
Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12

Name Electro Dynamic

Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly.

1. (2) Write an integral expression for the magnetic induction generated in unbounded vacuum by a
current density �J(�r).

�B(�r) =
µ0

4π

∫
d3r �J(�r′) × �r − �r′

|�r − �r′|3 .

2. (2) Now give the corresponding differential equation which the same magnetic induction must
satisfy.

�∇ × �B(�r) = µ0
�J(�r).

3. (2) What vector potential �A(�r) is generated by the same current distribution �J(�r)?

�A(�r) =
µ0

4π

∫
d3r

�J(�r′)

|�r − �r′| .

This is for the Coulomb gauge, where �∇ · �A = 0.

4. (4) How do the scalar and vector potentials determine the fields for a time-dependent problem.

They give the electric and magnetic fields by

�B = �∇ × �A, �E = −�∇Φ − ∂ �A

∂t
.

5. (2) Write out the integral form of Ampere’s Law.

∮
�H · d�l = Ienclosed.

6. (3) Give a formula for the potential energy of a magnetic dipole when placed in an external magnetic
induction �B.

U = −�m · �B.

7. (4) State the boundary conditions on �B and �H at an interface between two linear nonconducting
permeable media.

�B1 · n̂ = �B2 · n̂, �H1 × n̂ = �H2 × n̂.

Here n̂ is a unit vector normal to the boundary.

8. (2) Give the relation defining magnetic field �H in terms of magnetic induction �B and magnetization
�M .

�H =
�B

µ0

− �M.
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9. (2) A cylindrical permanent magnet has a uni-
form magnetization M along its long axis. Sketch
the lines of its �B-field both inside and outside.

(See Jackson, Fig. 5.11, for example.)

10. (2) Sketch the lines of its �H-field for the same
permanent magnet.

(See Jackson, Fig. 5.11, for example.)

11. (3) Give an expression for the magnetic dipole
moment of a current distribution �J(�r):

�m =
1
2

∫
d3r �r × �J(�r).

12. (4) Write out Maxwell’s equations for harmonic
time-dependent fields:

�∇ · �B = 0, �∇ × �E − iω �B = 0,

�∇ · �D = ρ, �∇ × �H + iω �D = �J.

13. (3) What quantity describes the flux of energy
carried in an electromagnetic wave? Give the
name and defining formula.

The Poynting vector, defined by the formula,

�S = �E × �H.

14. (2) How does the following quantity transform
under spatial inversion?

�Lem =
1
c2

∫
d3r �r × ( �E × �H)

Since �E(−�r) = −�E(�r) (odd), and �H(−�r) = �H(�r) (even), while �r itself re-
verses (odd), �Lem is EVEN under spatial inversion.

15. (2) How does �Lem transform under time reversal?

Since �E even while �H is odd, their product is ODD under time reversal.
These are the usual properties for angular momentum.
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16. (2) A plane electromagnetic wave at angular frequency ω propagates in the z-direction in a medium
with permittivity ε and permeability µ. Write an expression for its wavevector �k.

�k = ω
√

εµ ẑ.

17. (3) For the same plane wave, write an expression for its electric field �E(�r, t).

�E(�r, t) = E0 ε̂ exp {i(�k · �r − ωt)},

where polarization unit vector ε̂ is perpendicular to �k.

18. (3) Also for the same plane wave, what is the associated magnetic induction �B(�r, t)?

�B(�r, t) = E0

�k

ω
× ε̂ exp {i(�k · �r − ωt)},

as you can obtain quickly from the harmonic form of Farady’s Law.

19. (2) Give a relation between the intensity I0 in a plane EM wave and its time-averaged energy
density u.

I0 =
1

2
Re

{
�E × �H∗

}
=

1
√

εµ
u, u =

1

2
Re

{
ε

2
�E · �E∗ +

1

2µ
�B · �B∗

}
.

20. (2) When light undergoes total internal reflection at an interface between two optical media with
indexes n (incident side) and n′ (refraction side), how large is the incident angle θ?

The incident angle must be greater than the critical angle, defined by θc =
sin−1(n′/n), requiring n′ < n.

21. (3) For the same interface, at what incident angle will the reflected wave be totally polarized? And
in which direction is it polarized?

The incident angle must be the Brewster angle, θB = tan−1(n′/n), at which
there is no reflection for �E polarized within the plane of incidence. Then for
this incident angle the reflected light is 100% polarized perpendicular to the
plane of incidence.

22. (2) A dispersive medium has a frequency-dependent dielectric function ε(ω) (dispersion). For an
EM wave-packet of narrow bandwidth passing through this medium, describe at least one important
effect caused by the dispersion.

1) Different wavevector components travel at different speeds, leading to tem-
poral spreading.

2) Different wavevector components suffer a range of refraction angles, lead-
ing to spatial spreading.

3) The energy flows at a velocity different from the phase velocity.
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Electrodynamics I Final Exam - Part B - Open Book KSU 2005/12/12

Name

Instructions: Use SI units. Please Write your derivations and final answers on these pages. Explain
your reasoning for full credit. One-page note summary is allowed.

23. (16) An electromagnet is made by winding a coil with
N = 2000 turns on a cylindrical piece of soft iron with
length l = 4.0 cm and radius a = 4.0 mm, with high
permeability µ = 400µ0. One end of the electromagnet
is placed a distance d = 1.0 mm from a long rod of the
same cross section, with extremely high permeability
(take µ′ = ∞).

Assume that the fields �Biron and �Hiron within the iron are nearly uniform, and that d � a � l.
The arrangement is surrounded by vacuum. A constant current I = 5.0 A is flowing in the coil.

a) (8) Apply Ampere’s Law, showing the path you use, and estimate the magnitudes Biron and
Hiron, and the average magnetization Miron. Give them with correct SI units.

The path for Ampere’s Law is indicated in the Figure. Continuity of
�Bn gives Biron = Bgap = Brod, hence, Hrod = 0, and µHiron = µ0Hgap.
Then Ampere’s Law is

Hironl + Hgapd = NI, Hiron =
NI

l + µ
µ0

d
=

2000 × 5

0.04 + 400 × 0.001
= 22700 A/m.

Then the magnetic induction is

Biron = µHiron =
NI

l
µ

+ d
µ0

= 400µ0Hiron = 400 × 4π × 10−7 × 22700 = 11.4T.

The associated magnetization comes from the basic definition:

Biron = µHiron = µ0(Hiron + Miron),

Miron = (
µ

µ0

− 1)Hiron = (400 − 1) × 22700 = 9.07 × 106A/m.

b) (4) Determine the associated values of Bgap and Hgap in the gap between the electromagnet
and the other rod.

From the normal boundary conditions

Bgap = Biron = 11.4T, Hgap =
Bgap

µ0

=
Biron

µ0

=
µ

µ0

Hiron.

Hgap = 400Hiron = 400 × 22700 = 9.09 × 106A/m.

c) (4) Estimate the force of attraction between the electromagnet and the rod, in Newtons. Does
the result depend on d?

The magnetic induction in the gap acts on the effective surface magnetic
charges on the end of the electromagnet. The magnetic energy density
gives the force per unit area, therefore,

F = ugapA =
B2

gap

2µ0

πa2 =
11.42

2 × 4π × 10−7
π(0.004)2 = 2610 N.

You can also get this from energy analysis, but that requires careful
consideration of the work done by the current source. The result does
depend on d, via the dependence of Bgap on d.
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24. (12) Consider an EM plane wave propagating within a crystal of permittivity ε = 2.25 ε0 = (9/4) ε0
(for example, inside a diamond crystal), which is incident from inside on some face of the crystal.
The crystal is surrounded by vacuum. Assume µ = µ0 everywhere.

a) (8) Consider an incident angle θ = 60◦, which results in TIR. Take the x-axis along the
boundary and the z-axis pointing out of the crystal, perpendicular to the boundary. If the
incident electric field is

�E(�r, t) = E0 ŷ exp {i[�k · �r − ωt]} = E0 ŷ exp {i[k(sin θ x + cos θ z) − ωt]},

write an expression for the evanescent field �E ′ (x, z, t) on the vacuum side, explicitely dis-
playing its dependence on x and z, and correct amplitude.

The wave on the refraction side has a similar expression and is also po-
larized along y, but by Snell’s Law its angle of refraction will be complex:

sin θ′ =
n

n′ sin θ =
√

ε√
ε0

sin 60◦ =
3
2

√
3

2
=

3
√

3
4

,

cos θ′ =
√

1 − sin2 θ′ =

√
1 − 27

16
= i

√
11

4
Using k′ = n′ω/c = ω/c, the wavevector components are

k′ sin θ′ =
ω

c

3
√

3

4
, k′ cos θ′ =

ω

c

i
√

11

4
.

Furthermore, its amplitude is obtained from a Fresnel formula:

E′
0

E0

=
2
√

ε cos θ√
ε cos θ +

√
ε′ cos θ′ =

2
√

9/4 (1/2)√
9/4 (1/2) + 1 i(

√
11/4)

=
1

10
(9 − i

√
99).

Then the evanescent field is

�E′(�r, t) = E′
0 ŷ exp {i[k′(sin θ′ x + cos θ′ z) − ωt]}

�E′(�r, t) =
9 − i

√
99

10
E0 ŷ exp

{
i
ω

c

[
3
√

3
4

x + i

√
11
4

z − ct

]}

b) (4) Over what distance into the vacuum (measured in free space wavelengths) does the evanes-
cent wave decay by a factor of e−1 in amplitude?

By inspection of the z-dependent, which is a decaying exponential (ex-
actly what it means by evanescent wave!), we see the dependence,

E′ ∝ exp

{
−

√
11

4

ω

c
z

}
= exp {−z/δ} ,

where

δ =
4√
11

c

ω
=

4√
11

λ

2π
≈ 0.19λ.
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25. (16) EM waves in a plasma interact with the dielectric function,

ε(ω)
ε0

= 1 − ω2
p

ω2
.

a) (4) Assuming µ = µ0, derive the dispersion relation giving ω(k) for EM waves in a plasma.

Use the basic definition for plane waves:

k = ω
√

εµ = ω

√
ε0µ0

(
1 − ω2

p/ω2
)

=

√
1

c2

(
ω2 − ω2

p

)
,

ω2 = ω2
p + c2k2.

b) (4) Based on your ω(k) [or k(ω)], what happens to waves with ω < ωp, that enter this medium?

ω < ωp requires an imaginary value of k. But if k is imaginary, this will
lead to a nonpropagating evanescent wave (decaying exponential). The
waves with ω < ωp generally, then, are reflected from the plasma, very
similar to the total internal reflection effect.

c) (4) Now suppose the plasma has NZ = 1.0 × 1022 electrons/m3, and consider waves with
ω = 3ωp. What is the phase velocity vp of the waves?

Use the basic definitions and results from above:

k =

√
1

c2

[
(3ωp)2 − ω2

p

]
=

√
8

ωp

c
.

vp =
ω

k
=

3ωp√
8 ωp/c

=
3√
8

c ≈ 1.06c.

d) (4) For the same parameters as (c), what is the group velocity, vg = dω
dk ?

Doing the required calculus:

vg =
dω

dk
=

d

dk
(ω2

p + c2k2)1/2 =
c2k√

ω2
p + c2k2

=
c2k

ω
=

c2

vp

vg =
c2

3c/
√

8
=

√
8

3
c ≈ 0.94c.

So the group velocity is reasonable, while the phase velocity exceeds the
speed of light in vacuum.
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26. (10) A plane wave of intensity I0 = 20.0 kW/cm2 is incident
on a perfectly reflecting mirror at angle of incidence θ = 60◦.
Determine the radiation pressure on the mirror in N/m2.

The time-averaged momentum density in the field in a vacuum is given by

�gave =
1

2
Re

{
1

c2
�E × �H∗

}

Multiplication by c converts this to a flux of momentum. But only the normal
component, proportional to cos θ, changes on reflection. Also, the momentum
is spread out over an area increasing as 1/ cos θ. The pressure is the change
in momentum per time per area on the mirror,

P = c
ginc. z − gref . z

1/ cos θ
= 2cgave cos2 θ.

This can be rewritten using the intensity I0 = 1
2
| �E × �H∗|, then |�gave| = I0/c2,

and

P = 2
I0

c
cos2 θ = 2

20000/(0.01)2

3.0 × 108

(
1

2

)2

= 0.33 N/m2.
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27. (10) The imaginary part of a dielectric function is known to be

εI(ω)
ε0

=
γω

ω2 + γ2
.

a) (4) Apply the Kramers-Kronig relations to obtain the real part of ε(ω).

Use the simplest form, with the principal valued integral, closing the
contour in the upper half plane:

εR(ω)

ε0

− 1 =
1

π
P

∫ ∞

−∞
dz

εI(z)

z − ω
=

1

π
P

∫ ∞

−∞
dz

1

z − ω

γz

z2 + γ2

=
1

π
[πi res(ω) + 2πi res(iγ)] = i

[
γω

ω2 + γ2
+

2γ iγ

(iγ − ω)(2iγ)

]
=

γ2

ω2 + γ2

εR(ω)

ε0

= 1 +
γ2

ω2 + γ2

b) (4) Sketch the real and imaginary parts of ε(ω) vs. ω, and identify the regions of normal and
anomalous dispersion.

c) (2) Determine the complex function ε(ω) and locate its poles in the complex ω-plane. Do its
poles occur in the region associated with causal response?

Adding the real and imaginary parts give easily

ε(ω)
ε0

=
εR(ω) + i εI(ω)

ε0

= 1 +
γ2

ω2 + γ2
+ i

γω

ω2 + γ2

ε(ω)

ε0

= 1 +
iγ(ω − iγ)

ω2 + γ2
= 1 +

iγ

ω + iγ
.

The Only pole is at ω = −iγ, in the lower half plane. Thus, ε(ω) is
analytic in the upper half plane, as required by causality.
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