1. A particle of mass m is confined in an infinite 1 D square well of width a centered on the origin, that has a delta-function spike in the middle, of strength α :

$$
\begin{align*}
& V(x)=\alpha \delta(x), \quad \text { for } \quad|x|<a / 2, \\
& =\quad \infty, \quad \text { for } \quad|x| \geq a / 2 . \tag{1}
\end{align*}
$$

We want to look for bound states of this potential.
a) Write down general expressions for the wavefunction $\psi_{I}(x)$ in the region $x<0$, and for $\psi_{I I}(x)$ in the region $x>0$.
b) Apply appropriate boundary conditions at $|x|=a / 2$ and thereby eliminate some of your undetermined constants.
c) Apply any needed matching conditions on $\psi(x)$ at $x=0$.
d) IF you have time (look at problems 2 and 3 first!), find an equation that will determine the allowed wavevectors, k. Do not solve it.
2. The usual result for the energy levels of a hydrogen atom is (MKSA)

$$
\begin{equation*}
E_{n}=\frac{-m_{e}}{2}\left(\frac{e^{2}}{4 \pi \epsilon_{0} \hbar}\right)^{2} \frac{1}{n^{2}}=\frac{-13.6 \mathrm{eV}}{n^{2}} . \tag{2}
\end{equation*}
$$

Consider the $n=2$ to $n=1$ (Lyman- α) transition.
a) Find a formula to estimate the energy splitting in this line if the hydrogen is a mixture of normal hydrogen and heavy hydrogen (deuterium). Hint: What are the corrections due to nuclear motion? Proton mass \approx neutron mass $\approx 1.67 \times 10^{-27} \mathrm{~kg}$.
b) Estimate numerically this splitting in electron volts.
3. Consider a 1D square well of width a, with $0<x<a$, with single-particle states,

$$
\begin{align*}
\psi_{n}(x) & =\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right), \tag{3}\\
E_{n} & =\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right) n^{2} \equiv E_{1} n^{2}, \quad n=1,2,3 \ldots \tag{4}
\end{align*}
$$

a) Suppose you put two identical spin- $1 / 2$ particles in this well. where the wavefunction is a product over space and spin parts, $\Psi=\psi\left(x_{1}, x_{2}\right) \chi\left(\vec{S}_{1}, \vec{S}_{2}\right)$. Give an expression for the ground state wavefunction Ψ, and give its energy in terms of E_{1}.
b) Repeat a) for the first excited state.
c) Now suppose you put two identical spin-1 particles in the well, again in a product over space and spin parts, $\Psi=\psi\left(x_{1}, x_{2}\right) \chi\left(\vec{S}_{1}, \vec{S}_{2}\right)$. If the spin part is a $j=2$ state

$$
\begin{equation*}
\chi\left(\vec{S}_{1}, \vec{S}_{2}\right)=\left|j=2, m_{j}=0\right\rangle=\sqrt{\frac{1}{6}}\{|1\rangle|-1\rangle+2|0\rangle|0\rangle+|-1\rangle|1\rangle\} \tag{5}
\end{equation*}
$$

(numbers in brakets are $m_{s_{1}}$ and $m_{s_{2}}$, respectively), then what is the associated lowest energy space wavefunction $\psi_{0}\left(x_{1}, x_{2}\right)$ and energy.
d) Repeat c) for a $j=1$ spin state:

$$
\begin{equation*}
\chi\left(\vec{S}_{1}, \vec{S}_{2}\right)=\left|j=1, m_{j}=0\right\rangle=\sqrt{\frac{1}{2}}\{|1\rangle|-1\rangle-|-1\rangle|1\rangle\} \tag{6}
\end{equation*}
$$

