Physics 709

Exam 3 (open book)

- 1. A gas of hydrogen atoms has been prepared in the 2p state $|n = 2, l = 1, m = 0\rangle$.
- a) Calculate the electric dipole matrix element (in C·m) associated with the transition to the 1s ground state:

$$\vec{\mathcal{P}} = e\langle 1, 0, 0 | \vec{r} | 2, 1, 0 \rangle \tag{1}$$

b) Determine the spontaneous transition rate A (in s^{-1}) for this transition.

2. Suppose the atoms of question 1 are bathed in incoherent unpolarized incident light from all directions with energy density per unit frequency given by

$$\rho(\omega) = \rho_0 e^{-\left(\frac{\omega - \omega_0}{1000\omega_0}\right)^2}$$
(2)

where ω_0 is the 2p \rightarrow 1s transition frequency and ρ_0 is a constant.

- a) What value of ρ_0 (in J·s/m³) will produce a stimulated transition rate $R_{2p\to 1s}$ equal to $12.5 \times 10^8 \text{ s}^{-1}$?
- b) What is the frequency-averaged rms electric field intensity E_{rms} of the incident light in a), defined by equating energy densities,

$$\frac{1}{2}\epsilon_0 E_{rms}^2 = \int d\omega \ \rho(\omega). \tag{3}$$

Give E_{rms} in Volts/m.

3. A quantum particle of momentum $\hbar k$ scatters from an attractive square well potential,

$$V(r) = -V_0, \text{ for } 0 < r < a$$

 $V(r) = 0, \text{ for } r > a$
(4)

- a) Calculate the differential scattering cross section $(d\sigma/d\Omega)$ using the first Born approximation. Give the result in terms of the magnitude of the momentum transfer $\kappa = 2k \sin(\theta/2)$.
- b) Carefully sketch $(d\sigma/d\Omega)$ vs. κa . [Hint: can it go to zero at any points? What does it do at low κa , high κa ?]
- c) By expanding for $\kappa a \ll 1$, determine the leading energy dependence of $(d\sigma/d\Omega)$ at low energy.
- d) Find the total scattering cross section in the limit of low energy.

4. (optional) For a free particle the wavefunction e^{ikz} can be written

$$e^{ikz} = \sum_{l=0}^{\infty} i^{l} (2l+1) \ j_{l}(kr) \ P_{l}(\cos\theta)$$
(5)

As $r \to \infty$, $j_l(kr) \to \sin(kr - l\pi/2)/kr$, which is a linear combination of an outgoing wave (e^{+ikr}) and an incoming wave (e^{-ikr}) .

After scattering, the outgoing wave suffers a phase shift relative to the incoming wave, such that we REPLACE

$$\sin(kr - l\pi/2) \tag{6}$$

BY

$$\left(e^{2i\delta_l}e^{i(kr-l\pi/2)} - e^{-i(kr-l\pi/2)}\right]/2i$$
(7)

a) Show that far from the scatterer we can then write the wavefunction as

$$\Psi = \sum_{l=0}^{\infty} i^{l} (2l+1) \frac{\sin(kr - l\pi/2)}{kr} P_{l}(\cos\theta) + \left[\frac{1}{k} \sum_{l=0}^{\infty} (2l+1)e^{i\delta_{l}} \sin\delta_{l} P_{l}(\cos\theta)\right] \frac{e^{ikr}}{r}$$
(8)

where the term in square brackets is the scattering amplitude $f(\theta)$.

b) For scattering from a hard sphere of radius a, the solution for Ψ outside the sphere is

$$\Psi = \sum_{l=0}^{\infty} i^{l} (2l+1) \left[j_{l}(kr) - \frac{j_{l}(ka)}{h_{l}^{(1)}(ka)} h_{l}^{(1)}(kr) \right] P_{l}(\cos\theta)$$
(9)

By comparing (8) and (9) determine the phase shifts δ_l .