|+1e−ρ2

[...] =
eh̄

2mec|l|!

∫ ∞

0

du u|l|e−u[...] (4.158)

It’s ugly and I hope there isn’t an error. Somehow some magic cancellations might occur. All the
integrals are of the standard form (4.104), giving different factorials,

µl =
eh̄

2mec |l|!

{

l|l|!−
(

1 +
4|l|

|l| + 2

)

(|l| + 1)! +
8(|l|+ 1)

(|l| + 2)2
(|l| + 2)! − 4

(|l| + 2)2
(|l| + 3)!

}

(4.159)

Some cancellations take place in the braces,

{...} ÷ |l|! = l − (|l| + 1) − 4|l| |l|+ 1

|l|+ 2
+ 8

(|l| + 1)2

|l| + 2
− 4(|l| + 3)

|l| + 1

|l| + 2

= l − |l| − 1 − 4
|l|+ 1

|l|+ 2
[|l| − 2(|l| + 1) + |l| + 3]

= l − |l| − 1 − 4
|l|+ 1

|l|+ 2
. (4.160)

Then the result for the magnetic dipole in first excited states (n = 1, l ≥ 0) is

µl =
eh̄

2mec

{

l − |l| − 1 − 4
|l| + 1

|l| + 2

}

(4.161)

I am not sure of this result, it does not have any beautiful simple form. It can be summarized also
as

µl =

{

−
(

1 + 4 l+1
l+2

)

eh̄
2mec , for l ≥ 0,

− 17
3

eh̄
2mec , for l = −1.

(4.162)

This is so weird I doubt that is correct. It does give, however, −3µB for l = 0, and no more
than −5µB at large l. It is interesting, though, that all these values are negative, which might be
encouraging.

4.2 AC fields acting on Landau levels?

The point of these calculations is to understand how EM waves induce electric (and magnetic)
polarization into the electron system, in the presence of the DC magnetic field. Thus, the next step
is to see the effect of an AC field on the electrons in Landau levels. The AC field to consider is the
oscillating optical electric field due to an electromagnetic wave passing through the system.
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Before proceeding on that program, let me consider the degeneracy of the Landau levels–how
large is it, typically, in an experimental situation where Faraday rotation might be measured? How
many electrons can occupy each level? This is important for the counting of state occupancy, when
given a certain number density of electrons as in an electron gas.

Let’s suppose the DC magnetic field strength is 1.0 tesla. Then the cyclotron frequency in SI
units is

ωB =
eB

me
=

(1.602 × 10−19C)(1.0 T)

9.11 × 10−31kg
= 1.76 × 1011 rad/s. (4.163)

This corresponds to a frequency f = ωB/2π = 28 GHz, well below optical frequencies. Then the
Landau length scale r0 is

r0 =

√

2h̄

meωB
=

√

6.626 × 10−34Js/π

(9.11 × 10−31kg)(1.76 × 1011 rad/s)
= 36 nm. (4.164)

This is much larger than I expected! If the magnetic field were smaller, this size would be even
bigger. For instance, at B = 0.1 T, using the alternative form in SI units,

r0 =

√

2h̄

eB
=

√

6.626× 10−34Js/π

(1.602× 10−19C)(0.1 T)
= 115 nm. (4.165)

This is much larger than the typical size of nanoparticles that I might be interested in.
The degeneracy of any Landau level is nb,max ≈ (R/r0)

2, for a system of radius R. Suppose the
system is a particle with a radius of 1000 nm, in the 1.0 T field. The degeneracy is then about
(1000/36)2 ≈ 800. Many electrons could squeeze into each level. On the other hand, suppose the
system is a nanoparticle with a radius of only 10 nm, then, the degeneracy comes out (10/36)2 ≈ 0.08;
what does that mean?? It could only mean that the system constrains the electrons so much, that
the effects of the boundaries are important. The sense of Landau levels as discussed in these notes
would not really apply, it seems. Then what? Further, the size of r0 is much much greater than
the electron displacements expected due to moderate sized electric fields in an optical pulse (on the
order of 10−14 m for 500 nm wavelength light of electric field amplitude 1.0 MV/m). If the Landau
level wavefunction does not fit into the system, then these solutions are incorrect. So there has to
be some different theory for the effects of the DC magnetic field in this situation.

4.3 Magnetic states in confined cylindrical geometry

So for the moment consider this situation of a nanometer-sized system, much smaller than r0 for
the given applied DC magnetic field. Then the Landau ground state wavefunction does not fit into
the system, it does not apply. Instead, what are the states when the boundary condition is that the
wave function goes to zero at the boundary of the system? Let me assume a circular system of radius
R. Essentially, this is a cylindrical particle. It could still have a long dimension along the z-axis,
parallel to the magnetic field. That may not be totally realistic, however, it can give some idea of
the differences encountered, compared to using the Landau levels in an unconstrained geometry.

One can start from the differential equation (4.135) used to find the excited Landau levels. The
critical assumption to make is that the scaled radius ρ = r/r0 � 1. Then the term in r2 in the
potential an be ignored. Taking the wave function in the separated form, ψ(ρ, φ) = eilφψ(ρ), the
angular momentum is L = lh̄, and the radial equation is reduced to

[−h̄2

2me

(

∂2
r +

1

r
∂r +

(il)2

r2

)

− eBlh̄

2mec

]

ψ = Eψ (4.166)

With some re-arranging this becomes Bessel’s equation, following these steps,

−h̄2

2me

(

∂2
r +

1

r
∂r −

l2

r2

)

ψ =

(

E +
eBlh̄

2mec

)

ψ (4.167)
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Move things around some more,

1

2me

h̄2

(

E + eBlh̄
2mec

)

(

∂2
r +

1

r
∂r −

l2

r2

)

ψ = −ψ (4.168)

Define a new position variable,

x = αr, α =

√

2me

h̄2

(

E +
eBlh̄

2mec

)

(4.169)

Then the equation is indeed Bessel’s equation:

(

∂2
x +

1

x
∂x − l2

x2
+ 1

)

ψ = 0 (4.170)

The solutions that are finite at the origin are the Bessel functions of the first kind, Jl(x). To get the
wave function to go to zero at the system boundary, r = R, one needs to do

Jl(αR) = 0 =⇒ α =
xln

R
, n = 1, 2, 3, ... (4.171)

So the α must be chosen based on the zeros of the Bessel functions, where xln is the nth zero of
Jl(x). Then once α is determined for some particular solution, it allows calculation of the energy,

α2 =
x2

ln

R2
=

2me

h̄2

(

E +
eBlh̄

2mec

)

=⇒ El,n = − eBlh̄

2mec
+

h̄2x2
ln

2meR2
. (4.172)

For the solution to be valid, the energy must be greater than 0. It seems this could put a restriction
on the size of l for a chosen n, but that is hard to see by inspection. One can see from the assumption
of r < R� r0, the following

R2 � 2h̄c

eB
=⇒ h̄2

2meR2
� h̄2 · eB

2me · 2h̄c
=

1

4
h̄ωB (4.173)

The energy and the wave function can be written also as

El,n =
h̄2x2

ln

2meR2
− l

2
h̄ωB, ψln = CeilφJl

(

xln
r

R

)

. (4.174)

This means that the energy has to be larger than (approximately)

El,n � 1

4
h̄ωBx

2
ln − l

2
h̄ωB =

(

x2
ln

2
− l

)

h̄ωB

2
(4.175)

For small l this will be easily satisfied, and the only question might concern large values of l. For
example, if l = 50, probably the first root of J50(x) is not as large as 10?? It would require a value
of xln > 10 for the energy result to be positive. This could imply a minimum value of n for any
chosen l, which seems reasonable, based on the solutions found for the excited Landau levels.

The energy can be written in a better format, for example, using r20 = 2h̄/meωB,

El,n =
h̄2x2

ln

2mer20

(r0
R

)2

− l

2
h̄ωB =

[

x2
ln

2

(r0
R

)2

− l

]

h̄ωB

2
. (4.176)

This solution makes better sense when the magnetic field is weaker and then r0/R is larger. But
even at the example parameters for B = 1.0 T, we might have r0/R ≈ 36/10, and energies given by

El,n =
(

6.5x2
ln − l

) h̄ωB

2
. (4.177)
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Now to check the validity of these solutions and the energies, I could try an approximate asymp-
totic expression for the zeros of Jl(x). I am not sure of its accuracy for large l, but it should be good
for large n. Based on the asymptotic formula,

Jl(x) ≈
√

2

πx
cos

(

x− lπ

2
− π

4

)

, x�
∣

∣

∣

∣

l2 − 1

4

∣

∣

∣

∣

, (4.178)

then the zeros can be approximated from the zeros of the cosine, which occur when its argument is
an odd integer times π/2, i.e., (2n− 1)π/2, for the different roots, n = 1, 2, 3... So there results

xln =

[

(2n− 1) + l +
1

2

]

π

2
, n = 1, 2, 3... (4.179)

Check the case mentioned above, l = 50; the formula gives x50,1 ≈ 81. That is much greater than
the “10” we had wanted, so that solution should be good.

Now the worst case to test should be when l is large, and we want to see if the first root, n = 1,
will give a positive energy. So put n = 1. The energy is dependent on x2

ln − 2l. I have

x2
l1 =

(

3

2
+ l

)2
(π

2

)2

> 2l2. (4.180)

That is certainly true (for positive l) by ignoring the 3/2 and approximating (π/2)2 ≈ 2. Then this
gives a good bound on the energies for all the positive l states,

El,1 >
(

x2
l1 − 2l

) h̄ωB

4
> 2l(l− 1)

h̄ωB

4
> 0. (4.181)

In fact, for any l this gives a number greater than or equal to zero. It is a reasonably good demon-
stration that the solutions found work for all choices of l and all n ≥ 1. It does have the weakness,
however, of depending on the asymptotoic form of the Bessel functions and their roots.

4.4 Magnetic states in confined spherical geometry?

One could even better, try to solve the same problem (igonoring again the r2 term in the potential)
with a spherical boundary of radius R. This is more realistic for a spherical nanoparticle. The
differential equation is nearly the same, just with the Laplacian for polar spherical coordinates,
while the z-component of angular momentum is still the same formula, Lz = −ih̄∂φ. But it helps
to use a known fact from QM, that the KE depends on

p2 = p2
r +

~L2

r2
, p2

r = − h̄
2

r2
∂

∂r

(

r2
∂

∂r

)

. (4.182)

So the KE term depends only on the magnitude of the angular momentum, and the Schrodinger
equation is

{

−h̄2

2me

1

r2
∂

∂r

(

r2
∂

∂r

)

+
~L2

2mer2
− eB

2mec
Lz

}

ψ = Eψ (4.183)

Now in this case, the solutions can be written using the eigenfunctions of ~L2 and Lz, which are the
spherical harmonics Ylm(θ, φ), with eigenvalues l(l+1)h̄2 and mh̄, respectively. So the solutions can
be written ψ = Ylm(θ, φ)ψ(r), where the radial equation is

{−h̄2

2me

1

r2
∂

∂r

(

r2
∂

∂r

)

+
l(l + 1)h̄2

2mer2
− eBmh̄

2mec

}

ψ(r) = Eψ(r) (4.184)

I can do a similar re-arrangement as that done for the cylindrical problem,

1

2me

h̄2

(

E + eBmh̄
2mec

)

{

− 1

r2
∂

∂r

(

r2
∂

∂r

)

+
l(l + 1)

r2

}

ψ(r) = ψ(r) (4.185)
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This suggests a new radial variable,

x = αr, α =

√

2me

h̄2

(

E +
eBmh̄

2mec

)

. (4.186)

Then the differential equation becomes

{

1

x2

∂

∂x

(

x2 ∂

∂x

)

− l(l + 1)

x2
+ 1

}

ψ(x) = 0 (4.187)

Conveniently, this is also an equation whose solution is known (because we removed the potential).
It can also be expressed as

{

∂2

∂x2
+

2

x

∂

∂x
− l(l + 1)

x2
+ 1

}

ψ(x) = 0 (4.188)

If the “2” was a 1 it would be Bessel’s equation. But that can be arranged. It helps to transform to
a rescaled radial wave function by ψ(x) = u(x)/

√
x. Then there are the derivatives,

∂

∂x

u√
x

=
1√
x

[

u′ − 1

2x
u

]

,
∂2

∂x2

u√
x

=
1√
x

[

u′′ − 1

x
u′ +

1

2
· 3

2
· u
x2

]

(4.189)

[

∂2

∂x2
+

2

x

∂

∂x

]

u√
x

=
2

x
· 1√

x

[

u′ − 1

2x
u

]

+
1√
x

[

u′′ − 1

x
u′ +

1

2
· 3

2
· u
x2

]

=
1√
x

[

u′′ +
1

x
u′ − 1

4x2
u

]

(4.190)

The transformation changes the 2 into a 1, but adds an extra term. Now the differential equation
has become

u′′ +
1

x
u′ − 1

4x2
u− l(l − 1)

x2
u+ u = 0 (4.191)

The factors 1
4 + l2 + l = (l + 1

2 )2. Then this is a Bessel equation at a half integer order, ν = l + 1
2 :

u′′ +
1

x
u′ − (l + 1

2 )2

x2
u+ u = 0 (4.192)

So the solutions are basically

ψ(x) =
1√
x
Jl+ 1

2

(x), (4.193)

which are the spherical Bessel functions, except for a constant of
√

π/2. That statement is not too
enlightening, as I like to see how things behave in terms of something more concrete. If in fact, one
went instead to the more usual transformation, ψ(x) = f(x)/x, then the needed derivatives are

ψ′ =
1

x

[

f ′ − 1

x
f

]

, ψ′′ =
1

x

[

f ′′ − 2

x
f ′ +

2

x2
f

]

(4.194)

2

x
ψ′ + ψ′′ =

2

x
· 1

x

[

f ′ − 1

x
f

]

+
1

x

[

f ′′ − 2

x
f ′ +

2

x2
f

]

=
1

x
f ′′ (4.195)

Then the differential equation is really simple:

f ′′ +

(

1 − l(l + 1)

x2

)

f = 0 (4.196)

This is an ODE whose solutions ψ = f/x are some spherical Bessel functions. These may not be
the usual spherical Bessel functions in scattering theory, because there the solution should be finite
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at large x, whereas here, we want solutions finite at x→ 0. At l = 0 one sees the solutions for f(x)
are sinx and cosx functions. What about for general l? The power series solution works well here,
because it results in a finite series. But it helps to first take out the oscillatory behaviour. So let
f(x) = eisxg(x), where s = ±1. Then with f ′ = eisx(g′ + isg′), and f ′′ = eisx(g′′ + 2isg′ − g), there
results now,

g′′ + 2isg′ − l(l + 1)

x2
g = 0. (4.197)

Although it seems we are going in circles, that got rid of the term with just f or g. Now look for
solutions finite at the origin, the center of the nanoparticle. Do a power series, which is always fun,
ha ha, In this case, it requires negative powers to get a simple solution!

g =
∑

k

akx
−k, g′ = −

∑

k

ak kx
−k−1, g′′ =

∑

k

ak k(k + 1)x−k−2, (4.198)

Shifting the indices so that all are the same powers, x−k−2, the recursion relation is

akk(k + 1) − 2isak+1(k + 1) − l(l + 1)ak = 0 (4.199)

This can be expressed as

ak+1 =
k(k + 1) − l(l+ 1)

2is(k + 1)
ak. (4.200)

The numerator goes to zero when k = l, which defines the end of the series. That would imply
al+1 = 0. This suggests that al and all coefficients at lower indexes are non-zero. They can be built
up, starting from assuming a0 = 1.

For l = 0, one can choose a0 = 1/2, and the solutions for ψ are just ψ = e±ix/2x. One can
form linear combinations, which obvious could be cosx/x and sinx/x, only the latter is finite at
the origin. But it will have zeros determined by the sine, which makes fitting the desired boundary
condition very easy, I think.

For l = 1, select a0 = −1/2, then a2 and above will be zero, but

a1 =
−2

2is
a0 = isa0, ψs =

eisx

x

(

1 +
is

x

)

a0, s = ±1. (4.201)

By themselves these diverge at the origin, however, their difference is

ψ = ψ− − ψ+ =
i sinx

x
+
i cosx

x2
(4.202)

and their sum is

ψ = ψ− + ψ+ = −cosx

x
+

sinx

x2
(4.203)

The sum is both imaginary, and divergent at the origin–not a solution desired for the NP problem.
The difference is an acceptable solution, in fact, it is the usual spherical Bessel function j1(x).

Try one more, at l = 2, with a0 = −1/2. The iterations give

a1 =
−2(3)

2is
a0 = 3isa0, a2 =

1(2) − 2(3)

2is(2)
a1 = isa1 = −3a0. (4.204)

Then the solutions are

ψs =
eisx

x

(

1 +
3is

x
− 3

x2

)

a0, s = ±1. (4.205)

Their difference is

ψ = ψ− − ψ+ =
i sinx

x
+

3i cosx

x2
− 3i sinx

x3
(4.206)

and their sum is

ψ = ψ− + ψ+ = −cosx

x
+

3 sinx

x2
+

3 cosx

x3
(4.207)
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Now this is curious. In this case, the difference is divergent at the origin, due to the last term. The
sum is convergent at the origin, and is proportional to the spherical Bessel function j2(x).

Obviously the mathematicians have categorized these functions,so I don’t need to derive more
on that here. In the end what we will use, is that the solutions regular at the origin at the set of
spherical Bessel functions, ψ(x) ∼ jl(x). These are also expressed as

jl(x) =

√

π

2x
Jl+ 1

2

(x). (4.208)

Then the wave functions for the energy eigenstates are

ψ(r, θ, φ) = C jl(αr)Ylm(θ, φ), with jl(αR) = 0. (4.209)

The boundary condition at the surface of the sphere, r = R, will select the correct values of α that
fits the solution into the sphere. That will relate to the zeros of the Bessel functions, αR = xln, n =
1, 2, 3..., similar to the problem solved in cylindrical coordinates. In this case, of course, the zeros
of the spherical Bessel functions need to be used. Then the relation between α and energy can be
inverted and gives the energy eigenvalues, very similar to the cylindrical problem,

El,m,n =
h̄2α2

2me
− eBmh̄

2mec
=

h̄2x2
ln

2meR2
− eBmh̄

2mec
(4.210)

With the definition of the Landau length r20 = 2h̄/meωB, and ωB = eB/mec, this is also arranged
as

El,m,n =
h̄2x2

ln

2mer20

(r0
R

)2

− m

2
h̄ωB =

[

x2
ln

2

(r0
R

)2

−m

]

h̄ωB

2
(4.211)

The similarity to the solution in cylindrical coordinates is somewhat surprising. Now I have an extra
quantum index, but only because I had left out a longitudinal quantum index for the KE associated
with pz in the cylindrical problem. My belief at this point, is that all the possible choices of l,m, n
will give acceptable solutions with energies greater than zero, as long as the system is smaller than
the Landau length, R < r0. To go much further here, seems to require some numerical evaluations.

One could ask, however, if the creation/annihilation operator algebra works in the confined
geometry. At this point, I don’t know the answer to that question–except that it certainly does not
give the correct energy eigenvalues, without some kind of modification. One would need to account
for the dropping of the r2 term in the potential, due to A2 being ignored here.

One can check the ground state energy for this problem. I will guess that is associated with an
l = 0 state, only because then there is only left the p2

x and p2
y KE terms. If l = 0 then the only

choice for the azimuthal number is m = 0. Then there is no angular dependence and the actual
wave function will look like

ψ0,0,1(r, θ, φ) = C
sinαr

r
. (4.212)

The zeros occur where αR = x = nπ, n = 1, 2, 3.... The energies in the set of spherically symmetric
states are

E0,0,n =
n2π2

4

(r0
R

)2

h̄ωB. (4.213)

The lowest choice for an eigenstate is x = x01 = π. So the ground state energy is

E0,0,1 =
π2

4

(r0
R

)2

h̄ωB. (4.214)

Consider a setup where r0 ≈ 115 nm (at B = 0.10 T) and the particle size is R = 11.5 nm. Then
the spacing of these energy levels is determined by the factor (π2/4)×102× h̄ωB = 250 h̄ωB. In these
units, this looks large. It is a situation where the quantum confinement effects are overpowering the
magnetic field effects. For a real electron living in electron bands, it is not totally clear how the
effects of confinement and the local potential responsible for the bands work together to produce the
total energy. This calculation suggests that also the general theory for the bands must be modified
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slightly, and the confinement potential could become large in nanoparticles. However, that depends
on the actual numerical values for the band energies and h̄ωB. The latter is not very large at 0.10 T,
being only h̄ωB ≈ (1.054 × 10−34J s)(1.76 × 1010rad/s)/(1.602 × 10−19J/eV) = 1.2 × 10−5 eV. The
band energies, will be from tenths of eV to eV, hence they still dominate the dynamics. Furthermore,
the confinement energy does not actually depend on B, see expression (4.210). So in the end, it will
probably not significantly affect magneto-optical properties like the Faraday rotation. That will still
be determined just by the term coupling B to the angular momentum quantum number m.

If I go to the limit where these solutions should start to break down, that is when the system
radius is equal to the Landau length, R = r0. There the ground state energy becomes

E0,0,1 =
π2

4
h̄ωB ≈ 2.5h̄ωB. (4.215)

That is good, because we should not get a result less than 0.5h̄ωB, or there would be something
really wrong. This shows that the approximations used are reasonable.

For comparison, consider l = 1 states. Now one can have m = 0,±1, leading to energy shifts of
±0.5h̄ωB. For the wave function ψ ∼ j1(x), the first few zeros are at

x1n ≈ 4.49, 7.73, 10.9, 14.1, 17, 2.... (4.216)

which I got from a calculator at http://keisan.casio.com/has10/SpecExec.cgi. In this case, the lowest
state of the l = 1 family will be

E1,1,1 =

[

4.492

2

(r0
R

)2

− 1

]

h̄ωB

2
≈

[

10.1
(r0
R

)2

− 1

]

h̄ωB

2
(4.217)

For R = r0, this gives E1,1,1 ≈ 9.6h̄ωB. So it is higher than the lowest l = 0 state.
One could also, ask, shouldn’t the energy levels change by ±h̄ωB? It is a reasonable question,

but the difficulty is that there are different effects producing the total energy, not just a magnetic
effect. The confinement causes the energy levels and spacing to change dramatically. Also, my
way of writing the energy in units of h̄ωB is misleading. In fact, the confinement term does not
depend on B, as already mentioned, and the magnetic term is −mh̄ωB/2. The magnetic spacing
is actually h̄ωB/2. The real curiousity might the factor of 1/2 here! However, that actually makes
sense, because the same factor of 1/2 appears in the definition of the Bohr magneton, µB = eh̄/2mc,
and this magnetic emergy is just −~µ ·B = − eLz

2m Bz = −mµBB. Indeed, in the usual Landau levels
of an infinite system, this term due to Lz is cancelled by another term, so the total energy appears
mostly independent of Lz (except for the constraints between n and l when l < 0 there).

4.4.1 A classical particle in a confined geometry?

For comparison, what if a classical charge e were confined to move around inside a small sphere or
cylinder? What would be the typical energy? This may not be a well-defined question, since we
know at some level that classical mechanics will break down in small systems. But it could be good
for a comparison of the order of magnitude of the energy.

The classical Larmour frequency is still ωB = eB/mc. With v = ωBr, the kinetic energy of the
particle in a cyclotron orbit of radus r is E = 1

2mv
2 = 1

2mω
2
Br

2. But now the radius can’t be larger
than the particle. Consider a particle of radius 10 nm in the 0.10 T magnetic field. The Larmor
angular frequency for an electron is ωB = 1.76 × 1010 rad/s. If it were in an orbit of 5 nm radius,
its speed is only 88 m/s! Then its kinetic energy is only 3.5 × 10−27 J, which is ridiculously small.

On the other hand,the QM energy unit would be considerably larger, h̄ωB = 1.9× 10−24 J. It is
clear a classical description would not be valid. The de Broglie wavelength would be on the order of
h/mv ≈ 8× 10−6 m. One can forget about any kind of semi-classical limit here. Then a comparison
with classical mechanics is not of much use. Still, it was interesting to see how the numbers work
out. Further, it gives some credence to the widely spaced energy levels that come out if cases like
this, with R/r0 ≈ 115/10 ≈ 11.
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4.5 An adequate theory for coupling to the DC magnetic field?

It is shown already that the concept of Landau levels does not apply if the system is too small.
Still, the primary effect of the applied DC magnetic field is to cause splittings of the orbital angular
momentum states, labeled by the quantum index m. The fact that the band states are getting
confined is true, but not so important in terms of their dependence on magnetic field. The splitting
into subbands due to confinement occurs even in the absence of B, see (4.210). These splittings
are two separate effects. Since I am mainly interested in Faraday rotation effects, I can ignore the
confinement effects on the energy bands. That just gives a set of subbands, still, the important
perturbation on them due to the DC magnetic field is

∆Em = −~µL ·B = −mµBB, ~µL =
e

2mec
~L. (4.218)

This involves the orbital angular momentum and the component of its related magnetic dipole
moment ~µL along the DC magnetic field. The component of ~µL along B is just mµB, where
µB = eh̄

2mec is the Bohr magneton, the atomic unit of orbital angular momentum. This term comes
directly from the cross term of squaring p− e

cA in the KE. It is already included intrinsically in the
Landau level Hamiltonian.

In the paper on “Faraday effect in semi-conductors,” by Boswara, Howard, and Lidiard2 they
have included an energy for Landau levels, h̄ωB(n+ 1/2), and also, the above term. That is wrong!
That would be counting this interaction twice, it does not make sense. In what I want to do here,
I am already going to forget about the Landau levels, because they do not apply in nano particles,
but I do need to include this orbital angular momentum term. It will be the term most responsible
for causing Faraday rotation, I believe.

So in the end, after much study of Landau levels and confined states, I will not really need any
of that to make a simplified QM model for the Faraday rotation. The simplified model has electrons
in band states, together with this angular momentum coupling. I think spin can be ignored, because
the transitions caused by the optical field do not couple to spin. The transitions do couple to Lz,
because the photon carries ±h̄ of angular momentum along the propagation direction, which is the
z-direction in the Faraday setup. That means, as stated in BWL, that the electronic transitions
needed must follow the transition rule ∆m = ±1. These correspond to either right or left handed
circularly polarized photons. I’ll clarify the polarizations later.

There may also arise questions about the degeneracy of certain terms involving transitions, and/or
counting of initial and final states. That counting should be associated with any corresponding
counting of the density of states for initial final levels of an electron. I will apply the theory for
the dielectric function as developed in the previous set of notes, especially as concerns band-to-band
transitions. However, the response of free conduction electrons should not need the interband theory.
It may be very simple and comparable to the plasma response encountered earlier, as caused only
by the oscillating vector potential of the optical field.

If the sets of subbands caused by confinement were taken into account, supposing they are
orthonormal, there would not be any allowed transitions from one to the other. Then, we can
suppose we are doing a theory where all electrons considered are in the lowest of the confined
subband states. If we consider transitions from valence to conduction band, still, suppose they are
both in the lowest of the confined bands. Really, this means ignoring the energy structure due to
geometric confinement. The only sense of the geometric confinement, is that the Landau energy
levels are not used at all. The splitting due to geometric confinement is likely to be large compared
to the magnetic splitting, hence, it should make sense to ignore it.

5 Quantum dielectric function with DC magnetic field

The paper BWL finds expressions for the Faraday rotation angle in terms of B. Instead, here I want
to get the dielectric function ε(ω) and its dependence on B, a result that I will use in more complex

2Proc. Royal Soc. London, Series A, Mathematical and Sciences, Vol. 269, No. 1336 pp. 125-141 (Aug. 21, 1962),
also at http://www.jstor.org/stable/2414441
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geometry situations. Thus I want the bulk ε but I do not want the bulk Verdet function or Faraday
angle directly at this point.

In part A of Dielectrics the response theory via density matrix was used to get ε mainly from
averaging of the electric polarization operator P̂ = nd = ner, and also from the current density
operator, Ĵ = nev, for n = N/V electrons per unit volume, and velocity operator

v =
1

me

[

p − e

c

(

A + Ã
)]

(5.1)

The first vector potential is of the DC magnetic field, and the second is the oscillating optical field,
which is the perturbation. When this is averaged, it gives the current density averaged over the
whole volume of the system. Once we know the part of J that oscillates at the same frequency as
the optical source, it can be used to get the dielectric function. The electric polarization and the
susceptibility and associated current density are related to the electric field by

P = χ̃(ω) ·E, J = −iωP. (5.2)

Then there is a direct connection between the current density and electric field, which ends up giving
the susceptibility and permittivity,

J = −iωχ̃(ω) ·E, ε̃(ω) = 1 + 4πχ̃(ω). (5.3)

Thus the approach generally rests on finding the current density, then getting the susceptibility,
including the damping constant, from the symbolic division,

χ̃(ω) =
J

−iωE
. (5.4)

The main steps of finding the dielectric function from the current density are summarized here.
The DC vector potential here will not produce a current oscillating at frequency ω. Therefore it
may be OK to ignore it in the calculation of J. In any case, based on finding the averaged current
density, that averaging via the perturbation of the density matrix by Ã gives an expression,

J = 〈nev〉 = Tr{nev(ρ̂0 + ρ̂1)} = ne (Tr{ρ̂0v} + Tr{ρ̂1v}) = J0 + J1. (5.5)

The unperturbed density matrix ρ̂0 is associated with the Hamiltonian that includes the normal KE,
the band’s potential, and the DC magnetic field,

H0 =
p2

2me
+ U(r) − e

mec
A · p (5.6)

The last term, in the symmetric gauge, is the same as −~µL · B = −mµBB that was mentioned
earlier. These states are labeled by a band index b, a wave vector k, and the angular momentum
quantum number m, and have energies Ei. The DC field enters in these energies.

The perturbation is the AC EM field, as it interacts with momentum and with the DC vector
potential! The term in the Hamiltonian is

H1 = − e

mec
Ã ·

(

p − e

c
A

)

≡ − e

mec
Ã · ~π, Ã = Aqe

i(q·r−ωt). (5.7)

Here I am using ~π as an operator containing the DC vector potential but not the AC part. The
corresponding variation caused in the density matrix is

ρ̂1 =
∑

fi

(wi − wf )|f〉〈f |H1|i〉〈i|
h̄(ω + iγ) + (Ei − Ef )

(5.8)

The factor γ is a somewhat artificial damping constant, written here as a frequency, introduced for
convergence. It is supposed to represent the slow turning on of the perturbation for times t < 0.
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Alternatively, its presence means the solution is found with the retarded Green’s function. It has to
be the same γ that is damping the electron motion in the expression connecting J and E.

One can see that terms depending on the square of the vector potential (and cross terms between
A and Ã) are ignored. Ignoring the square of the DC vector potential is exactly the same as the
approximation we made that the system is very small compared to the Landau length. Ignoring the
square of the AC vector potential means that nonlinear optical terms are excluded. It is useful to
express the perturbation in terms of its electric field, in the Coulomb gauge,

E = −1

c

∂Ã

∂t
=
i(ω + iγ)

c
Ã ⇒ H1 = − e

i(ω + iγ)me
E · ~π. (5.9)

Note: I included the imaginary damping part of the frequency here. It is said to represent the
turning on of the perturbation for negative times. The damping in the system is phenomenological
and causes a phase shift between the applied field and the response of the current. This factor of γ
is needed here if the results are intended to agree with the classical physics calculatons. Further, it
is needed so that results from averaging of electric polarization agree with those from averaging the
current density.

This means the required matrix elements of the perturbation are

〈f |H1|i〉 = − e

i(ω + iγ)me
〈f |(Exπ̂x + Eyπ̂y)eiq·r|i〉 (5.10)

Generally one will do the dipole approximation and take eiq·r ≈ 1.

5.1 The averaged polarization

For polarization averaging as was done in Part A, the calculation is fairly simple, but remember
it does not seem to include the plasma current term, curiously. We want the following statistical
average:

P = 〈ner〉 = Tr {ρ̂1 ner} . (5.11)

This is equivalent to a matrix product followed by summing over both indices,

P = ne
∑

fi

ρ̂1,firif . (5.12)

Even with the DC magnetic field, this calculation is the same as without it. The effect of B is only
to change the energy levels. Inserting the required matrix elements, this is

P = ne
∑

fi

(wi − wf )〈f |Ĥ1|i〉
h̄(ω + iγ) + (Ei − Ef )

〈i|r̂|f〉 (5.13)

We can transform into velocity matrix elements, or equivalently, matrix elements of the ~π kinetic
momentum operator. Try the usual trick. Look at the commutator of r with the Hamiltonian,

[H0, x] =

[

p2
x

2me
, x

]

− eB

2mec
[Lz, x] =

−ih̄
me

px − eB

2mec
(ih̄y) (5.14)

That can be simplified to

[H0, x] =
−ih̄
me

(

px +
eB

2c
y

)

=
−ih̄
me

(

px − e

c
Ax

)

=
−ih̄
me

π̂x = −ih̄v̂x. (5.15)

That’s very good, it shows the velocity operator! (As it should.) Check the same for the y-
component,

[H0, y] =

[

p2
y

2me
, y

]

− eB

2mec
[Lz, y] =

−ih̄
me

py − eB

2mec
(−ih̄x) (5.16)
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This one simplifies to

[H0, y] =
−ih̄
me

(

py − eB

2mec
x

)

=
−ih̄
me

(

py − e

c
Ay

)

=
−ih̄
me

π̂y = −ih̄v̂y. (5.17)

It means that one really should include the vector potential terms, and then the matrix elements
are much easier! This even includes the effects of correctly averaging the vector potential over the
volume of the system. For example, between two states we have

〈f |π̂x|i〉 = 〈f | ime

h̄
[H0, x]|i〉 =

ime

h̄
(Ef − Ei)〈f |x|i〉 (5.18)

The same can be done for y, and for z it works too although there is no Az. So the momentum
m.e.s become dipole m.e.s and vice-versa. The matrix elements needed can be expressed from

〈f |π̂|i〉 = imeωfi 〈f | r |i〉, ωfi ≡
Ef − Ei

h̄
. (5.19)

Also, instead of ~π, one can use ~π = mev,

〈f |v|i〉 = iωfi 〈f | r |i〉, (5.20)

Now we have all that is needed to get the polarization averaging expression. One gets in terms
of the π̂ variables,

P = ne
∑

fi

(wi − wf )〈f | ie
(ω+iγ)me

E · ~π|i〉
h̄ω + iγ + (Ei − Ef )

· h̄〈i|~π|f〉
ime(Ei − Ef )

(5.21)

This is usually expressed using the transition frequencies,

P =
ne2

h̄(ω + iγ)m2
e

∑

fi

(wi − wf )

ωif

〈i|~π|f〉〈f |E · ~π|i〉
ω + iγ + ωif

(5.22)

Instead, in terms of the velocity it is simpler, but nearly the same.

P =
ne2

h̄(ω + iγ)

∑

fi

(wi − wf )

ωif

〈i|v|f〉〈f |E · v|i〉
ω + iγ + ωif

(5.23)

Factoring out the electric field, the result for the susceptibility components is the same expression
as found in the absence of the DC magnetic field, using either the ~π or velocity operator, from
polarization averaging,

χab =
ne2

m2
eh̄(ω + iγ)

∑

fi

(wi − wf )

ωif

〈i|π̂a|f〉〈f |π̂b|i〉
ω + iγ + ωif

(5.24)

χab =
ne2

h̄(ω + iγ)

∑

fi

(wi − wf )

ωif

〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

. (5.25)

Note that there does not appear to be the plasmon term. Or, perhaps it is hiding in there?!
It is convenient to write this in a form with dimensionless factors times a dimensionless sum, like

χab =
−ne2

meω(ω + iγ)
× Sab, (5.26)

Sab =
−ω
meh̄

∑

fi

(wi − wf )

ωif

〈i|π̂a|f〉〈f |π̂b|i〉
ω + iγ + ωif

(5.27)

Sab =
−meω

h̄

∑

fi

(wi − wf )

ωif

〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

(5.28)
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Eventually we need the susceptibilities and permittivities for left and right circular polarizations.
These susceptibilities come from the combinations,

χR = χxx − iχxy, χL = χxx + iχxy. (5.29)

We can see that each polarization needs a slightly different sum,

SR =
−ω
meh̄

∑

fi

(wi − wf )

ωif

〈i|π̂x|f〉〈f |π̂x − iπ̂y|i〉
ω + iγ + ωif

(5.30)

SL =
−ω
meh̄

∑

fi

(wi − wf )

ωif

〈i|π̂x|f〉〈f |π̂x + iπ̂y|i〉
ω + iγ + ωif

. (5.31)

There appears an assymetry here between x and y indices. But we know χxx = χyy. So we
should be able to arrange this differently, if desired. We could have done χR = χyy − iχxy or even
χR = χyy + iχyx, and similarly to get χL. If we did a symmetrical sum:

χR =
1

2
[χxx + χyy − i (χxy − χyx)] , (5.32)

the matrix element factors would be

... = 〈i|π̂x|f〉〈f |π̂x|i〉 + 〈i|π̂y|f〉〈f |π̂y|i〉 − i〈i|π̂x|f〉〈f |π̂y |i〉 + i〈i|π̂y|f〉〈f |π̂x|i〉
= 〈i|(π̂x + iπ̂y)|f〉〈f |(π̂x − iπ̂y)|i〉 = |〈f |(π̂x − iπ̂y)|i〉|2 (5.33)

There is the opposite sign on all the π̂y for the left polarization result. Remembering to divide by 2
because this is a double counting, we get now, for polarization averaging,

SR =
−ω

2meh̄

∑

fi

(wi − wf )

ωif

|〈f |π̂x − iπ̂y|i〉|2
ω + iγ + ωif

(5.34)

SL =
−ω

2meh̄

∑

fi

(wi − wf )

ωif

|〈f |π̂x + iπ̂y|i〉|2
ω + iγ + ωif

. (5.35)

When right polarization is identified by helicity ν = −1 and left by helicity ν = +1, these can
be combined into one formula,

Sν =
−ω

2meh̄

∑

fi

(wi − wf )

ωif

|〈f |π̂x + iνπ̂y|i〉|2
ω + iγ + ωif

{

ν = +1 = L

ν = −1 = R
(5.36)

We can also do the symmetrization into occupied (i) and unoccupied (f) bands, which makes
more sense at low temperature. This is really just splitting the sum into two, and swapping the
indices. The i index is about half of the states, and the f index is the other half of the states, so
this is not double counting. We’ve done this before. It gives initially

∑

fi

→
o

∑

i

u
∑

f

(wi − wf )

ωif

〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

+

u
∑

i

o
∑

f

(wi − wf )

ωif

〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

(5.37)

Switching the names i↔ f in the second sum, and then reversing ωfi = −ωif , etc., gives two terms
that add with the same sign, so the susceptibility from polarization averaging is

χab =
ne2

m2
eh̄(ω + iγ)

o
∑

i

u
∑

f

(wi − wf )

ωif

{ 〈i|π̂a|f〉〈f |π̂b|i〉
ω + iγ + ωif

+
〈i|π̂b|f〉〈f |π̂a|i〉
ω + iγ − ωif

}

. (5.38)

or

χab =
ne2

h̄(ω + iγ)

o
∑

i

u
∑

f

(wi − wf )

ωif

{ 〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

+
〈i|v̂b|f〉〈f |v̂a|i〉
ω + iγ − ωif

}

. (5.39)
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In a form with dimensionless factors times a dimensionless sum, this is

χab =
−ne2

meω(ω + iγ)
× Sab, (5.40)

Sab =
−ω
meh̄

o
∑

i

u
∑

f

(wi − wf )

ωif

{ 〈i|π̂a|f〉〈f |π̂b|i〉
ω + iγ + ωif

+
〈i|π̂b|f〉〈f |π̂a|i〉
ω + iγ − ωif

}

, (5.41)

Sab =
−meω

h̄

o
∑

i

u
∑

f

(wi − wf )

ωif

{ 〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

+
〈i|v̂b|f〉〈f |v̂a|i〉
ω + iγ − ωif

}

. (5.42)

Also going to the formulas for right (ν = −1) and left (ν = +1) circular polarizations, we have

Sν =
−ω

2meh̄

o
∑

i

u
∑

f

(wi − wf )

ωif

{

|〈f |π̂x + iνπ̂y|i〉|2
ω + iγ + ωif

+
|〈f |π̂x − iνπ̂y|i〉|2
ω + iγ − ωif

}

,

{

ν = +1 = L

ν = −1 = R
. (5.43)

5.2 Current averaging: The plasma current term due to ρ̂0

For the first term in the current density, it seems to be the same as the plasma term found earlier.

〈v〉0 =
1

me

[

Tr{ρ̂0p} −
e

c
Tr{ρ̂0(A + Ã)}

]

(5.44)

The averaged momentum in the unperturbed state is zero. Further, the average of the DC vector
potential (symmetric gauge) gives something that does not oscillate. That leaves only the average
of the oscillating field, performed over some volume smaller than the wavelength, so that the dipole
approximation is valid. Let me look carefully at the averaging of the vector potential terms. If we
did this by first finding the local space-dependent current density, one would need to use the local
operator, as shown in other notes,

ĵA(r, t) =
−e2
mec

|r〉〈r|Âtot(r̂, t) (5.45)

It’s expectation value gives the current density at some point (not averaged over volume yet)

jA(r, t) = Tr
{

ρ̂0ĵA

}

=
∑

k

〈k|
∑

i

wi|i〉〈i|
−e2
mec

|r〉〈r|Âtot(r̂, t)|k〉

=
−e2
mec

Atot(r, t)
∑

k

wk|〈r|k〉|2 =
−e2
mec

[

A + Aqe
i(q·r−(ω+iγ)t)

]

∑

k

wk |ψk(r)|2(5.46)

Then the averaging over the system volume of interest is made at this point, using the dipole
approximation. Adding up the response of N electrons, the result for the part that oscillates at
frequency ω is

JA =
N

V

∫

d3r jA(r, t) =
−ne2
mec

Aqe
iq·rce−i(ω+iγ)t (5.47)

where rc is the center of the system. That gives

〈v〉0 = − e

mec
Aqe

iq·rce−i(ω+iγ)t (5.48)

The averaged current density is only due to this term,

J0 = JA = − ne2

mec
Aqe

iq·rce−i(ω+iγ)t = − ne2

mec
· c

i(ω + iγ)
E = −iωχ̃0(ω) ·E (5.49)

This uses the electric field at the center of the system. This leads to one contribution to the
susceptibility,

χ̃0(ω) = − ne2

meω(ω + iγ)
1 (5.50)

The 1 means the matrix is diagonal. That is the same plasmon term as found earlier, including the
effect of electron damping. There is no effect due to the DC magnetic field here.
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5.3 The current terms due to ρ̂1 and the perturbation

Next, consider the other contributions. ρ̂1 already oscillates at frequency ω. It involves a sum over
“initial” and “final” states. Also, the only averaged velocity terms that can oscillate at frequency ω
are the terms from averaging of p and A, the DC field. One ignores the terms that would involve
averaging of Ã using ρ̂1, because both of these oscillate at ω, giving a term oscillating at 2ω, which
we don’t care about here (a nonlinear term). So the desired average is

〈v〉1 =
1

me

[

Tr{ρ̂1p} −
e

c
Tr{ρ̂1(A + Ã)}

]

→ 1

me

[

Tr{ρ̂1p} −
e

c
Tr{ρ̂1A}

]

(5.51)

Do the second term using local space-dependent current density operator, involving only the DC
vector potential this time,

ĵA(r) =
−e2
mec

|r〉〈r|Â(r̂) (5.52)

The expectation value is the current density at point r. Need to use the change in the density
operator:

jA(r, t) = Tr
{

ρ̂1ĵA

}

=
∑

k

〈k|
∑

fi

(wi − wf )|f〉〈f |H1|i〉〈i|
h̄(ω + iγ) + (Ei − Ef )

−e2
mec

|r〉〈r|Â(r̂)|k〉

=
−e2
mec

A(r)
∑

fi

(wi − wf )〈f |H1|i〉〈i|r〉〈r|f〉
h̄(ω + iγ) + (Ei − Ef )

=
−e2
mec

A(r)
∑

fi

(wi − wf )〈r|f〉〈f |H1|i〉〈i|r〉
h̄(ω + iγ) + (Ei − Ef )

=
−e2
mec

A(r)
∑

fi

(wi − wf )ψf (r)〈f |H1|i〉ψ∗
i (r)

h̄(ω + iγ) + (Ei − Ef )
(5.53)

The state k had to match state f to get the second line. We want the volume average of this. The
vector potential is proportional to B. The difference of probabilities, for pairs of states that might
contribute, is either large (for band to band transitions) or of the order of B (for an intraband
transition where ∆m = ±1). So this term is hard to evaluate in the most general case. My
expectation is that it comes out small. If it could be shown to be an odd function of position, the
average would be zero. Or, if some symmetry between the indices might show that swapping i, f
gives the opposite sign??

But, it can be looked at another way. The trace can be performed using the matrix elements of
the operators. These are

ρ̂1,fi =
(wi − wf )〈f |H1|i〉

h̄(ω + iγ) + (Ei − Ef )
, ĵA,if =

−e2
mec

〈i|r〉〈r|Â(r̂)|f〉. (5.54)

Then the trace is matrix multiplication and summing on the diagonal,

jA(r, t) =
∑

fi

ρ̂1,fi ĵA,if (5.55)

Do the averaging over the volume V in this expression, scaled for N electrons, assuming the dipole
approximation for the perturbation term H1,

JA,1 =
N

V

∫

d3r
∑

fi

ρ̂1,fi ĵA,if =
N

V

∑

fi

ρ̂1,fi

∫

d3r ĵA,if (5.56)

This averaging of the current operator contains an identity operation,

∫

d3r ĵA,if =

∫

d3r
−e2
mec

〈i|r〉〈r|Â(r̂)|f〉 =
−e2
mec

〈i|Â(r̂)|f〉. (5.57)
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Then the desired current expression is rather simple!

JA,1 = n
∑

fi

ρ̂1,fi
−e2
mec

〈i|Â(r̂)|f〉

=
−ne2
mec

∑

fi

(wi − wf )〈f |H1|i〉〈i|Â(r̂)|f〉
h̄(ω + iγ) + (Ei − Ef )

(5.58)

One can also insert the perturbation matrix element, and get

JA,1 =
−ne2
mec

· −e
i(ω + iγ)me

∑

fi

(wi − wf )〈f |(Exπ̂x + Eyπ̂y)|i〉〈i|Â(r̂)|f〉
h̄(ω + iγ) + (Ei − Ef )

(5.59)

There is also the term due to the momentum current. Follow the same approach. The operator
to be averaged is the symmetrized one,

ĵm(r) =
e

2me

[

|r〉〈r|p̂ + p̂|r〉〈r|
]

(5.60)

Its matrix elements are surprisingly simple,

ĵm,if =
e

2me
〈i|

[

|r〉〈r|p̂ + p̂|r〉〈r|
]

|f〉 (5.61)

such that the averaged matrix element is

N

V

∫

d3r ĵm,if =
ne

me
〈i|p̂|f〉 (5.62)

The averaging works as follows:

Jm,1 = n

∫

d3r Tr
{

ρ̂1ĵm

}

= n
∑

fi

ρ̂1,fi

∫

d3r ĵm,if =

=
ne

me

∑

fi

(wi − wf )〈f |H1|i〉〈i|p̂|f〉
h̄(ω + iγ) + (Ei − Ef )

(5.63)

At this point one can see this isn’t much different from the previous result. Both can be combined
into one expression that involves the operator p− e

cA, that is

J1 =
ne

me

∑

fi

(wi − wf )〈f |H1|i〉〈i|p̂ − e
cÂ(r̂)|f〉

h̄(ω + iγ) + (Ei − Ef )
(5.64)

=
−ne2

i(ω + iγ)m2
e

∑

fi

(wi − wf )〈f |(Exπ̂x + Eyπ̂y)|i〉〈i|
[

p̂− e
c Â(r̂)

]

|f〉
h̄(ω + iγ) + (Ei − Ef )

(5.65)

Need to keep in mind, this involves only the DC vector potential. Also, note that the ~π operator is
the same as p̂− e

c Â(r̂)!

5.4 Finding the susceptibility and permittivity – Current averaging

It was found above that J0 is a diagonal response, while J1 has off-diagonal response. In other
words, write out the currents in x and y directions, as caused by Ex and Ey in the optical field.
Consider the total volume-averaged current density, J = J0 + J1. One has for the x-component of
current density due to Ex,

Jx,x =
−ne2

i(ω + iγ)me







1 +
1

me

∑

fi

(wi − wf )〈i|π̂x(r̂)|f〉〈f |π̂x(r̂)|i〉
h̄(ω + iγ) + (Ei − Ef )







Ex (5.66)
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In the same fashion, the current density along x due to Ey is

Jx,y =
−ne2

i(ω + iγ)me







0 +
1

me

∑

fi

(wi − wf )〈i|π̂x(r̂)|f〉〈f |π̂y(r̂)|i〉
h̄(ω + iγ) + (Ei − Ef )







Ey (5.67)

(I swapped the order of matrix elements to give them the same ordering as the indices on J.) That’s
a clean expression. Let me switch to the notation i → k and f → k′, and use i, j for coordinate
indices to write it generally as

Jij =
−ne2

i(ω + iγ)me

{

δij +
1

me

∑

kk′

(wk − wk′ )〈k|π̂i|k′〉〈k′|π̂j |k〉
h̄(ω + iγ) + (Ek − Ek′ )

}

Ej (5.68)

Then with a division by −iω and removing the electric field, gives the susceptibility,

χij(ω) =
−ne2

meω(ω + iγ)

{

δij +
1

me

∑

kk′

(wk − wk′)〈k|π̂i|k′〉〈k′|π̂j |k〉
h̄(ω + iγ) + (Ek − Ek′)

}

(5.69)

Then one can read off the dimensionless sum as defined earlier,

χij =
−ne2

meω(ω + iγ)
(δij + Sij) , (5.70)

Sij =
1

meh̄

∑

kk′

(wk − wk′ )〈k|π̂i|k′〉〈k′|π̂j |k〉
ω + iγ + ωkk′

(5.71)

This then leads to the dielectric function by ε(ω) = 1 + 4πχ(ω),

εij(ω) = δij −
4πne2

meω(ω + iγ)

{

δij +
1

me

∑

kk′

(wk − wk′ )〈k|π̂i|k′〉〈k′|π̂j |k〉
h̄(ω + iγ) + (Ek − Ek′ )

}

(5.72)

One can check that the terms in the sum are dimensionless.
For circular polarization problems, however, we want to get εR = εxx − iεxy and εL = εxx + iεxy,

as was shown in a previous section. For reference, these are seen to be

εR(ω) = 1 − 4πne2

meω(ω + iγ)







1 +
1

me

∑

fi

(wi − wf )〈i|π̂x|f〉〈f |π̂x − iπ̂y|i〉
h̄(ω + iγ) + (Ei − Ef )







(5.73)

εL(ω) = 1 − 4πne2

meω(ω + iγ)







1 +
1

me

∑

fi

(wi − wf )〈i|π̂x|f〉〈f |π̂x + iπ̂y|i〉
h̄(ω + iγ) + (Ei − Ef )







(5.74)

There isn’t really any lack of symmetry between x and y, with the transformations done earlier we
know that this is equivalent to using the dimensionless sums as

SR =
1

meh̄

∑

fi

(wi − wf )〈i|π̂x|f〉〈f |π̂x − iπ̂y|i〉
ω + iγ + ωif

=
1

2meh̄

∑

fi

(wi − wf ) |〈f |π̂x − iπ̂y|i〉|2
ω + iγ + ωif

(5.75)

SL =
1

meh̄

∑

fi

(wi − wf )〈i|π̂x|f〉〈f |π̂x + iπ̂y|i〉
ω + iγ + ωif

=
1

2meh̄

∑

fi

(wi − wf ) |〈f |π̂x + iπ̂y|i〉|2
ω + iγ + ωif

(5.76)

Combined into a single equation,

Sν =
1

2meh̄

∑

fi

(wi − wf ) |〈f |π̂x + iνπ̂y|i〉|2
ω + iγ + ωif

,

{

ν = +1 = L

ν = −1 = R
. (5.77)
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5.4.1 Symmetrizing for occupied and unoccupied bands

In all the above expressions there are unrestricted sums over the states. But in a common situation,
some states can be considered ”occupied”, with values of wk near one in equilibrium, and some other
states are considered ”unoccupied”, with values of wk very near zero. Even without this distinction,
the sums can be re-arranged, by defining k and k′ as belonging to two different categories (i.e.,
lower energy occupied states and higher energy unoccupied states). Then explicitly writing the term
where k is occupied and k′ unoccupied, and, another term where k is unoccupied and k′ is occupied,
we have for the sum appearing in the susceptibility χij or the permittivity εij ,

∑

kk′

→
o

∑

k

u
∑

k′

(wk − wk′ )
〈k|π̂i|k′〉〈k′|π̂j |k〉
h̄(ω + iγ) + h̄ωkk′

+

u
∑

k

o
∑

k′

(wk − wk′)
〈k|π̂i|k′〉〈k′|π̂j |k〉
h̄(ω + iγ) + h̄ωkk′

(5.78)

Here I inserted also the definition of the transition frequency,

ωkk′ ≡ Ek − Ek′

h̄
. (5.79)

The labels k and k′ can be swapped on the second term, which reverses the overall sign and the sign
of the transition frequency. The two terms then can be combined, and this gives

∑

kk′

→ 1

h̄

o
∑

k

u
∑

k′

(wk − wk′ )

{ 〈k|π̂i|k′〉〈k′|π̂j |k〉
ω + iγ + ωkk′

− 〈k|π̂j |k′〉〈k′|π̂i|k〉
ω + iγ − ωkk′

}

(5.80)

Generally one would apply this with the occupieds being those states below the Fermi level and the
unoccupieds being the states above the Fermi level. This separation only really makes good sense at
low temperature (compared to the Fermi temperature, which is usually very high). Finally it means
the sums for the two polarizations are

Sν =
1

2meh̄

o
∑

i

u
∑

f

(wi − wf )

{

|〈f |π̂x + iνπ̂y|i〉|2
ω + iγ + ωif

− |〈f |π̂x − iνπ̂y|i〉|2
ω + iγ − ωif

}

,

{

ν = +1 = L

ν = −1 = R
.

(5.81)

5.5 Application to free or quasi-free electrons?

The simplest test is to apply the last formula to a free electron gas, possibly in a confined system,
where one is not using the usual Landau levels. Instead, the electrons have kinetic energy and the
coupling of angular momentum to the magnetic field. There is no potential U(r) (although in some
sense I want the electrons confined within some radius). It is as if there is a single band, split by
the magnetic field according to the energy term −mµBB. The electrons could be in something like
the confined states of a spherical system as discussed earlier. Or they may be in a single band with
some effective mass, hence the idea of quasi-free electrons. But to have truely free electrons, they
could be in plane wave states in an unbounded system.

The states k and k′ can be any two states of the band, distinguished by whatever quantum
numbers are necessary and azimuthal quantum index m. We restrict the sum to terms when m
changes only by ±1, in accordance with a selection rule for absorption/emission of photons (due
to matrix elements of the momentum operator). So considering just the parts due to momentum

currents, the states must change m by ±1. For the moment, ignore the m.e.s of the Â operator.
So the states needed should be simultaneous eigenstates of p2 and L2 and Lz, for a Hamiltonian,

H0 =
p2

2me
− eB

2mec
Lz. (5.82)

But we know the eigenstates here. They are products of spherical Bessel functions and spherical
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harmonics. The allowed states, in an unbounded system3, can be written,

ψklm = Cjl(kr)Ylm(θ, φ), Eklm =
h̄2k2

2me
−mµBB. (5.83)

The energy does not depend on the magnitude of L, only on its z-component. There is a radial
momentum energy and a magnetic energy. The radial momentum is a continuum of states in an
unbounded system, unlike what was found for the confined system. For any chosen l ≥ 0, the
magnetic quantum number is m = 0,±1,±2, ...± l.

It will be useful to know the currents in the state, in the sense of what is the action of the mo-
mentum operator p = (px, py, pz) on them. This can probably be done most efficiently instead using
the spherical components, p = (pr, pθ, pφ), and transforming the results to Cartesian components.

But really, need the matrix elements of p between these states. From the trick used earlier, we
know the following matrix elements between two states:

〈f |π̂x|i〉 = 〈f | ime

h̄
[H0, x]|i〉 =

ime

h̄
(Ef − Ei)〈f |x|i〉 (5.84)

The same can be done for y, and for z it works too although there is no Az. So the momentum m.e.s
become dipole m.e.s. Then when these are evaluated within the spherical harmonics, the selection
rules come out: ∆l = ±1, and ∆m = 0,±1. Further, if there was a transition at fixed k, the energy
would not change unless m changes, too. So ∆m = 0 can be allowed only if k also changes. The
matrix elements needed can be expressed as

〈f |π̂|i〉 = imeωfi 〈f | r |i〉, ωfi ≡
Ef − Ei

h̄
. (5.85)

The energy splittings due to the magnetic field come in due to changes in m, and those energy
changes are linearly proportional to B. However, that is only true when considering transitions at
fixed wave vector k. So without getting the matrix elements and their total dependence on k, k′,
and l,m, it is not easy to see the main change in dielectric function with magnetic field.

5.5.1 Transition matrix elements–States of defined l and m

True “free electrons” in a magnetic field are in Landau levels. However, electrons in bands in
a nanoparticle are believed to be in states with a well-defined angular momentum. This section
applies to that kind of situation. See a later section for the calculation for electrons in Landau
levels, that can be solved exactly.

One can try to get the general dipole matrix element, which is a “standard” QM calculation.
The matrix elements have an angular part and a radial part. Let the final state have wave vector k′,
angular momentum l′ = 1, some m′ = −l′...+ l′, and similarly for the initial state. In some notes on
Legendre functions and spherical harmonics I figured out the angular part of these matrix elements.
Let the states’ wave functions be described in some general way (not necessarily just truely free
particles) as products of radial and angular parts,

ψklm = Rkl(r)Ylm(Ω) (5.86)

For the free particles the radial functions are the spherical Bessel functions. The typical general
matrix element needed is

〈k′l′m′|r|klm〉 =

∫

dr r2 Rk′l′(r) r Rkl(r)

∫

dΩ Yl′m′(Ω) r̂(Ω)Ylm(Ω) = Ik′l′kl IΩ. (5.87)

3An important caution. This model really does not work! In a truly unbounded system the correct states are
the Landau levels! So this needs to be done with more care. One can see that the Hamiltonian (5.83) is unstable in
the sense that there is no well-defined ground state. It has states of very high l and large m with arbitrary negative
energy. But that is inconsistent with the original KE Hamiltonian from which it was derived, whose energies are all
positive. This present Hamiltonian really only can be applied for a system confined in some volume, so that there are
only discrete wavevectors k allowed. The k should really be those produced from the zeros of the Bessel function.
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The angular kernel is the unit vector with components (rx, ry, rz), given by

r̂(Ω) = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ = x̂rx + ŷry + ẑrz . (5.88)

The angular matrix elements (IΩ) were found as follows, depending on which component is consid-
ered. The definitions are like this, and similar for ry and rz ,

IΩx = 〈l′m′|rx|lm〉 =

∫

dΩ Y ∗
l′m′(Ω) (sin θ cosφ)Ylm(Ω) (5.89)

These are

〈l + 1,m+ 1|rx|lm〉 = +
1

2

√

(l +m+ 1)(l +m+ 2)

(2l + 1)(2l+ 3)
∆l = +1, ∆m = +1. (5.90)

〈l − 1,m+ 1|rx|lm〉 = −1

2

√

(l −m− 1)(l −m)

(2l − 1)(2l+ 1)
∆l = −1, ∆m = +1. (5.91)

〈l + 1,m− 1|rx|lm〉 = −1

2

√

(l −m+ 1)(l −m+ 2)

(2l + 1)(2l+ 3)
∆l = +1, ∆m = −1. (5.92)

〈l − 1,m− 1|rx|lm〉 = +
1

2

√

(l +m− 1)(l +m)

(2l − 1)(2l+ 1)
∆l = −1, ∆m = −1. (5.93)

Obviously these determine the selection rules. For ry the results are very similar, but due to the
relation between sine and cosine, i.e., cosφ = 1

2 (eiφ + e−φ), and sinφ = 1
2i (e

iφ − e−φ), there is a
simple symmetry. The matrix elements of ry are those of rx, but multiplied by ∓i for ∆m = ±1,
respectively:

〈l + 1,m+ 1|ry|lm〉 = − i

2

√

(l +m+ 1)(l +m+ 2)

(2l + 1)(2l+ 3)
∆l = +1, ∆m = +1. (5.94)

〈l − 1,m+ 1|ry|lm〉 = +
i

2

√

(l −m− 1)(l−m)

(2l − 1)(2l+ 1)
∆l = −1, ∆m = +1. (5.95)

〈l + 1,m− 1|ry|lm〉 = − i

2

√

(l −m+ 1)(l −m+ 2)

(2l + 1)(2l+ 3)
∆l = +1, ∆m = −1. (5.96)

〈l − 1,m− 1|ry|lm〉 = +
i

2

√

(l +m− 1)(l+m)

(2l − 1)(2l+ 1)
∆l = −1, ∆m = −1. (5.97)

Finally for rz = cos θ, the basic integral is

IΩz = 〈l′m′|rz |lm〉 =

∫

dΩ Y ∗
l′m′(Ω) (cos θ)Ylm(Ω) (5.98)

And this gives two results,

〈l + 1,m|rz|lm〉 =

√

(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
∆l = +1, ∆m = 0. (5.99)

〈l − 1,m|rz|lm〉 =

√

(l −m)(l +m)

(2l − 1)(2l + 1)
∆l = −1, ∆m = 0. (5.100)
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5.6 Permittivity for circular polarizations–States with defined l and m

This section applies to electrons in states of specified angular momentum, but not in Landau levels.
It could apply to electrons in band states.

I imagine the situation of high symmetry where the light is propagating along the z-axis. In
that case we don’t have any need for these z components. Further, it gives an obvious symmetry
between the matrix elements for rx and ry . Especially, we want some simple combinations to produce
εR = εxx − iεxy and εL = εxx + iεxy, where there are the following needed symmetry relations

〈f |ry|i〉 = −i∆m〈f |rx|i〉, ∆m = ±1. (5.101)

The same kind of relation applies to matrix elements of the velocity,

〈f |v̂y|i〉 = −i∆m〈f |v̂x|i〉, ∆m = ±1. (5.102)

The product that appears in the sum for defining εxx is

εxx ∼
∑

fi

gfi |〈f |v̂x|i〉|2 (5.103)

On the other hand, one sees the similar factors needed for εxy,

εxy ∼
∑

fi

gfi〈i|v̂x|f〉〈f |v̂y|i〉 =
∑

fi

gfi〈i|v̂x|f〉(−i∆m)〈f |v̂x|i〉 =
∑

fi

gfi(−i∆m) |〈f |v̂x|i〉|2 . (5.104)

These are the same terms but just modified by (−i∆m). When these two parts are combined to get
the dielectric function for right circular polarization, one has

εR = εxx − iεxy ∼
∑

fi

gfi [1 − i(−i∆m)] |〈f |v̂x|i〉|2 =
∑

fi

gfi(1 − ∆m) |〈f |v̂x|i〉|2 . (5.105)

As the only choices are ∆m = ±1, it is seen that only the terms with ∆m = −1 contribute here.
This is due to the fact that right circular photons have negative helicity. For left circular photons
the situation is opposite, they have positive helicity, and only the terms with ∆m = +1 contribute:

εL = εxx + iεxy ∼
∑

fi

gfi [1 + i(−i∆m)] |〈f |v̂x|i〉|2 =
∑

fi

gfi(1 + ∆m) |〈f |v̂x|i〉|2 . (5.106)

5.6.1 From averaging the current density

So now, based on these results, combine them to get something useful to summarize how to calculate
these permittivities. The previous expressions for εR and εL, based on averaging the current
density, become as follows:

εR = 1 − 4πne2

meω(ω + iγ)







1 +
me

h̄

∑

fi

(wi − wf )(1 − ∆m)|〈f |v̂x|i〉|2
ω + iγ + ωif







(5.107)

εL = 1 − 4πne2

meω(ω + iγ)







1 +
me

h̄

∑

fi

(wi − wf )(1 + ∆m)|〈f |v̂x|i〉|2
ω + iγ + ωif







(5.108)

One can see that the factor 1 − ∆m is twice a Kronecker delta function. When ∆m = +1 it gives
zero, but when ∆m = −1, it gives a value of 2. The factor 1+∆m is equal to 2 only in the opposite
case. These are both represented by

1 + ν∆m = 2δ∆m=ν (5.109)
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So these two formulas are equivalent to the one formula for the sum,

Sν =
2me

h̄

∑

fi

(wi − wf )δ∆m,ν|〈f |v̂x|i〉|2
ω + iγ + ωif

(5.110)

Now I want to write this for the case of occupied and unoccupied states. Let me consider first the
permittivity εR for right circular polarization which is controlled by the constraint ∆m = mf −mi =
−1. Of course, which is ”final” and which is ”initial” is somewhat arbitrary. So doing the change
to i → k = o for occupied and f → k′ = u for unoccupied, and vice-versa, as presented earlier, we
have an expression for the dimensionless summation SR that is needed,

SR =
1

me

∑

fi

→ me

h̄

o
∑

k

u
∑

k′

(wk − wk′ )|〈k′|v̂x|k〉|2
{

1 − (mk′ −mk)

ω + iγ + ωkk′

− 1 − (mk −mk′)

ω + iγ − ωkk′

}

(5.111)

Really the funny factors involving ∆m are meant to be delta functions enforcing the selection rules.
But by this symmetrization, one sees that he first term has ∆m = mk′ −mk = −1, while the second
has ∆m = mk′ − mk = +1. When either one is satisfied, these have the value 1 ∓ ∆m = 2. So
instead I’ll take the 2 out front and write them as Kronecker delta functions:

SR =
1

me

∑

fi

→ 2me

h̄

o
∑

k

u
∑

k′

(wk − wk′ )|〈k′|v̂x|k〉|2
{

δmk′=mk−1

ω + iγ + ωkk′

− δmk′=mk+1

ω + iγ − ωkk′

}

(5.112)

These deltas don’t do anything special within the braces, however, they select out different possible
transitions from the sum. So the two terms can’t be any further combined until the actual transitions
are specified. For example, this requires one to say if the transitions are from a p-band to an s-band
or a d-band. Then the particluar ∆m that are present can be analyzed for their contributions in
these terms. Then the dielectric function is calculated from the expression,

εR = 1 − 4πne2

meω(ω + iγ)
(1 + SR). (5.113)

For the permittivity associated with left circular polarization, in the original formula only the
terms with ∆m = +1 contributed. Now the organization into occupied and unoccupied states leads
to a similar expression for sum SL but only with the sign of ∆m reversed,

SL =
1

me

∑

fi

→ 2me

h̄

o
∑

k

u
∑

k′

(wk − wk′)|〈k′|v̂x|k〉|2
{

δmk′=mk+1

ω + iγ + ωkk′

− δmk′=mk−1

ω + iγ − ωkk′

}

(5.114)

Then obviously this produces the related permittivity according to

εL = 1 − 4πne2

meω(ω + iγ)
(1 + SL). (5.115)

Apparently the two polarizations can be combined into one formula depending on ν, the symmetrized
sums needed are

Sν =
2me

h̄

o
∑

k

u
∑

k′

(wk − wk′)|〈k′|v̂x|k〉|2
{

δmk′=mk+ν

ω + iγ + ωkk′

− δmk′=mk−ν

ω + iγ − ωkk′

}

(5.116)

Keep in mind: the only terms that contribute must have angular momentum l change by ±1.
There are slightly different matrix elements for those two cases, as shown above. One can say that
therefore, only terms related to interband transitions are present. If there is only a single band (i.e.,
only one value for l), then there is nothing in the sums. To proceed further, it is best to do a more
concrete example.
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5.6.2 From averaging the electric polarization

By using averaging of the electric polarization, if we start from the sums needed, in terms of the
velocity operators as,

Sν =
−meω

h̄

o
∑

i

u
∑

f

(wi − wf )

ωif

{ 〈i|v̂x|f〉〈f |v̂x + iνv̂y|i〉
ω + iγ + ωif

+
〈i|v̂x|f〉〈f |v̂x − iνv̂y|i〉

ω + iγ − ωif

}

, (5.117)

and do the same kinds of operations, we get that the first term applies for ∆m = +1 and the second
for ∆m = −1. That is, we have very simply, mostly repeating some previous algebra,

〈f |v̂x + iνv̂y|i〉 = 〈f |v̂x|i〉 + (iν)(−i∆m)〈f |v̂x|i〉 = (1 + ν∆m)〈f |v̂x|i〉. (5.118)

That again has the same Kronecker delta as encountered earlier. The second term is similar,

〈f |v̂x − iνv̂y|i〉 = 〈f |v̂x|i〉 − (iν)(−i∆m)〈f |v̂x|i〉 = (1 − ν∆m)〈f |v̂x|i〉. (5.119)

So again applying
1 + ν∆m = δ∆m=ν, 1 − ν∆m = δ∆m=−ν , (5.120)

the sums needed for electric polarization averaging are

Sν =
−2meω

h̄

o
∑

i

u
∑

f

(wi − wf )

ωif
|〈f |v̂x|i〉|2

{

δmf =mi+ν

ω + iγ + ωif
+

δmf =mi−ν

ω + iγ − ωif

}

, (5.121)

Note the differences compared to the current density approach: 1) opposite overall sign; 2) factor
ω/ωif ; 3) same signs on the two contributions.

5.7 Permittivity of Landau level free electrons–from current density

In the last couple of sub-sections I studied the matrix elements for quasi-free electrons, where
an approximate Hamiltonian was used. However, as mentioned there, really one has a different
Hamiltonian for the electrons, that must be positive definite. The Hamiltonian (5.83) has negative
energies, which is a serious problem with it. The only way to use that type of Hamiltonian is if the
system has some geometrical confinement, so that instead of arbitrary continuum of k, there are
band values like kln = xln/R, determined by the zeros of the spherical Bessel functions for electrons
confined in a system of radius R. This would insure positive energies. At some point that calculation
could be useful, so I have not cut it out of this document.

Now I consider an unbounded system, where the electrons really should be described by Landau
levels. These states actually are very well defined, and have all positive energies. In addition, the
needed matrix elements for the Faraday rotation problem are easy to find. I should have done this
calculation first! The energies of the states, including their motion along the z-axis (parallel to B)
are

Enlk =

(

n+
1

2

)

h̄ωB +
h̄2k2

2me
(5.122)

where n is the principle quantum number, l = nb − n where nb is the number of b-quanta, giving
the angular momentum component lh̄ along z, and p = pz = h̄k is a continuous conserved quantity,
being the component of momentum parallel to the B-field. The corresponding wave functions in
real space vary as

ψnlk = Rnl(ρ)e
ilφeikz for state |nlk〉. (5.123)

The main thing one needs to be able to calculate are the matrix elements of π̂x and π̂y between two
of these states. But these states are eigenstates of the number operator N = a†a (with eigenvalue
n) and M ≡ b†b (eigenvalue nb), as well as the angular momentum operator L = h̄(b†b− a†a) (with
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eigenvalue lh̄, where l = nb − n). The states are essentially harmonic oscillator-like, and can be
constructed from the n = 0, nb = 0 ground state as shown earlier,

|n, nb〉 =
(a†)n

√
n!

(b†)nb

√
nb!

|0, 0〉 (5.124)

Either nb or l must be specified. In terms of angular momentum, there is a simple change,

|n, l〉 =
(a†)n

√
n!

(b†)n+l

√

(n+ l)!
|0, 0〉 (5.125)

but then one must remember the constraint that n+ l ≥ 0.
The π operators, though, are expressed in terms of the energy creation and annihilation operators:

π̂x =

√

mh̄ωB

2
(a+ a†), π̂y =

1

i

√

mh̄ωB

2
(a− a†), (5.126)

These don’t have any dependence on l (or nb) and not on the longitudinal motion, k. So those
quantum numbers are conserved in the transitions. This makes finding the required matrix elements
fairly trivial. For harmonic oscillator operators we have the usual relations,

a|n〉 =
√
n |n− 1〉, a†|n〉 =

√
n+ 1 |n+ 1〉. (5.127)

Then here the results for matrix elements are (treating k as discrete although really it is continuous)

〈n′l′k′|π̂x|nlk〉 =

√

meh̄ωB

2

[√
n δn′,n−1 +

√
n+ 1 δn′,n+1

]

δll′δkk′ (5.128)

〈n′l′k′|π̂y |nlk〉 = −i
√

meh̄ωB

2

[√
n δn′,n−1 −

√
n+ 1 δn′,n+1

]

δll′δkk′ (5.129)

We also know that for εR it is good to know the matrix elements of (π̂x − iπ̂y), whereas, for εL is it
good to know the matrix elements of (π̂x + iπ̂y). But these are also very easy, because recall that
these operator combinations are proportional to the creation/annihilation operators:

a =

√

1

2meh̄ωB
(π̂x + iπ̂y), a† =

√

1

2meh̄ωB
(π̂x − iπ̂y). (5.130)

Then these matrix elements good for εR are found to be

〈n′l′k′|(π̂x − iπ̂y)|nlk〉 =
√

2meh̄ωB 〈n′l′k′|a†|nlk〉 =
√

2meh̄ωB

√
n+ 1 δn′,n+1δll′δkk′ . (5.131)

That shows the final state must have one more energy quantum than the initial state. Since nb did
not change, the final state has one quantum less of angular momentum. The matrix elements good
for εL are found to be similar,

〈n′l′k′|(π̂x + iπ̂y)|nlk〉 =
√

2meh̄ωB 〈n′l′k′|a|nlk〉 =
√

2meh̄ωB

√
n δn′,n−1δll′δkk′ . (5.132)

and of course now the final state has one quantum less of energy, but one quantum more of angular
momentum. These are really unusual requirements. Again, though, the distinction of “initial” and
“final” isn’t a physical one, once the sums are evaluated that give the susceptibility, etc.

For εR, the combination that appears in its sum can be written, taking state |i〉 as |nlk〉 and
state |f〉 as |n′l′k′〉,

〈nlk|π̂x|n′l′k′〉〈n′l′k′|(π̂x − iπ̂y)|nlk〉 =

√

meh̄ωB

2

[√
n′ δn,n′−1 +

√
n′ + 1 δn,n′+1

]

δll′δkk′

×
√

2meh̄ωB

√
n+ 1 δn′,n+1δll′δkk′ . (5.133)
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In the first part I had to swap the n and n′ indices. But now one sees that the only part that can
survive is where n′ = n+ 1, so this reduces to

〈nlk|π̂x|n′l′k′〉〈n′l′k′|(π̂x − iπ̂y)|nlk〉 = meh̄ωB (n+ 1) δn′,n+1 δll′δkk′ . (5.134)

Doing the same thing for the product that will appear in εL, one has only a contribution from
n′ = n− 1 and the result is easily found,

〈nlk|π̂x|n′l′k′〉〈n′l′k′|(π̂x + iπ̂y)|nlk〉 = meh̄ωB (n) δn′,n−1 δll′δkk′ . (5.135)

Then next, figure out the sums SR and SL. Here I will not yet try to do any expression using
occupied and unoccupied states. Go to the original expression for εR, we need the following sum,

SR =
1

meh̄

∑

n′k′l′

∑

nkl

wn − wn′

ω + iγ + ωnn′

(meh̄ωB (n+ 1) δn′,n+1 δll′δkk′ )

SR = ωB

∑

nkl

(n+ 1)(wn − wn+1)

ω + iγ − ωB
, where ωnn′ = ωn,n+1 = −ωB. (5.136)

Then the associated permittivity is

εR = 1 − 4πne2

meω(ω + iγ)
(1 + SR). (5.137)

There is not much difference for the other polarization, except that the transition is downward
instead:

SL =
1

meh̄

∑

n′k′l′

∑

nkl

wn − wn′

ω + iγ + ωnn′

(meh̄ωB (n) δn′,n−1 δll′δkk′ )

SL = ωB

∑

nkl

(n)(wn − wn−1)

ω + iγ + ωB
, where ωnn′ = ωn,n−1 = +ωB. (5.138)

Then this associated permittivity is

εL = 1 − 4πne2

meω(ω + iγ)
(1 + SL). (5.139)

5.7.1 The summands for εxx and εxy

For completeness also write out what is needed for the Cartesian elements of the permittivity matrix.
Here instead we need the following products of matrix elements. For εxx, there is

〈nlk|π̂x|n′l′k′〉〈n′l′k′|π̂x|nlk〉 = |〈n′l′k′|π̂x|nlk〉|2 =

=

∣

∣

∣

∣

∣

√

meh̄ωB

2

[√
n δn′,n−1 +

√
n+ 1 δn′,n+1

]

δll′δkk′

∣

∣

∣

∣

∣

2

=
1

2
meh̄ωB [(n+ 1) δn′,n+1 + n δn′,n−1] δll′δkk′ (5.140)

The two terms are mutually exclusive, which is why there is no cross term in the square. For εxy,
there is

〈nlk|π̂x|n′l′k′〉〈n′l′k′|π̂y|nlk〉 =

√

meh̄ωB

2

[√
n′ δn,n′−1 +

√
n′ + 1 δn,n′+1

]

δll′δkk′

× (−i)
√

meh̄ωB

2

[√
n δn′,n−1 −

√
n+ 1 δn′,n+1

]

δll′δkk′

=
i

2
meh̄ωB [(n+ 1) δn′,n+1 − n δn′,n−1] δll′δkk′ (5.141)
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Then the sums that are needed to get these ε components are clearly related to those for the circular
polarizations,

Sxx =
1

meh̄

∑

n′k′l′

∑

nkl

wn − wn′

ω + iγ + ωnn′

(

1

2
meh̄ωB [(n+ 1) δn′,n+1 + n δn′,n−1] δll′δkk′

)

Sxx =
ωB

2

∑

nkl

{

(n+ 1)(wn − wn+1)

ω + iγ − ωB
+
n(wn − wn−1)

ω + iγ + ωB

}

(5.142)

The values of ωnn′ are opposite on the two terms, because the first is an upward transition and the
second is a downward transition. Find a similar result for the sum for εxy,

Sxy =
1

meh̄

∑

n′k′l′

∑

nkl

wn − wn′

ω + iγ + ωnn′

(

i

2
meh̄ωB [(n+ 1) δn′,n+1 − n δn′,n−1] δll′δkk′

)

Sxy =
iωB

2

∑

nkl

{

(n+ 1)(wn − wn+1)

ω + iγ − ωB
− n(wn − wn−1)

ω + iγ + ωB

}

(5.143)

That these are correct is clear, because they are related to the circular polarization sums by the
simple relations,

SR = Sxx − iSxy, SL = Sxx + iSxy. (5.144)

5.7.2 Finding the sums

In all of these sums, the denominators are constants that can come out front. Recall also that
the wn are the state probabilities, with

∑∞
n=0 wn = 1 and wn = e−βEn/Z where β is the inverse

temperature and Z is the partition function. The state energies depend only on n. So these sums
are related to expectation values of the number operator, N = a†a.

Consider first the sum SL for left polarization, expression (5.138). One part of it is the following
sum: ∞

∑

n=0

nwn = 〈n〉. (5.145)

The other part is a sum that can be transformed into this also, because its n = 0 term gives nothing.
So the other term has its sum really start at n = 1. Doing a shift of its index, there is

∞
∑

n=1

nwn−1 =
∞
∑

n=0

(n+ 1)wn = 〈n〉 + 1. (5.146)

But SL involves the difference of these two sums. So there is a cancellation, and the result is too
simple!

SL =
ωB

ω + iγ + ωB

∑

lk

[〈n〉 − (〈n〉 + 1)] =
−ωB

ω + iγ + ωB

∑

lk

1 (5.147)

The last sum over l and k I am going to take as some constant g, which is probably unity (although
technically it should be the degeneracy of any Landau level, which is enormous and depends on the
system volume). The reason is the way the normalization has been set up, that this sum is normalized
for an individual electron. This may seem mathematically absurd, but we have already accounted
for N electrons in a factor contained in the density of electrons per unit volume. This seems a little
suspicous, only because I have some lack of total understanding about the normalization that was
given to the density matrix. This should be clarified better at some point. So ignoring those slight
“technicalities”, the left polarization sum should be

SL =
−gωB

ω + iγ + ωB
. (5.148)
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Consider next the sum SR in (5.136) needed for εR and right circular polarization. One has very
directly

∞
∑

n=0

(n+ 1)wn = 〈n〉 + 1. (5.149)

The other sum needs the index shifted, which makes it effectively start at n = 1:

∞
∑

n=0

(n+ 1)wn+1 =

∞
∑

n=1

nwn =

∞
∑

n=0

nwn = 〈n〉 (5.150)

This is true because the n = 0 term makes no contribution to the sum. So now we have

SR =
ωB

ω + iγ − ωB

∑

lk

[〈n〉 + 1 − 〈n〉] =
+ωB

ω + iγ − ωB

∑

lk

1 (5.151)

Again with the final sum set to some value g, the result is very simple,

SR =
+gωB

ω + iγ − ωB
. (5.152)

The two results for SR and SL are related one to the other by switching the sign of ωB.
For the Cartesian components, we have

Sxx =
SR + SL

2
=

1

2

{

+gωB

ω + iγ − ωB
+

−gωB

ω + iγ + ωB

}

=
gω2

B

(ω + iγ)2 − ω2
B

(5.153)

Sxy = i
SR − SL

2
=
i

2

{

+gωB

ω + iγ − ωB
− −gωB

ω + iγ + ωB

}

=
igωB(ω + iγ)

(ω + iγ)2 − ω2
B

(5.154)

5.7.3 Results for Landau-level free electrons

Now the right-circular polarization result for permittivity is seen to be

εR = 1 − 4πne2

meω(ω + iγ)

[

1 +
gωB

ω + iγ − ωB

]

−→ 1 − 4πne2

meω
· 1

ω + iγ − ωB
(5.155)

The last expression is the limit when g = 1, which is the value I think it should have. Then for left
polarization there is similarly,

εL = 1 − 4πne2

meω(ω + iγ)

[

1 − gωB

ω + iγ + ωB

]

−→ 1 − 4πne2

meω
· 1

ω + iγ + ωB
(5.156)

The Cartesian components are also found quickly,

εxx = 1 − 4πne2

meω(ω + iγ)

[

1 +
gω2

B

(ω + iγ)2 − ω2
B

]

−→ 1 − 4πne2

meω
· ω + iγ

(ω + iγ)2 − ω2
B

(5.157)

εxy = 0 − 4πne2

meω(ω + iγ)

[

0 +
igωB(ω + iγ)

(ω + iγ)2 − ω2
B

]

−→ −i4πne
2

meω
· ωB

(ω + iγ)2 − ω2
B

(5.158)

Now one can see that curiously, after all this work to do the quantum mechanics correctly, these
last two results agree exactly with the expression (3.38) found with the classical theory for damped
electrons! But it was necessary to include the damping factor iγ with ω in the relation connecting
J and P, as well as using the limiting value of the lk sum, g = 1. Still, this was a good test problem
for getting all the details correct.

Also, a caution is needed. In the theory to this point, I did not worry about the sign of e, the
charge of the carriers. It is contained in the definition of ωB, which is linearly proportional to e.
If the carriers are really negative electrons, then keep in mind that this would make ωB a negative
number, when comparing with experimental results and especially comparing the results at right
and left polarizations!
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6 Band to band transitions in a semiconductor/metal

So far the general theory for εR and εL was derived. The result is seen to depend on the transitions
that change angular momentum magnitude by h̄, due to the magnitude of the photon angular
momentum. After checking that all works out well for free electrons living in Landau levels, one can
also look at some simple models where there are transitions only between a pair of bands.

That is presented in Dielectrics: Part C. Go there for the story of how the magnetic field enters
and gives a simple contribution, or in fact, a simple modification of the expression for the dielectric
functions for the two circular polarizations.
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