1. A gas of hydrogen atoms has been prepared in the 2 p state $|n=2, l=1, m=0\rangle$.
a) Calculate the electric dipole matrix element (in C•m) associated with the transition to the 1 s ground state:

$$
\begin{equation*}
\overrightarrow{\mathcal{P}}=e\langle 1,0,0| \vec{r}|2,1,0\rangle \tag{1}
\end{equation*}
$$

b) Determine the spontaneous transition rate $A\left(\right.$ in s $\left.^{-1}\right)$ for this transition.
2. Suppose the atoms of question 1 are bathed in incoherent unpolarized incident light from all directions with energy density per unit frequency given by

$$
\begin{equation*}
\rho(\omega)=\rho_{0} e^{-\left(\frac{\omega-\omega_{0}}{1000 \omega_{0}}\right)^{2}} \tag{2}
\end{equation*}
$$

where ω_{0} is the $2 \mathrm{p} \rightarrow 1$ s transition frequency and ρ_{0} is a constant.
a) What value of ρ_{0} (in $\mathrm{J} \cdot \mathrm{s} / \mathrm{m}^{3}$) will produce a stimulated transition rate $R_{2 p \rightarrow 1 s}$ equal to $12.5 \times 10^{8} \mathrm{~s}^{-1}$?
b) What is the frequency-averaged rms electric field intensity $E_{r m s}$ of the incident light in a), defined by equating energy densities,

$$
\begin{equation*}
\frac{1}{2} \epsilon_{0} E_{r m s}^{2}=\int d \omega \rho(\omega) \tag{3}
\end{equation*}
$$

Give $E_{r m s}$ in Volts/m.
3. A quantum particle of momentum $\hbar k$ scatters from an attractive square well potential,

$$
\begin{array}{llll}
V(r)=-V_{0}, & \text { for } & 0<r<a \\
V(r)=0, & \text { for } & r>a \tag{4}
\end{array}
$$

a) Calculate the differential scattering cross section $(d \sigma / d \Omega)$ using the first Born approximation. Give the result in terms of the magnitude of the momentum transfer $\kappa=2 k \sin (\theta / 2)$.
b) Carefully sketch $(d \sigma / d \Omega)$ vs. κa. [Hint: can it go to zero at any points? What does it do at low κa, high κa ?]
c) By expanding for $\kappa a \ll 1$, determine the leading energy dependence of ($d \sigma / d \Omega$) at low energy.
d) Find the total scattering cross section in the limit of low energy.
4. (optional) For a free particle the wavefunction $e^{i k z}$ can be written

$$
\begin{equation*}
e^{i k z}=\sum_{l=0}^{\infty} i^{l}(2 l+1) j_{l}(k r) P_{l}(\cos \theta) \tag{5}
\end{equation*}
$$

As $r \rightarrow \infty, j_{l}(k r) \rightarrow \sin (k r-l \pi / 2) / k r$, which is a linear combination of an outgoing wave $\left(e^{+i k r}\right)$ and an incoming wave ($e^{-i k r}$).

After scattering, the outgoing wave suffers a phase shift relative to the incoming wave, such that we REPLACE

$$
\begin{equation*}
\sin (k r-l \pi / 2) \tag{6}
\end{equation*}
$$

BY

$$
\begin{equation*}
\left[\left(e^{2 i \delta_{l}} e^{i(k r-l \pi / 2)}-e^{-i(k r-l \pi / 2)}\right] / 2 i\right. \tag{7}
\end{equation*}
$$

a) Show that far from the scatterer we can then write the wavefunction as

$$
\begin{equation*}
\Psi=\sum_{l=0}^{\infty} i^{l}(2 l+1) \frac{\sin (k r-l \pi / 2)}{k r} P_{l}(\cos \theta)+\left[\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) e^{i \delta_{l}} \sin \delta_{l} P_{l}(\cos \theta)\right] \frac{e^{i k r}}{r} \tag{8}
\end{equation*}
$$

where the term in square brackets is the scattering amplitude $f(\theta)$.
b) For scattering from a hard sphere of radius a, the solution for Ψ outside the sphere is

$$
\begin{equation*}
\Psi=\sum_{l=0}^{\infty} i^{l}(2 l+1)\left[j_{l}(k r)-\frac{j_{l}(k a)}{h_{l}^{(1)}(k a)} h_{l}^{(1)}(k r)\right] P_{l}(\cos \theta) \tag{9}
\end{equation*}
$$

By comparing (8) and (9) determine the phase shifts δ_{l}.

