
Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17

Name Electro Dynamic

1. (3) Write Gauss’ Law in differential form.

�∇ · �E(�r) = ρ(�r)/ε0, or �∇ · �D = ρ,

�E= electric field, ρ=volume charge density, ε0=permittivity of vacuum,
�D=electric displacement.

2. (3) Write Poisson’s equation for the potential Φ(�r) produced by a charge density ρ(�r).

∇2Φ(�r) = −ρ(�r)/ε0.

3. (3) Write a differential equation that a Green function G(�r, �r ′) must solve.

∇2G(�r, �r ′) = −4πδ(�r − �r ′).

�r ′ is the source point, �r is the observation point or point where a response
is measured.

4. (3) A problem has no boundaries. How can you write the solution Φ(�r) to your above Poisson
equation using a Green function?

Φ(�r) =
1

4πε0

∫
V

d3r′ G(�r, �r ′)ρ(�r ′).

where ρ(�r) is the given charge density within volume V , producing the
field.

5. (4) A problem has boundaries with Dirichlet boundary conditions. Now how can you write
the solution to the Poisson equation using a Green function?

Φ(�r) =
1

4πε0

∫
V

d3r′ G(�r, �r ′)ρ(�r ′) − 1

4π

∫
S

da ′ ∂G

∂n ′ Φ(�r ′).

where the second integral is over the surface S bounding the system, and
�n ′ is a normal vector pointing out of the system.

6. (3) What is the formula for the free-field Green function in three dimensions?

G(�r, �r ′) =
1

|�r − �r ′| .

7. (3) Once you know the solution for potential Φ(�r), how can you obtain the surface charge
density σ on a conductor boundary?

σ = ε0Es = −ε0
�E · n̂ = ε0

∂Φ
∂n

,

where Es is the component pointing out of the conductor, while n̂ is the
normal pointing out of volume V , into the conductor.

8. (3) How can you use Φ(�r) to obtain the energy density in an electric field in a linear dielectric
medium?

w =
1
2

�E · �D =
1
2
(−∇Φ) · (−ε∇Φ) =

1
2

ε|�∇Φ|2.
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9. (3) What is the capacitance of a conducting sphere of radius R?

C =
Q

V
=

Q

Q/(4πε0R)
= 4πε0R.

10. (9) Use delta-functions to express the charge density ρ(�r) for the following charge distributions,
in the indicated coordinate systems:

a) A charge Q distributed uniformly over a spherical shell of radius a, in spherical coordinates
(r, φ, θ).

ρ(�r) =
Q

4πr2
δ(r − a).

b) A point charge q on the z-axis at z = z0, in cylindrical coordinate (ρ, φ, z).

ρ(�r) =
q

2πρ
δ(ρ) δ(z − z0).

c) The same charge, in spherical coordinates (r, φ, θ).

ρ(�r) =
q

2πr2
δ(r − z0) δ(cosθ − 1).

11. (9) Give the orthogonality relations for

a) Legendre polynomials

∫ 1

−1

dx Pl(x)Pl′(x) =
2

2l + 1
δl,l′ .

a) spherical harmonics

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)Y ∗
l,m(θ, φ)Yl′,m′(θ, φ) = δl,l′δm,m′ .

a) Bessel functions Jm(kρ) on 0 ≤ ρ ≤ a

∫ a

0

ρ dρ Jm(
xm,n

a
ρ)Jm(

xm,n′

a
ρ) =

a2

2
[Jm+1(xm,n)]2δn,n′,

where xm,n and xm,n′ are any zeroes of the Jm(x) Bessel functions.

12. (3) Give an expression defining the electric dipole moment of a charge distribution:

�p =
∫

V

d3x ρ(�r) �r.

13. (3) Give an expression defining the electric polarization in a medium:

�P (�r) =
∑

i

ni(�r) 〈�pi〉,

where ni(�r) is the number of ith type of electric dipoles per unit volume
at �r, with their average value indicated by the brackets.
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Electrodynamics I Exam 1 - Part B - Open Book KSU 2005/10/17

Name

Instructions: Use SI units. Please show the details of your derivations here. Explain your
reasoning for full credit. Open-book only, no notes.

14. Within a sphere of radius R there is a non-zero charge density,

ρ(�r) = ρ(r, θ, φ) = ρ0
R

r
sin2 θ. (1)

It is surrounded by an infinite vacuum.

a) (6) Determine the total charge.

q =
∫

V

d3rρ(�r) =
∫ R

0

dr r2

∫ 2π

0

dφ

∫ 1

−1

d(cos θ) ρ0

R

r
(1 − cos2 θ)

= ρ0R[
∫ R

0

dr r] [2π] [
∫ 1

−1

dx (1 − x2)]

= ρ0R[R2/2] [2π] [2(1 − 1/3)]

=
4πR3

3
ρ0.

b) (6) Express ρ(�r) in terms of Legendre polynomials. Why this is a good thing to do?

As sin2 θ = 1 − cos2 θ, and P0(x) = 1, P2(x) = (3x2 − 1)/2, do the
replacement:

cos2 θ = x2 = (2P2 + 1)/3, then

ρ(�r) = ρ0

R

r
(1 − x2) = ρ0

R

r
[1 − (2P2 + 1)/3]

ρ(�r) = ρ0

R

r
· 2

3
[P0(x) − P2(x)].

It shows the symmetry of the charge distribution, which will lead to
a similar symmetry in the resulting potential field.

c) (8) Determine the potential Φ(r, θ, φ) for points outside the sphere. Think about different
ways to do this, perhaps, before proceeding.

In this region ρ = 0, so we are solving Laplace’s equation with
azimuthal symmetry and r > r ′, then we can use the general form
of solution,

Φ(r, θ) =
∞∑

l=0

[Alr
l + Blr

−(l+1)]Pl(cos θ),

The potential must be finite at r → ∞, so all Al = 0. The Bl

coefficients can be found if we know the potential on the z-axis.
This can be accomplished taking observation point �r on the z-axis,
from

Φ(z) =
1

4πε0

∫
V

d3r ′ 1
|�r − �r ′| ρ(�r ′),

with
1

|�r − �r ′| =
∞∑

l=0

(r ′)l

z(l+1)
Pl(cos θ′)
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Only the l = 0, 2 terms will survive from the integration
∫ 1

−1 d cos θ′PlP
′
l =

2/(2l + 1)δl,l′ . Then what remains is

Φ(z) =
1

4πε0

∫ R

0

dr ′2π(r ′)2ρ0

R

r ′
2
3

[
2
z

− 2
5

(r ′)2

z3

]

=
1

4πε0

4π

3
ρ0R

[
2R2

2z
− 2

5

R4

4z3

]

=
ρ0R2

3ε0

[
R

z
− R3

10z3

]

Then we can read off the coefficients,

B0 =
ρ0R3

3ε0

, B2 = −ρ0R5

30ε0

the potential outside the sphere of charge is

Φ(r, θ) =
ρ0R2

3ε0

[
R

r
P0(cos θ) − R3

10r3
P2(cos θ)

]
.

d) (12 Bonus pts) Determine the potential Φ(r, θ, φ) for points inside the sphere. Be more
careful here, what equation are you solving?

In this case you have a region filled with charge, so you are solving
the Poisson equation. The solution must be expressed as

Φ(�r) =
1

4πε0

∫
V

d3r ′ 1
|�r − �r ′| ρ(�r ′),

and the best way to go now is to use

1

|�r − �r ′| = 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl
<

rl+1
>

Y ∗
l,m(θ′, φ′)Yl,m(θ, φ).

It is convenient to express the charge density in terms of Ylm, via

Pl(cos θ) =

√
4π

2l + 1
Yl,0(θ, φ).

ρ(�r) = ρ0

R

r
· 2

3

√
4π

[
Y0,0(θ, φ) − 1√

5
Y2,0(θ, φ)

]
.

Putting these together, doing the angular integrations, and using
the orthogonality of the spherical harmonics, then going back to the
Legendre polynomial description, there remains some ugly radial
integration:

Φ(r, θ) =
1

4πε0

∫ R

0

dr ′(r ′)2ρ0

R

r ′
2

3

√
4π4π

[
1

r>

Y0,0(θ, φ) − 1

5

r2
<

r3
>

1√
5

Y2,0(θ, φ)

]

Φ(r, θ) =
1
ε0

∫ R

0

dr ′(r ′)2ρ0

R

r ′
2
3

[
1

r>

P0(cos θ) − 1
5

r2
<

r3
>

P2(cos θ)

]

4



The integrations need to be split into two parts:
1) r ′ goes from 0 to r, with r< = r ′, r> = r.
2) r ′ goes from r to R, with r< = r, r> = r ′.

For P0 coefficient:∫ R

0

dr ′ r ′

r>

=
∫ r

0

dr ′ r
′

r
+

∫ R

r

dr ′ r
′

r ′

=
r

2
+ (R − r) = R − r

2
.

For P2 coefficient:∫ R

0

dr ′r ′ r
2
<

r3
>

=
∫ r

0

dr ′ r
′3

r3
+

∫ R

r

dr ′ r2

r ′2

=
r

4
− r2(

1

R
− 1

r
) =

5r

4
− r2

R
.

Putting these results all together, the potential inside the sphere of
charge is:

Φ(r, θ) =
ρ0R2

3ε0

[
(2 − r

R
)P0(cos θ) − 1

5
(
5r

2R
− 2r2

R2
)P2(cos θ)

]

Check the result at r = R, where the inside and outside solutions
should match.

Φ(R, θ) =
ρ0R2

3ε0

[
P0(cos θ) − 1

10
P2(cos θ)

]

so in fact these match correctly! But note carefully that the internal
potential does not take the simple form with single powers of r mul-
tiplying Legendre Polynomials, because it is a solution of Poisson’s
equation, not Laplace’s equation.
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15. A very long right circular cylinder of uniform permittivity ε, radius a, is placed into a vacuum
containing a previously uniform electric field �E0 oriented perpendicular to the axis of the
cylinder.

a) (4) Ignoring end effects, write general expressions for the potential inside and outside the
cylinder.

Since the cylinder is very long, this is a two-dimensional electrostat-
ics problem, with a potential Φ(ρ, φ). Then the expected standard
form of the potential applies.
Inside the cylinder, which inlcudes ρ → 0, there can only be positive
powers of ρ, so we assume:

Φin =
∞∑

ν=1

[Aν cos(νφ) + Bν sin(νφ)]ρν.

Outside the cylinder, there can only be decaying powers of ρ, except
for a term to give a uniform asymptotic field, so we assume:

Φout = −E0ρ cos φ +
∞∑

ν=1

[Cν cos(νφ) + Dν sin(νφ)]ρ−ν.

The first term produces an electric field strength E0 in the x-direction.

b) (8) State and apply the appropriate boundary conditions at the surface of the cylinder.

At the cylinder surface, we must have continuity of the normal com-
ponent of �D, and the tangential component of �E.

For normal �D, match the ρ components:

−ε
∂Φin

∂ρ
|ρ=a = −ε0

∂Φout

∂ρ
|ρ=a.

Then matching the coefficients of the sines and cosines, which are
linearly indepedent, we get:

εA1 = ε0[−E0 − C1a−2], (ν = 1)

εAν = −ε0Cνa−ν−1, (ν > 1)

εBν = −ε0Dνa−ν−1, (ν > 1)

For tangential �E, match the φ components:

−1

a

∂Φin

∂φ
|ρ=a = −1

a

∂Φout

∂φ
|ρ=a.

Again matching coefficients,

A1 = −E0 + C1a−2, (ν = 1)

Aν = Cνa−ν−1, (ν > 1)

Bν = Dνa−ν−1, (ν > 1)
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c) (8) Determine the potential inside and outside the cylinder.

The homogenous equations for ν > 1 mean those coefficients are all
zero. We can easily solve for A1 and C1,

ε

ε0

(−E0 + C1a−2) = −E0 − C1a−2,

C1 =
ε − ε0

ε + ε0

E0a2

A1 = −ε0

ε
[E0 + C1a−2] =

−2ε0

ε + ε0

E0.

Φin = A1ρ cos φ =
−2ε0

ε + ε0

E0ρ cos φ =
−2ε0

ε + ε0

E0x.

Φout = −E0ρ cos φ + C1 cos φρ−1 = −E0ρ cos φ +
(

ε − ε0

ε + ε0

)
a2

ρ2
E0ρ cos φ

Φout =
[
−1 +

(
ε − ε0

ε + ε0

)
a2

ρ2

]
E0ρ cos φ.

d) (8) Determine the electric field inside and outside the cylinder. How does the field strength
inside compare to that outside, is it what you expect based on physical arguments?

Inside, the field is along x, with a uniform strength,

Ein, x = −∂Φin

∂x
=

2ε0

ε + ε0

E0.

This is smaller than the field at great distance from the cylinder, as
expected due to the polarization induced in the dielectric.

Outside, there is a superposition of the uniform applied field, to-
gether with one decaying as ρ−2

Eout, ρ = −∂Φout

∂ρ
=

[
1 +

(
ε − ε0

ε + ε0

)
a2

ρ2

]
E0 cos φ.

Eout, φ = −1
ρ

∂Φout

∂φ
=

[
−1 +

(
ε − ε0

ε + ε0

)
a2

ρ2

]
E0 sin φ.

Convert it to Cartesian components, it is:

Eout, x = Eout, ρ cos φ − Eout, φ sin φ = E0 +
(

ε − ε0

ε + ε0

)
a2

ρ2
E0 cos 2φ

Eout, y = Eout, ρ sin φ + Eout, φ cos φ =
(

ε − ε0

ε + ε0

)
a2

ρ2
E0 sin 2φ
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