
Electrodynamics I Final Exam - Part A - Closed Book KSU 2014/12/18

Name Electro Dynamic

Instructions: Use SI units. Please make your answers brief and clear.

1. (2) Give an expression for the force d~F on a current element i d~l in a magnetic induction ~B.

d~F = i d~l × ~B

which is the vector cross product of the current element with the applied magnetic induction.

2. (2) A distribution of current ~J(r) exists in a region of magnetic induction ~B(r). Write an expression
for the total torque on the current distribution.

~τ =
∫

r × d~F =
∫

r ×
[
~J(r)d3r × ~B(r)

]
=
∫

d3r ~r ×
[
~J(r) × ~B(r)

]

3. (2) For a current distribution ~J(r), how does one express the vector potential ~A(r) that it produces?

~A(r) =
µ0

4π

∫
d3r′

~J(r′)

|r − r′|
where µ0 is the permeability of free space.

4. (2) A flat coil (loops confined in some plane) has N turns of some arbitrary two-dimensional shape
(along some path r(θ), for example). If it carries a current i, how do you write an expression for
its magnetic dipole moment ~m?

~m =
1

2

∮
~r × Ni d~l(r) = NiAẑ

where d~l(r) describes the path of the loops, and A is the enclosed area whose normal points

in the ẑ direction.

5. (2) A particle of charge q and mass M makes a periodic orbital motion. Write an expression
relating its orbital magnetic moment ~m and its orbital angular momentum ~L.

m =
qA

T
=

qπr2

T
=

qr

2

2πr

T
=

qMvr

2M
or ~m =

q

2M
~L.

6. (2) What is the physical definition of magnetization ~M(r)?

Magnetization ~M(r) is the local value of average magnetic moment per unit volume. It means

that by averaging over some small but macroscopic volume ∆V centered at r, one defines it

as

~M(r) =
1

∆V

∑
i∈∆V

~mi

where the sum is over all magnetic dipoles ~mi within ∆V .

7. (2) Give the constitutive relation between magnetic induction, magnetization, and magnetic field.

~B = µ0

(
~H + ~M

)
.
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8. (4) Use delta-functions in spherical coordinates to express the current density ~J(r) for the following
situation: A spherical shell of radius a, with surface charge density σ = σ0 sin θ, that is rotating
around the z-axis at angular frequency ω.

Use the motion of the surface charge density as ~v = ωẑ × ~r = ωrẑ × r̂ = ωrφ̂, and then

write

~J(r) = ρ~v = σδ(r − a)~v = σ0 sin θδ(r − a)ωrφ̂ = σ0ωa sin θ δ(r − a) φ̂.

9. (2) A square a × a coil has N turns. A uniform magnetic induction B = B0 sin(ωt) passes
perpendicularly through the coil. Calculate the time-dependent emf produced in the coil.

ε = −
dΦB

dt
= −

d

dt

∫
N ~B · d ~A = −

d

dt
NB0a2 sin(ωt) = −NB0a2ω cos(ωt).

10. (2) Give an expression for the time-dependent electric field in terms of scalar and vector potentials.

~E(r, t) = −~∇Φ −
∂

∂t
~A

11. (4) In the presence of any time-dependent sources, what equation is obeyed by the vector potential,
when using the Lorentz gauge?

It is a wave equation, driven by the current density ~J(r, t) scaled by µ0,

∇2 ~A −
1

c2

∂2

∂t2
~A = −µ0

~J(r, t)

12. (4) Consider a wave equation, ∇2Ψ− 1
c2

∂2

∂t2
Ψ = −4πf(r, t), where f(r, t) is the source that drives

some waves Ψ(r, t). Write out the space- and time-dependent Green’s function for this equation
that applies to a problem where the source turns on at time t = 0.

G(r, t; r′, t′) =
1

|r − r′|
δ

(
t′ − t +

|r − r′|
c

)
This produces a response at time t from a source at time t′, related by

t = t′ +
|r − r′|

c

that is, the response comes after the propagation time for the waves to arrive at the observer’s

position.

13. (4) Write out an equation for Poynting’s theorem in differential form. Explain in words what each
term means physically.

∂u

∂t
+ ~∇ · ~S + ~J · ~E = 0.

where u is EM energy density, ~S = ~E × ~H is the Poynting vector, and ~J and ~E are current

density and electric field. The first term is the increase in EM field energy in a volume

element. The second term is the flux of EM energy into that volume element. The third

term is the mechanical work done on charges in that volume by the electric field. Poynting’s

theorem demonstrates that total mechanical plus EM energy is conserved.
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14. (4) From consideration of Maxwell’s equations, what are the symmetry properties (odd or even)
of the electric polarization ~P under space inversion? What about time inversion?

From the relation ~D = ε0
~E + ~P , the transformation properties of ~P are the same as those

for ~E. From Gauss’ Law,
~∇ · ~E = −ρ/ε0,

with ρ being scalar (even under space inversion), then ~E and hence ~P are odd under space

inversion (they are vectors). Time does not appear in this one of Maxwell’s equations. There-

fore, ~E and ~P are even under time reversal.

15. (4) A plane EM wave is traveling in the z-direction in a medium with µ = µ0 and ε = 4ε0. With
linearly polarized ~E = E0x̂ exp[i(kz − ωt)] write an expression for ~B(z, t) in this wave.

Faraday’s Law gives the relation between ~E and ~B, for harmonic time dependence (∂/∂t −→
−iω), and with ~∇ −→ i~k, and dispersion relation k = ω

√
εµ,

~∇ × ~E +
∂ ~B

∂t
= i~k × ~E − iω ~B = 0 or ~B =

1

ω
~k × ~E =

√
εµ n̂ × ~E

where n̂ = ~k/k = ẑ. The cross product ẑ × ~E ∼ ŷ, and
√

εµ = 2
√

ε0µ0 = 2/c. We get

~B =
2

c
E0 ŷ exp[i(kz − ωt)].

16. (4) A plane wave travels in the x-direction: ~E(r, t) = E0(ŷ− iẑ) exp[i(kx− ωt)]. Looking into the
wave at a fixed point in space, in which direction does the electric field vector rotate (clockwise or
couterclockwise)? Which circular polarization is this (right or left)?

Taking a fixed space point (x = 0), and looking at the time-dependence, use the implied real

part to get the components of ~E:

~E = Re {E0(ŷ − iẑ) exp(−iωt)} = E0 [ŷ cos(ωt) − ẑ sin(ωt)]

For small times t > 0 the ẑ component increases negatively, and the rotation of the wave

towards the observer is clockwise. Pointing your right thumb back towards the source, your

right 4 fingers rotate in the clockwise sense. This is right circular polarization.

17. (2) Write an expression for the dielectric function ε(ω) in a plasma.

ε(ω) = ε0

(
1 −

ω2
p

ω2

)
where the squared plasma frequency ωp depends on the total volume density of free charges

n, according to

ω2
p =

ne2

mε0

and m is the carrier mass (usually, the electron mass).

18. (2) What does ε(ω) imply for EM waves of low frequency traveling in a plasma?

If ω < ωp, then the dielectric function becomes negative, ε < 0. The wave vector k = ω
√

εµ
becomes pure imaginary, leading to strong damping of the waves entering a plasma, over a

short distance. Waves with frequencies below ωp do not propagate through a plasma.
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Electrodynamics I Final Exam - Part B - Open Book KSU 2014/12/18

Name

Instructions: Use SI units. Please write your derivations and final answers on these pages. Explain your
reasoning for full credit. Discuss the physics if the math is impossible.

1. (18) Consider a straight wire of radius a and length l in direction z, with a current density ~J = σ ~E
that is uniform over its cross section. ~E outside the wire is assumed to be negligible here.

a) (6) For a DC current through the wire, find the magnetic induction ~B both inside and outside
the wire.
Suppose the total current is I = πa2J . Outside the wire, application of Ampere’s Law

is trivial and goes like:∮
~B · d~l = µ0Ienc =⇒ Bφ =

µ0I

2πρ
=

µ0πa2J

2πρ
=

µ0a2J

2ρ
=

µ0a2σE

2ρ
, ρ > a.

For the region inside the wire, the enclosed current out to radius ρ < a will be instead

Ienc = Iρ2/a2, then the magnetic induction is obtained by∮
~B · d~l = µ0Ienc =⇒ Bφ =

µ0Iρ2/a2

2πρ
=

µ0Iρ

2πa2
=

µ0Jρ

2
=

µ0σEρ

2
, ρ < a.

b) (6) Based on your result for the DC magnetic field, determine the Poynting vector ~S inside
the wire, as a function of the radial coordinate ρ from the axis of the wire.
Here evaluate Poynting vector ~S = ~E × ~H, using the magnetic field inside the wire
~H = ~B/µ0, and uniform electric field ~E = ~J/σ.

~S = ~E × ~H =
Jẑ

σ
×

1

µ0

µ0Jρφ̂

2
=

J2ρ

2σ
(ẑ × φ̂) = −

J2ρ

2σ
ρ̂ = −

σE2ρ

2
ρ̂.

This is a flow of EM energy towards the axis of the wire!

c) (6) Show that the result for ~S satisfies Poynting’s theorem applied to the whole volume of the
wire segment. Comment on the physical significance of the terms in the equation.
Integral form for Poynting’s theorem is∫

V
d3r

[
∂u

∂t
+ ~J · ~E + ~∇ · ~S

]
= 0

The first term is the increase in EM energy in the wire (which is zero in steady state),

the second term in the work done on free charges, and the last is the flux of EM energy

out of the volume. The work done on the charges (becomes heat) is∫
d3r ~J · ~E =

∫ 2π

0
dφ

∫ l

0
dz

∫ a

0
ρdρ

J2

σ
=

(πa2l)J2

σ
= (πa2l)σE2.

The flux of ~S is changed to a surface integral at the curved outer surface, ρ = a, n̂ = ρ̂,∫
d3r ~∇ · ~S =

∫
~S · n̂ dA = −

J2a

2σ
2πal = −

(πa2l)J2

σ
= −(πa2l)σE2.

The negative sign shows that it is actually a flux of EM energy into the wire. Thus,

Poynting’s theorem is satisfied. This flux of energy becomes the work done on the

free charges and accounts for the ohmic heating of the wire. [Also note: Can show
~∇ · ~S = 1

ρ
∂
∂ρ

(ρSρ) = −σE2 and ~J · ~E = σE2, which sum to zero. These are local

expressions of the terms in Poynting’s theorem.]
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2. (18) Consider again a straight wire as in the previous question, with ~J = σ ~E.

a) (6) Now suppose the current is driven through the wire at a high frequency ω, i.e, harmonic
fields varying as exp(−iωt). Apply Maxwell’s equations to such a situation to get the differ-
ential equation that Ez should solve inside the wire.
Write out Ampere’s Law and combine with Faraday’s Law and ~J = σ ~E.

~∇ × ~E = −µ0
∂ ~H

∂t
, ~∇ × ~H = ~J + ε0

∂ ~E

∂t

~∇ × (~∇ × ~E) = −µ0
∂

∂t
~∇ × ~H = −µ0

∂

∂t

(
~J + ε0

∂ ~E

∂t

)
= −µ0

(
σ

∂ ~E

∂t
+ ε0

∂2 ~E

∂t2

)
With ~∇ · ~E = 0 (no net free charge), and using −iω for time derivatives, this is

−∇2 ~E =
(
iωµ0σ + ω2µ0ε0

)
~E ≡ k2 ~E

This applies to any component of ~E, including Ez. If Ez depends on z as eikzz and on

the radial coordinate ρ, then

∇2Ez = −k2
zEz +

1

ρ

∂

∂ρ

(
ρ

∂Ez

∂ρ

)
= −k2

zEz +
∂2Ez

∂ρ2
+

1

ρ

∂Ez

∂ρ
= −k2Ez,

This is Bessel’s equation for J0(kρρ), with a complex wave vector kρ =
√

k2 − k2
z.

b) (6) Consider the case of a very good conductor. Explain physically why you should expect
the electric field (and ~J) to be nonuniform now within the wire. How should | ~E| vary with ρ
inside the wire? I am looking for a very approximate answer; it may not require a calculation.
If the conductivity is very high, then for some range of frequencies one has k2 ≈ iωµ0σ.

Taking the square root to get k, we have
√

i =
√

eiπ/2 = eiπ/4 = (1 + i)/
√

2, then

k ≈ (1 + i)
√

ωµ0σ

2
=

1 + i

δ

where δ =
√

2
ωµ0σ

is the skin depth. The electric and magnetic fields will be concen-

trated at the surface of the wire, causing Ez that will tend to increase with ρ. Higher

frequency fields will have difficulty to penetrate much below the skin depth. A complete

mathematical solution corresponds to a waveguide problem and should show this more

rigorously.

c) (6) For a copper wire of radius a = 1.00 mm, ε = ε0 and µ = µ0 and σ = 5.95× 107 (Ω ·m)−1,
estimate the angular frequency ω above which one needs to account for this spatial variation
of the fields inside the wire.
The spatial variation of the fields will be important when the skin depth is similar in

size to the radius of the wire. The skin depth is seen in the above derivations. Then put

δ =

√
2

ωµ0σ
≈ a

and solving for the angular frequency,

ω ≈
2

µ0σa2
=

2

(4π × 10−7)(5.95 × 107)(10−3)2
= 27000 s−1

This is a surprisingly low frequency above which the current density will not be uniform

inside the wire! If the wire is thinner, say a = 0.100 mm, this frequency limit is 100×
higher, because there is much less interior volume into which fields could penetrate.
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3. (16) Hydrogen gas (density = 1012 H2 molecules per cm3) is heated to a very high temperature
(kBT � 13.6 eV) so that all molecules are broken apart and the atoms are ionized.

a) (8) Estimate the range of angular frequencies ω of propagating EM waves in the plasma. Give
a numerical result.
EM waves will propagate in the plasma only if their angular frequency is higher than

the plasma frequency, ωp, given by

ω2
p =

ne2

mε0

where n is the volume density of free charges and m is their mass. The only free charges

here are the ionized electrons. One has an electron from every H-atom. Therefore,

n = 2.0 × 1012/cm3 = 2.0 × 1018/m3. This gives the plasma frequency,

ωp =

√
(2.0 × 1018)(1.602 × 10−19)2

(9.11 × 10−31)(8.854 × 10−12)
= 8.0 × 1010 s−1

This corresponds to frequency fp = ωp/2π ≈ 13 GHz, so typical radio waves and

microwaves will not pass through this plasma.

b) (8) Suppose a plane EM wave of amplitude E0 originally traveling in vacuum is incident on
this plasma at normal incidence. The wave has a frequency ω = ωp/

√
2, where ωp is the

plasma frequency. Use the Fresnel formulas to find the amplitude of the electric field after it
travels a distance of 5λ into the plasma, where λ = 2πc/ω is the wavelength in vacuum.
I assume µ = µ′ = µ0, i.e., nonmagnetic media. The incident medium is vacuum,

so n = 1. On the transmission side, the plasma medium is described by a dielectric

function ε′ (with ω = ωp/
√

2) and index of refraction n′,

ε′ = ε0

(
1 −

ω2
p

ω2

)
= ε0

(
1 −

ω2
p

ω2
p/2

)
= −ε0, n′ =

c

v′ =
√

ε′µ′
√

ε0µ0
= i

For normal incidence, the Fresnel formulas do not depend on the wave polarization, and

give for the transmitted amplitude (just inside the plasma):

E′
0

E0
=

2n

n + µ
µ′ n′ =

2n

n + n′ =
2

1 + i

The waves propagate in the plasma as exp(ik′z), where k′ = ω
√

ε′µ′ = n′ω/c = iω/c.
So the space dependence of the waves in the plasma is

E′(z) = E′
0eik′z = E′

0ei(i ω
c
)z = E′

0e− ω
c

z

But ω/c = 2πf/c = 2π/λ, where λ is the vacuum wavelength, and inserting the result

from the Fresnel formula,

E′(z) =
2E0

1 + i
e−2π

λ
z

For a distance of z = 5λ one then has

E′(5λ) =
2E0

1 + i
e−10π = E0 (1 − i) e−10π

The magnitude is also found to be

|E′(5λ)| = E0

√
2 e−10π ≈ (3.2 × 10−14)E0.

Essentially, by this distance into the plasma there is no significant electric field.
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