
Electrodynamics I Midterm Exam - Part A - Closed Book KSU 2014/10/23

Name Electro Dynamic

Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try
to tell about the physics involved, more than the mathematics, if possible.

1. (3) Write Gauss’ Law in differential form. Explain the physical meaning.

~∇ · ~E(~r ) = ρ(~r )/ε0, or ~∇ · ~D = ρ,

~E= electric field, ρ=volume charge density, ε0=permittivity of vacuum, ~D=electric

displacement. It exemplifies how electric field lines originate on positive charges and

terminate on negative charges.

2. (3) Write an expression that gives the electrostatic field energy in vacuum.

W =
∫

d3r
1

2
ε0|~E|2 =

1

2
ε0

∫
d3r |~∇Φ|2.

3. (3) Show how to get the capacitance of an isolated spherical conductor of radius R. How large in µF
is the capacitance of the Earth (R = 6380 km), considered as a large conductor?

C =
Q

V
=

Q

Q/(4πε0R)
= 4πε0R.

For the Earth with R = 6380 × 103 m and ε0 = 8.854 × 10−12 C2N−1m−2, we get
C = 4π(8.854 × 10−12 C2N−1m−2 × 6.38 × 106 m = 710 µF.

4. (3) Write a differential equation that a Green function G(~r, ~r ′) for Poisson’s equation must satisfy,
for Dirichlet boundary conditions.

∇2G(~r, ~r ′) = −4πδ(~r − ~r ′).

~r ′ is the source point, ~r is the observation point or field point where a response (the
potential field) is measured.

5. (3) A problem has boundaries with Dirichlet boundary conditions. How do you write the solution to
the Poisson equation for electrostatic potential Φ(~r ) using a Green’s function?

Φ(~r) =
1

4πε0

∫
V

d3r′ G(~r, ~r ′)ρ(~r ′) −
1

4π

∫
S

da ′ ∂G

∂n ′ Φ(~r ′).

where the second integral is over the surface S bounding the system, and n ′ is a
coordinate pointing out of the system boundary.

6. (3) Give a condition (possibly as an inequality) that identifies the limit where classical E&M theory
should be replaced by quantum theory. Explain it.

Classical E&M could become invalid when the number of photons N in a volume equal
to the wavelength cubed, λ3, is much less than 1.

N = nλ3 � 1

The number of photons per unit volume n is given from the rms energy density in the
fields divided by the photon energy,

n =
ε0E2

rms

hν
.

This will tend to happen more so at high photon energy.
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7. (3) A charge density ρ(~r ) is invariant when the system is rotated through any angle around z-axis.
How can you write the general solution of Poisson’s equation for the potential Φ(~r) in this situation?

Φ(~r ) =
1

4πε0

∫
d3r′ ρ(~r ′)

|~r − ~r ′|
=

1

4πε0

∫
d3r′ ρ(~r ′)

1

r<

∞∑
l=0

(
r<

r>

)l

Pl(cos γ)

where γ is the angle between source point ~r ′ and field point ~r. One still needs to do
the integration over the charge density. Note that in any charge-free region, a solution
of Laplace’s equation is,

Φ(~r) =
∞∑

l=0

[
Alr

l
< + Blr

−(l+1)
>

]
Pl(cos θ)

where θ is the polar angle from z-axis to the ~r direction.

8. (3) A linear and isotropic dielectric medium has electric susceptibility χ. How does χ enter in the
formulas for the electric polarization and the electric permittivity?

Polarization is ~P = ε0χ~E.
Permittivity is ε = ε0(1 + χ), from ~D = ε ~E = ε0

~E + ~P .

9. (3) Give a formula that determines the electric dipole moment of an arbitrary but localized charge
density ρ(~r).

~p =
∫

V

d3r ρ(~r ) ~r.

10. (3) If a point electric dipole ~p is located at position ~r0, what electrostatic potential does it produce
at an arbitrary position ~r?

Φ(~r) =
1

4πε0

~p · (~r − ~r0)

|~r − ~r0|3
.

where ~r − ~r0 is the vector from the dipole to the field point.

11. (6) For the point dipole of the previous question, what electric field does it produce at an arbitrary
position ~r?

~E(~r) = −~∇Φ(~r) =
3(~p · n̂)n̂ − ~p

4πε0|~r − ~r0|3
−

~p

3ε0

δ(~r − ~r0)

where n̂ = (~r − ~r0)/|~r − ~r0| is the unit vector pointing from the dipole to the field

point. The delta function makes the expression give the correct value of
∫

d3r ~E over
any volume including the dipole.

12. Use delta-functions to express the charge density ρ(~r ) for the following charge distributions, in the
indicated coordinate systems:

a) (3) A charge Q distributed uniformly over an infinitely thin circular ring of radius a centered on
the z-axis and lying in the plane z = b. Use spherical coordinates (r, θ, φ).

ρ(~r ) =
Q

2πa

δ
(
r −

√
a2 + b2

)
√

a2 + b2
δ

(
θ − sin−1 a

√
a2 + b2

)
.

Once this is integrated over all space with d3r = r2 dr sin θ dθ the total charge Q
will be recovered.

2



b) (3) A point charge q on the x-axis at x = x0. Use cylindrical coordinates (ρ, φ, z).

ρ(~r ) = q
δ (ρ − x0)

ρ
δ(φ) δ(z).

Once this is integrated over all space with d3r = ρ dρ dφ dz the charge a will be
recovered.

13. A point charge q is placed at a distance d > a from the center of an uncharged isolated metal sphere
of radius a.

a) (6) Determine the electric force acting on q due to the sphere, for arbitrary d > a. Is it attractive
or repulsive? Explain.
This can be solved either by an image within the sphere, or by using the azimuthal
symmetry of the situation. Using azimuthal symmetry, the solution for potential
outside the sphere can be written as a term directly due to the charge at r = d
and other terms due to the induced charges on the sphere.

Φ(~r ) =
1

4πε0

[
q

|~x − dẑ|
+

∞∑
l=0

(
Alr

l + Blr
−(l+1)

)
Pl(cos θ)

]
.

The summation is due to to induced surfaces charges on the sphere. For Φ to be
finite at large r, all Al = 0. The term coming directly from the charge can also be
expanded in Legendre polynomials, giving

Φ(~r ) =
1

4πε0

[
q

∞∑
l=0

rl
<

rl+1
>

Pl(cos θ) +
∞∑

l=0

Blr
−(l+1)Pl(cos θ)

]
.

where r<, r> are the min and max of r and d. Now the potential on the surface
sphere must be a constant (not necessarily zero, the sphere is uncharged, not
grounded). However, setting the term B0 = 0 will correspond to an uncharged
sphere–this is the monopole charge of the sphere! Now at r = a, all other factors
for l > 0 must give zero, with r< = r = a, r> = d:

q
al

dl+1
+

Bl

al+1
= 0, l > 0

which is solved by

Bl = −q
a2l+1

dl+1
=
(

−q
a

d

)(
a2

d

)l

= q′(d′)l.

That shows essentially an image q′ = −q a
d

at position d′ = a2

d
within the sphere.

By making B0 = 0 also, is equivalent to an additional image q′′ = −q′ = +q a
d

at
the center of the sphere.

To get the force, first find the electric field only due to the Bl terms. This avoids
self-interaction on q. The z-component of the field is all that is needed, which will
come from Er with θ = 0 and Pl(cos(0)) = Pl(1) = 1.

Er = −
∂Φ

∂r
=

−1

4πε0

∞∑
l=1

−(l + 1)Blr
−(l+2)Pl(cos θ)

Ez =
q′

4πε0

∞∑
l=1

(l + 1)
(d′)l

rl+2
· 1 =

q′

4πε0

[
1

(r − d′)2
−

1

r2

]
The last step comes from looking at

1

|r> − r<|
=

∞∑
l=0

rl
<

rl+1
>

,
∂

∂r<

1

|r> − r<|
=

1

|r> − r<|2
=

∞∑
l=0

(l + 1)
rl

<

rl+2
>
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and shifting out the l = 0 term. Finally the general result for the force is (with
r = d)

F = qEz =
qq′

4πε0

[
1

(d − d′)2
−

1

d2

]
= −

q2a/d

4πε0

[
1

(d − a2/d)2
−

1

d2

]
.

Negative value shows that the force is attractive for any d.

b) (4) Find the asymptotic force law for d� a.
Try to combine the terms in the brackets in the last force expression. The first
factor can be expanded,

1

(d − a2/d)2
=

1

d2

1

(1 − a2/d2)2
≈

1

d2

(
1 + 2

a2

d2

)
Then combining with the other term, this gives

F ≈ −
q2a/d

4πε0

[
1

d2

(
1 + 2

a2

d2

)
−

1

d2

]
= −

2q2a3

4πε0d5
.

A very weak attractive force, even with an uncharged sphere! This is due to the
polarization induced in the sphere by the source charge q.
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Electrodynamics I Midterm Exam 1 - Part B - Open Book KSU 2014/10/23

Name

Instructions: Use SI units. Please show the details of your derivations here. Explain your reasoning for
full credit. Open-book only, no notes.

1. An infinitely thin ring of total charge Q has a radius a, and is placed centered on the z-axis
in the plane z = b, above a grounded infinite plane conductor at z = 0. The plane of the
ring is parallel to the plane of the conductor.

a) (8) Find the electric potential Φ(z) along the z-axis anywhere z > 0, which is the axis
of the ring.
The grounded infinite plane can be modeled by putting an image ring of charge

−Q centered on the z-axis but in the plane z = −b, below the xy-plane (the

mirror image of the original ring). Any point on the z-axis is equidistant from all

of the charge in either the original ring or the image ring. At position z, it is then

simple to write down the total potential,

Φ(z) =
1

4πε0

(
Q√

a2 + (z − b)2
+

−Q√
a2 + (z + b)2

)

b) (8) Expand your result of part a in power series, one valid for z <
√

a2 + b2, and another series
valid for z >

√
a2 + b2.

The direct term from the original ring depends on

1√
a2 + (z − b)2

=
1

√
a2 + b2 + z2 − 2bz

=
1

√
c2 + z2 − 2cz cos α

where one has Pythagorean relation c2 = a2 + b2 and angle definition cos α = b/c.
That is, α is the angle between the z-axis and a radius from the origin out to the
ring. But this is of the form of a reciprocal of a difference of c and z:

1√
a2 + (z − b)2

=
1

|~c − zẑ|

where ~c is of length c and polar angle direction θ = α (with arbitrary azimuthal
direction, for instance, let it have φ = 0). Then we know it expansion from
knowledge of Legendre polynomials,

1

|zẑ − ~c|
=

∞∑
l=0

rl
<

rl+1
>

Pl(cos α)

and r<, r> are the min, max of z and c =
√

a2 + b2.

For the image ring, we need the expansion with the opposite sign on b,

1√
a2 + (z + b)2

=
1

√
a2 + b2 + z2 + 2bz

=
1

√
c2 + z2 + 2cz cos α

5



Due to the opposite sign on the cosine term, it can also be expanded the same
way, but it is equivalent to shifting α by π (the angle from +z-axis to the image
ring is α + π). Then the expansion needed for the image is

1

|zẑ + ~c|
=

∞∑
l=0

rl
<

rl+1
>

Pl(cos(α + π))

The shift on α reverses the sign of the argument in Pl, i.e., cos(α + π) = − cos α.
The the total potential on the z-axis is

Φ(z) =
Q

4πε0

(
1

|zẑ − ~c|
−

1

|zẑ + ~c|

)
=

Q

4πε0

∞∑
l=1,3,5...

rl
<

rl+1
>

2Pl(cos α)

Combining the two contributions involves the combinations

Pl(cos α) − Pl(− cos α) = [1 − (−1)l]Pl(cos α) =

which relies on the fact that Pl with odd l are odd functions, resulting in only a
sum over the odd Legendre polynomials.

Summarizing, for z < c =
√

a2 + b2 we have

Φ(z) =
2Q

4πε0

∞∑
l=1,3,5...

zl

cl+1
Pl(cos α) =

2Q

4πε0

∞∑
l=0

z2l+1

c2l+2
P2l+1(cos α)

and for z > c we have

Φ(z) =
2Q

4πε0

∞∑
l=1,3,5...

cl

zl+1
Pl(cos α) =

2Q

4πε0

∞∑
l=0

c2l+1

z2l+2
P2l+1(cos α)

c) (8) Use the result of part b to find the electric potential Φ(r, θ, φ) for any points above the
grounded plane.
Once the potential is known on the z-axis, points off of that axis are found by
assuming the general form for azimuthal symmetry,

Φ(~r) =
1

4πε0

∞∑
l=0

[
Alr

l + Blr
−(l+1)

]
Pl(cos θ)

To match to the solution on the z-axis, use Pl(cos(0)) = 1, then the expansion
coefficients can be read off of the solution for Φ(z). The net result is that once the
different regions z < c and z > c are considered, one needs to simply include the
factor of Pl(cos θ) into the solution for Φ(z) to extend it away from the z-axis:

Φ(r, θ) =
2Q

4πε0

∞∑
l=1,3,5...

rl
<

rl+1
>

Pl(cos α)Pl(cos θ) =
2Q

4πε0

∞∑
l=0

r2l+1
<

r2l+2
>

Pl(cos α)Pl(cos θ)

where again r<, r> are the min and max of r and c =
√

a2 + b2. One can then also
express it separately in the two regions z < c and z > c.
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2. A very long conducting cylinder with a circular cross section of radius a is placed with its
axis a distance b > a away from and parallel to a grounded plane conductor. The cylinder
is held at fixed potential V relative to the grounded plane.

a) (10) Use the method of images and show that by an appropriate choice of image line
charges, the equipotentials are circles. Hint: The image line charge within the cylinder
does not need to be along its axis.
This is a 2D geometry (x along the plane, y perpendicular), and we know from

different homework problems that we can place the original line charge within the

cylinder (but not at its center), and an oppositely charged image (line) charge

below the plane a to cause the cylinder and plane to be equipotentials. Place these

line charges on the y-axis at y = ±c, where constant c is to be determined. By

such placement, already the plane is grounded (Φ = 0 there). Each line of charge

with linear charge density λ makes an outward electric field

Eρ =
λ

2πε0ρ

and the corresponding contribution to potential, for one line of charge, is,

Φ(ρ) = −
λ

2πε0
ln ρ

where an arbitrary reference potential has been dropped. Then the total (2D)

potential at positions above the plane but outside the cylinder will be

Φ(x, y) = −
λ

2πε0
ln
√

x2 + (y − c)2 +
λ

2πε0
ln
√

x2 + (y + c)2

Φ(x, y) =
λ

4πε0
ln

(
x2 + (y + c)2

x2 + (y − c)2

)
By design, on y = 0, we have Φ(x, 0) = 0 for the grounded plane.

For other equipotentials at Φ = V , some other constant, re-arrange to get their

depedence on (x, y).

exp(4πε0V/λ)
[
x2 + (y − c)2

]
= x2 + (y + c)2(

e4πε0V/λ − 1
)
(x2 + y2 + c2) − 2cy

(
e4πε0V/λ + 1

)
= 0

x2 + y2 − 2cy coth
(2πε0V

λ

)
+ c2 = 0

Already that is quadratic in x and y with equal factors on x2 and y2, hence the

equipotentials are circles.
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b) (8) Find how the circle center and radius of an equipotential circle depend on a chosen value of
potential Φ between 0 and V .
Re-arange some more the equation for the equipotentials,

x2 +
[
y − c coth

(
2πε0V

λ

)]2
= c2

[
coth2

(
2πε0V

λ

)
− 1

]

x2 +
[
y − c coth

(
2πε0V

λ

)]2
= c2 csch2

(
2πε0V

λ

)
From this we can read off the radius R of the circle and its center y0,

R = c csch
(

2πε0V

λ

)

y0 = c coth
(

2πε0V

λ

)
such that the equation for the circular equipotentials is the standard form,

x2 + (y − y0)2 = R2.

c) (6) Calculate the capacitance per unit length of the cylinder/plane system.
We take R = a which is the size of the cylindrical conductor, and y0 = b which is
the distance of its center from the grounded plane. Then these combine to give

R = a = c
1

sinh(2πε0V/λ)
, y0 = b = c

cosh(2πε0V/λ)

sinh(2πε0V/λ)

hence
b

a
= cosh

2πε0V

λ
.

Then the capacitance per unit length is the charge per unit length divided by the
potential,

C

L
=

λ

V
=

2πε0

cosh−1(b/a)

As ε0 = 8.854 pF/m, one can see that this has the correct dimensions. Largest
values will result when b is nearly equal to a, that is, the cylinder is as close as
possible to the plane.

d) (6) Bonus. Find the charge density induced on either the cylinder or on the plane, as a function
of angular or linear coordinate on each, respectively. (Do only one or the other.)

For the surface charge density on the grounded plane, use the basic formula:

σ = ε0Ey = −ε0
∂Φ

∂y

∣∣∣∣
y=0

Then apply it to the potential found:

σ = −ε0
λ

4πε0

∂

∂y
ln

(
x2 + (y + c)2

x2 + (y − c)2

)
=

= −
λ

4π

[
2(y + c)

x2 + (y + c)2
−

2(y − c)

x2 + (y − c)2

]
y=0

= −
λc/π

x2 + c2
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But now the definitions of a and b lead to a simple result,

b2 − a2 = c2
(
coth2 2πε0V

λ
− csch22πε0V

λ

)
= c2.

Then the surface density on the plane, in terms of the cylinder parameters, is

σplane =
(

−
λ

π

) √
b2 − a2

x2 + b2 − a2
.

As the dimensions of λ are charge/length, this has the correct dimensions of charge/area.

Further, it will be of greatest magnitude at x = 0, at the closest point between the

cylinder and the plane. It has the opposite sign as the charge on the cylinder.

For the surface density on the cylinder, use:

σ = ε0Er = −ε0
∂Φ

∂r

∣∣∣∣
r=a

where r is the radius measured from the center of the cylinder. Use the coordinates

like this:

x = r sin θ, y = b − r cos θ.

where θ = 0 gives the point on the cylinder closest to the plane. Then in these

coordinates the potential is

Φ =
λ

4πε0
ln

[
r2 sin2 θ + (b + c − r cos θ)2

r2 sin2 θ + (b − c − r cos θ)2

]

=
λ

4πε0
ln

[
r2 + (b + c)2 − 2(b + c)r cos θ

r2 + (b − c)2 − 2(b − c)r cos θ

]
Take the derivatives,

σ =
−λ

4π

[
2r − 2(b + c) cos θ

r2 + (b + c)2 − 2(b + c)r cos θ
−

2r − 2(b − c) cos θ

r2 + (b − c)2 − 2(b − c)r cos θ

]
r=a

=
−λ

4π

[
a − (b + c) cos θ

b2 + bc − a(b + c) cos θ
−

a − (b − c) cos θ

b2 − bc − a(b − c) cos θ

]

=
−λ

4π

[ a
b+c

− cos θ

b − a cos θ
−

a
b−c

− cos θ

b − a cos θ

]
=

−λ

4π

(
−

2c

a

) 1

b − a cos θ

Finally summarizing in terms of the cylinder parameters,

σcylinder =
(

λ

2πa

) √
b2 − a2

b − a cos θ
.

This peaks at θ = 0, which is the point on the cylinder closest to the plane, as can be

expected. It also has a positive sign as necessary for a cylinder at positive potential.
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