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Light Scattering by Fractal Aggregates: A Review

C. M. Sorensen
Department of Physics and Program for Complex Fluid Flows, Kansas State University,
Manhattan, Kansas

This paper presents areview of scatteringand absorption of light
by fractal aggregates. The aggregates are typically diffusion limited
cluster aggregates (DLCA) with fractal dimensions of D ’ 1:75,
which occur frequently in aerosols and colloids, but other types
of aggregates are discussed as well. The results of the review are
quite general. A scaling description of the scattering of waves forms
the basis of our understanding. This description yields the optical
structure factor S(q ) of the aggregate, where q is the scattering
wavevector, a key quantity. The rigorous approach to the structure
factor, the Fourier transform of the density correlation function,
is also given and various forms provided in the literature are com-
pared and the best selected. Light scattering is directly related to
the structure factor under the assumption of no internal multiple
scattering. This so-called Rayleigh–Debye–Gans (RDG) approxi-
mation is compared to more rigorous electromagnetic approaches
and found to be quite accurate for fractal aggregates. This results
despite the presence of internal multiple scattering, which leads to
depolarization, and which is also extensively described. For ensem-
bles of aggregates, the effects of aggregate polydispersity on scat-
tering experiments are described and methods for proper analysis
are given. A description of optical particle sizing and morphology
analysis is given for a complete in situ characterization of the aggre-
gate system. The review relies strongly on straightforward physical
reasoning and experimental examples, largely from aerosols, espe-
cially those of carbonaceous soot. This paper not only reviews and
consolidates, but also presents new results including a scaling anal-
ysis of multiple scattering, which leads to depolarization, with a
successful comparison to available data and an understanding of
structural subtleties; demonstration of the signi� cance of a phase
shift parameter for evaluating the range of validity of the RDG
theory; a Maxwell–Garnet analysis of fractal aggregate scattering;
calculations of the albedo and successful comparison to available
simulation data; and speculations on multiple scattering and the
interior � eld.
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INTRODUCTION
The purpose of this review is to unify our knowledge of how

fractal aggregates scatter (and absorb) light. This is of value
for light scattering diagnostics of aerosols and colloids and for
understanding the optics of these systems in the environment.
The subject has seen able and useful reviews before by Teixeira
(1986), Martin and Hurd (1987), Charalampopoulos (1992), and
a brief overview by myself (Sorensen 1997). Very recently Fuller
and Mackowski (2000) have given an excellent review of the su-
perposition theory of scattering from aggregates. My desire here
is to provide an up-to-date and comprehensive review useful for
the experimentalist. Any theory that does appear will be based
on simple physical arguments rather than detailed mathematical
analysis. Many of the general results to be described here apply
to nonfractal aggregates as well, although such aggregates are
usually in some manner contrived and not the result of “natural”
processes. Light scattering is the central theme of this review,
but it is set in the context of the scattering of waves in general.
This is done not only because many of the results to be described
were derived from and/or can be applied to other scattering pro-
cesses such as x-rays and neutrons, but also because it sets a
simple, lowest-order approximation for light scattering which
proves to be very useful.

Colloids and aerosols are common in nature and important
for our technology, and since the process of aggregation is inte-
gral to how these systems evolve, we have motive to understand
the properties of the resulting clusters. This can be a dif� cult
task because random aggregates are just that, random, and, be-
cause they are aggregates, not simple. For current science the
� rst step in describing, hence progressing to understanding, is
a mathematical description; a process much like naming. Two
decades ago this naming and descriptive process for aggregates
took a major step forward when Forrest and Witten (1979) used
the fractal concept (Mandelbrot 1977, 1982) to describe ag-
gregates of metal smokes. Fractal aggregates are scale invari-
ant, that is, within limits they appear the same when viewed
over a range of scales. This concept is of value because it in-
cludes a mathematical description and a quanti� able parame-
ter, the Hausdorff or fractal dimension D (Hausdorff 1919).
Moreover, the mathematical description is simple and can be
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expressed as

N D ko(Rg=a)D: [1]

In Equation (1), N is the number of primary particles or mono-
mers in the aggregate (proportional to the mass), Rg is a mea-
sure of the overall aggregate radius (speci� cally, the radius of
gyration), a is the monomer radius, and ko is a proportionality
constant of order unity. We say that for a fractal aggregate the
mass scales with the overall size to the D power.

In the intervening years, subsequent work has found the frac-
tal description of aggregates to be nearly universal (Weitz and
Oliveria 1984; Schaefer et al. 1984; Family and Landau 1984;
Martin et al. 1986; Meakin 1988; Sampson et al. 1987; Dobbins
and Megaridis 1987; Viscek 1992; Sorensen and Feke 1996).
Figures 1 and 2 give examples of fractal aggregates and, in
Figure 1, a demonstration of the scale invariance. In colloids and
aerosols, clusters meet other clusters through random motion.
If they stick together with near unity probability, the process is
calleddiffusion limited cluster aggregation, (DLCA)because the
rate limiting step is the diffusive motion of the clusters (Meakin
1983, 1988; Kolb et al. 1983). This is a common situation and
leads to fractal dimensions on the order of D ’ 1:75 to 1.8. The
aggregates in both Figures 1 and 2 are DLCA with D ’ 1:8.
It is possible in aerosols for the cluster motion between colli-
sions to be a straight line (ballistic) rather than a random walk
and then D ’ 1:9 (Meakin 1984; Mulholland et al. 1988). In
colloids, solute modi� cation of the double layer surrounding
the particles can drastically reduce the sticking probability and
then the reaction limited cluster aggregation (RLCA) regime
is entered with D ’ 2:1 to 2.2 (Weitz et al. 1985; Lin et al.
1990b). These two situations represent the great majority of
aggregates, although application of external � elds during ag-
gregation or modi� cation of the clusters after aggregation can
modify the morphology to other fractal dimensions or nonfractal
morphologies.

Returning now to scattering, we recognize that the scatter-
ing of radiation, viz. light, x-rays, neutrons, etc., is foremost
the scattering of waves. This wave nature is the foundation
of the scattering process in each case, and it is the common
bond that allows much of the mutual mathematical analysis and
terminology. Differences occur in the way the various radiations
interact with matter. In particular, light and x-rays are both elec-
tromagnetic radiation and hence interact with the electrons of
the system, but because of some three orders of magnitude dif-
ference in frequency the interactions are signi� cantly different.
At optical frequencies, the electrons of many materials readily
respond, hence the refractive index (the square root of the opti-
cal frequency dielectric constant) is greater than unity. Because
of this, scattering of light involves phase changes due to differ-
ent wave velocities in the medium and boundary conditions at
interfaces. On the other hand, x-ray frequencies are too fast for
most electronic responses and this makes the refractive index
for x-rays very nearly unity. Consequently, without the compli-
cations of differing wave velocities and boundary conditions,

Figure 1. Soot fractal aggregates from an acetylene diffusion
� ame. The upper picture was taken with a TEM and individual
monomers (primaryparticles) canbe seen. The lower picture was
taken with an optical microscope at a scale two and one half or-
ders of magnitude larger than the upper picture. Despite this
difference in scale, the aggregates in each picture look the same,
demonstrating scale invariance. The fractal dimensions are
D ’ 1:8.

x-ray scattering is, too a good approximation, simply a wave
problem.

Our task here, however, is to understand and describe the
scattering of light. But light’s relationship to x-rays can be useful
in that endeavor. We shall view light scattering as involving two
separable aspects. First, like x-rays, it is a wave. As we shall see,
the mathematical embodiment of wave scattering is the Fourier
transform, which is both powerful and well understood. Second,
light scattering involves its nontrivial electromagnetic nature,
which in the classic electromagnetic approach requires use of
appropriate boundary conditions and wave velocities.

Our approach to understanding and describing light scattering
will thus be twofold. First, we will scatter waves. This will be
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Figure 2. TEM picture of titania (TiO2) fractal aggregates with
D ’ 1:8 produced by pyrolysis of Titanium Isopropoxide .

either by Fourier transforms or more simply by keeping track
of whether waves scattered by the parts of the aggregate are in
phase or not. Then if necessary, we will “add the optics,” but
not by accounting for additional phase changes incurred by the
velocities or boundary conditions as one would for a uniform
sphere. Instead, putting in the optics for aggregates will involve
accounting for multiple scattering. I suspect these two methods
are equivalent, but this has yet to be worked out. As it turns out,
for aggregates, especially those with D < 2, the second step,
adding the optics, is largely unnecessary.

THE STRUCTURE FACTOR
The structure factor is so named because it carries informa-

tion regarding the structure of the object or system scattering the
waves. Thus it is of prime importance. As we will see, it is both
the Fourier transform of the density autocorrelation function
of the scattering system and the square of the Fourier transform
of the density distribution of the scattering system; thus it is the
q -space (reciprocal space with units of inverse length) descrip-
tion of the structure. Experimentally it describes scattered inten-
sity as a function of scattering angle. The independent variable
of the structure factor is the scattering wave vector.

The Scattering Wave Vector
Consider a scalar electromagnetic � eld with incident wave

vector Eki incident upon a scattering element at Er as in Figure 3.
The incident � eld at Er is

Ei (Er ) / ei Eki ¢Er ; [2]

Figure 3. Diagram of light incident from the left with wave
vector Eki scattering from a scattering element at Er toward the
detector with scattering wave vector Eks at a scattering angle µ .
The difference Eki ¡ Eks is Eq , the scattering wave vector.

where complex notation is used, i D
p

¡1, and we keep track of
phase information only. Phase is the argument of the sinusoidally
varying wave and as such is the essence of the wave’s “wave
nature.” Thus two waves add constructively when their phases
are equal (or differ by an even integer times ¼ ), a condition well
known as constructive interference, and they add destructively
when their phases differ by ¼ (or an odd integer times ¼ ), a
condition known as destructive interference. The � eld scatters
toward the detector in the direction Eks , the scattered wave vector.
Under the assumption of elastic scattering, i.e.,

jEki j D jEks j D
2¼

¸
; [3]

the � eld at the detector, which is at ER, is

E( ER) / E(Er )ei Eks ¢( ER¡Er ): [4]

Substitution of Equation (2) into Equation (4) yields

E( ER) / eiEks ¢Rei (Eki ¡Eks )¢Er : [5]

The second term of Equation (5) shows that the phase at the
detector is a function of the position of the scattering element
and the vector

Eq D Eki ¡ Eks : [6]

This vector Eq is called the scattering wave vector. Its direction
is in the scattering plane from Eks to Eki , as shown in Figure 3.



D
ow

nl
oa

de
d 

B
y:

 [K
an

sa
s 

S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
rie

s]
 A

t: 
21

:4
9 

27
 J

un
e 

20
07

 LIGHT SCATTERING BY FRACTAL AGGREGATES: A REVIEW 651

From Figure 3 and the elasticity condition Equation (3), simple
trigonometry yields the magnitude of Eq to be

q D 2ki sin(µ=2) [7a]

D 4¼¸¡1 sin(µ=2); [7b]

where µ is the scattering angle.
The importance of q is that its inverse, q¡1, represents the

length scale, or the probe length, of the scattering experiment.
This follows from the second term in Equation (5), which can
now be written as

Esca / ei Eq ¢Er ; [8]

where Esca is the amplitude of the scattered wave. Equation (8)
shows that if the variation of r is small compared to q¡1, the
scattered � eld will not signi� cantly change; whereas if r varies
greatly relative to q¡1, the scattered � eld will change signif-
icantly. Thus q¡1 represent a length scale to be compared to
length scales of the scatterer; this comparison determines the
scattered � eld.

Fundamental Equation for The Structure Factor
The structure factor quickly follows from Equation (8) with

normalization to unity incident wave and cross section for scat-
tering by the element (whatever that might be) at Er . In this regard
it is useful to conceive of a “system of scatterers” as a system
of N identical points. The structure factor is proportional to the
scattered intensity I (q ), hence the square of the scattered am-
plitude. Then by Equation (8) we write

I (q ) D
N

iD1

ei Eq ¢Eri

2

: [9]

Since we must often deal with ensembles of scatterers with ran-
dom orientations, we have dropped the vector notation on the
left-hand side of Equation (9). The structure factor is de� ned
with the normalization N ¡2 I (q ); thus

S(q ) D N ¡2
N

iD1

ei Eq¢Eri

2

: [10]

This normalization ensures S(0) D 1. Equation (10) has its use;
an equally useful form is to rewrite it as

S(q) D N¡2
N

i

N

j

ei Eq ¢(Eri ¡Er j ); [11]

where Eri and Er j represent the positions of i and j th scatterers.

The Scaling Approach for the Structure Factor
We now present a simple and physically appealing method

for determining the scattering, hence the structure factor, from
an arbitrary system of scatterers, a method we call the scaling
approach (Oh and Sorensen 1999). The scalingapproach is based
on comparing the inherent length scale of the scattering, q¡1,
and length scales in the system of scatterers. The magnitude
of the wave vector q is an experimental parameter because it is

controlled by the scattering angle via Equations (7). Comparison
of length scales determines whether the waves combine in phase
(constructively) or randomly at the detector. For a system of N
scatterers there are two limiting situations:

1. If the N scatterers are within q¡1 of each other, the phase
of the N scattered waves will be essentially the same,
hence the waves will be in phase and thus add construc-
tively. Then the total scattered amplitude will be propor-
tional to N , thus the total scattered intensity will be pro-
portional to N 2. From the point of view of Equation (11),
this is when Eq ¢ (Eri ¡ Er j ) < 1, hence the double sum equals
N 2.

2. If the N scatterers have all pairs separated by distances
>q¡1, the phases of the N scattered waves will be ran-
dom, hence the waves will add randomly. Then the total
scattered amplitude will be proportional to

p
N , thus the

total scattered intensity will be proportional to N . From the
point of view of Equation (11), this is when Eq ¢ (Eri ¡Er j ) >

1, then the N 2 terms in the double sum can be represented
as a random walk of N 2 unit steps with an average sum pro-
portional to the square root of the number of steps, i.e., N .

In addition, we remember that

3. Only when there are � uctuations in the density of the scat-
terers is there a nonzero contribution to the total scattering
at nonzero scattering angles. This is a consequence of the
Ewald–Oseen extinction theorem (Born and Wolf 1975;
Hecht 1998).

Some discussion is warranted on the remarkable Ewald–

Oseen extinction theorem. A single point scatterer, an electron,
for example, will scatter isotropically in all directions perpendic-
ular to the incident polarization. Two point scatterers will create
an interference pattern (Young’s fringes) and N À 1 uniformly
spaced scatterers will interfere so that scattering will occur only
in certain special directions (similar to Bragg scattering or a
diffraction grating). Finally, an in� nite system of regularly and
closely spaced (distance < ¸) scatterers will not scatter at all
at � nite µ , according to Ewald–Oseen. Scattering does occur
in the exact forward (µ D 0) direction to cancel the incident
wave and create a new wave traveling at c=n, where n is the
refractive index of the system. The bottom line of all this is
that uniform systems do not scatter light. From where does the
scattering come? From � uctuations in the density of the scatter-
ers. Thus when asked why the sky is blue, one should respond
with two reasons: blue light scatters more than red and there are
� uctuations in the density of the air.

Fluctuations can occur either internally due to a variation in
the density of the scatterers within the system (e.g., a variation
of the mass density of a gas occur due to thermodynamics) or
on the surface since there the density changes discontinuously.
Here we will only consider this surface scattering. See Oh and
Sorensen (1999) for a discussion on the general effects of internal
scattering.
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Figure 4. Drawing of a system of point scatterers in a region
of size R. Also drawn are q -regions of size q¡1.

Application of the Scaling Approach. Consider a system of
scatterers in a d -dimensional, spherical region of radius R. Let
the density of the scatterers be uniform by placing them on a
regular lattice with 2a the nearest neighbor separation, as drawn
in Figure 4. Then the only � uctuation in density of the scatterers
is on the surface of the system in the form of a discontinuity.
The scaling approach allows us to understand how waves are
scattered by the system. To do this envision a situation where
the system is covered throughout its volume by smaller imagi-
nary “q -regions” of size q¡1, as drawn in Figure 4. For all the
scatterers in the same q -region, the phase factor in Equation (11)
is Eq ¢ (Er1 ¡ Er j ) <» 1 Then the scattered waves are in phase at the
detector (situation 1 above) so that

I (q ) / N 2
q ; [12]

where Nq is the number of scatterers in the q -region. There
are many such q -regions in the system of radius R, but only
those on the surface of the system contribute to the scattering
because it is only on the surface of this uniform system that
there is a � uctuation in density (condition 3 above). Let nq be
the number of q-regions of size q¡1 needed to cover the surface
of the system. Because of their size, they must all be separated
by distances >q¡1, thus their scattered waves add randomly
(situation 2 above) to yield

I (q ) / nq : [13]

Combining Equations (12) and (13), we have

I (q ) / nq N 2
q : [14]

Now consider Equation (14) for arbitrary q .
(i) q < R¡1. In this case nq D 1 and Nq D N , then Equa-

tion (14) yields

I (q ) / N 2: [15]

This result is also obtained from the argument that when q¡1 >

R, all N scatterers of the system yield waves that are in phase
at the detector. Notice how q¡1 represents the resolution of the
scattering; that is, the scattering can’t see features smaller than
q¡1. From this perspective all N scatterers in the volume of the
system of scatterers are on the surface of the system.

(ii) R¡1 < q < a¡1. The most general approach allows for
arbitrary mass and surface dimensions, Dm and Ds , respectively,
of the system of scatterers. (Note in Equation (1) that we used
D as the fractal dimension of the aggregate. For an aggregate,
however, D D Dm D Ds .) Then we can compare the length
scales of the system of scatterers and the q -regions. The num-
ber of scatterers in a q -region is proportional to the total N and
the ratio of the length scale of the q -region, q¡1, and the length
scale of the system of scatterers, R, raised to the mass dimension
power, i.e., Nq D N (q¡1=R)Dm . A similar argument � nds the
number of q -regions on the surface of the system to be propor-
tional to a ratio of the two characteristic lengths raised to the
surface dimension power, i.e., nq » (R=q¡1)Ds . When applied
to Equation (14), these yield

I (q ) / N 2(q R)¡2Dm CDS : [16]

The size of the system is represented by both N and R. To
eliminate one for the other in Equation (16) de� ne

N D km(R=a)Dm ; [17]

Ns D ks (R=a)Ds ; [18]

where Ns is the number of scatterers on the surface and km and
ks are constants of order unity dependent upon the monomer
lattice. Then one obtains

I (q ) / ko Ns(qa)¡2Dm CDs ; [19]

where ko D k2
m=ks . This is the same ko as in Equation (1).

(iii) q > a¡1. In this regime all scatterers scatter waves that
have random phases at the detector, but only those on the surface
contribute to the scattering. Thus I (q ) / Ns . Continuity with
Equation (19) at q D a¡1 implies

I (q) / ko Ns : [20]

In summary

I (q ) /
N 2 for q < R¡1; [21a]

koNs(qa)¡2Dm CDs for R¡1 < q < a¡1; [21b]

koNs for q > a¡1: [21c]

It is useful to rewrite these equations because ko is dependent on
the lattice geometry of the point scatterers and Ns is an unusual
parameter. (Note that the product ko Ns is not lattice dependent.)
Use of Equations (17) and (18) yields

I (q ) /
N 2 for q < R¡1; [22a]

N 2(q R)¡2Dm CDs for R¡1 < q < a¡1; [22b]

N 2(R=a)¡2Dm CDs for q > a¡1: [22c]
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Figure 5. Log-log plot of the scattered intensity versus q ,
Equations (21), for a system of N point scatterers separated
by 2a in a region of size R with mass and surface fractal dimen-
sions Dm and Ds , respectively. There are Ns scatterers on the
surface of the region. The constant ko is de� ned in Equation (1).

Figure 5 shows the generic behavior of Equation (21). Equa-
tion (22) shows that a graph of N ¡2 I (q ) D S(q) versus q R is
universal for all sizes R when q < a¡1. This fact and the sim-
plicity of Equations (22) are an advantage over Equations (21).
However, Equations (21) explicitly show the volume and surface
regimes and are more facile for considering complex examples.

The scaling result is general and can be applied to a number
of physical situations. We give two examples:

a. A Solid Sphere. Let a ! 0 and Dm D d , Ds D d ¡ 1,
where d is the spatial dimension. Then by Equation (21b), when
R¡1 < q < a¡1, S(q ) » I (q) » Nsq¡(dC1) » q¡4 for d D 3, a
result known as Porod’s Law (Porod 1951; Guinier et al. 1955).
Figure 6 shows the Rayleigh–Debye–Gans (RDG) result of elec-
tromagnetic theory for light scattering from a sphere (Kerker

Figure 6. RDG scattering for a sphere I (u) D [3(sin u ¡
u cos u)u¡3]2, where u D q R.

1969). This applies when ½ D 2k R jm ¡ 1j ¿ 1, where m is the
sphere’s refractive index relative to the medium. For q R < 1,
this theory predicts scattering proportional to R6, consistent with
Equations (21a) or (22a) since N » R3. For q R > 1, the en-
velop of the I (q) versus q functionality is equal to 9(q R)¡4,
again consistent with the scaling approach prediction of Porod’s
law, Equations (21b) or (22b). Note, however, that the scaling
approach cannot predict the shape of the crossover at q R » 1,
the interference ripples when q R > 1, nor the factor of 9 pro-
ceeding the Porod law. If the solid sphere has a fractally rough
surface, d > Ds > d ¡ 1 and S(q ) » q¡6CDS for d D 3, a well-
known result (Martin and Hurd 1987).

b. A Fractal Aggregate. In a fractal, essentially all the mono-
meric particles are on the surface. Thus we will use for the fractal
dimension D D Dm D Ds < d . (Hereafter in this review we will
simply use D for the fractal dimension of an aggregate.) Then by
Equations (21), S(q ) / q¡D for q > R¡1, another well-known
result (Martin and Hurd 1987; Sorensen 1997). Since the struc-
ture factor of the fractal aggregate is of prime importance in this
review, we now quantify the results of the scaling approach as
much as possible. The small q < R¡1 limit in Equation (22) for
I (q ) is exact because no approximations are made to obtain this
result. We can eliminate the proportionality in the intermediate
q -regime, R¡1 < q < a¡1, with a constant. Thus, using Equa-
tions (9), (10), and (22), we have for a fractal aggregate

S(q ) D 1; q Rg < 1 [23a]

D C(q Rg )¡D; q Rg > 1: [23b]

Scaling cannot address the crossover region q Rg » 1. In Equa-
tions (23) we now use the radius of gyration Rg of the aggregate.
The radius of gyration is the root mean square of the monomer
distances from the center of mass of the aggregate. We do this
because Rg comes naturally out of the rigorous derivation of the
structure factor, as we will see below, and because R is ill de� ned
for an aggregate given its inde� nite perimeter. This replacement
is also allowable because any R is proportional to Rg and hence
any difference can be absorbed in the proportionality constant
C . Below we will � nd empirically that C ’ 1:0.

Equations (23) do not include the possibility of the monomer
being observable with q , which can be achieved when q > a¡1.
To include N dense spherical monomers with smooth surfaces,
we apply Equations (21) twice, once for the fractal and once for
the sphere, to yield a total structure factor which is the product

STOT (q ) D SF A (q )Ssphere (q ); [24]

where F A means “fractal aggregate.” This product is depicted
in Figure 7 and is consistent with experiment. The crossover at
qa » 1 was well described by Hasmy et al. (1993).

The scaling approach is based entirely on wave physics,
which includes linear superposition, the energy proportional to
the amplitude squared, and the Ewald–Oseen extinction theo-
rem. It applies to all waves. It and the concept of a system of
scatterers are quite powerful in accurately describing the general
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 654 C. M. SORENSEN

Figure 7. Generic depiction of scattering from a mass fractal
aggregate of radius R with a of fractal dimension Dm made up of
spherical, smooth surfaced monomers of radius a. Upper curve
is for a fractal of point particles, second curve is for spherical
particles, lowest curve is the product of these, a representation
of Equation (24).

features of wave scattering from a variety of systems, and the
reader is encouraged to see Sorensen et al. (1998) and Oh and
Sorensen (1999) for other examples. It also enhances physi-
cal intuition for the scattering process. However, its simplic-
ity makes it powerless for describing crossover regions as q¡1

passes through a characteristic length scale of the system, hence
Figures 5 and 7 show unphysical sharp turns at the crossovers.
The scaling approach also does not predict details such as the
interference ripples present in scattering from objects with sharp
surfaces such as spheres nor the coef� cients of the functionalities
as discussed above in reference to RDG theory for spheres.

Scattering and Absorption by a Fractal Aggregate
The scaling approach allows the scattering and absorption of

light by an aggregate to be calculated to lowest order. To put
in the optics to lowest order let each point-like scatterer in the
system of scatterers become a spherical monomer (or primary
particle) of radius a. Assume that the monomers are Rayleigh
scatterers which are met by the conditions

ka ¿ 1; [25a]

jmjka ¿ 1: [25b]

In Equation (25b) m D n C ik is the complex refractive index of
the monomer. This Rayleigh condition ensures a uniform � eld

across the monomer. Then the Rayleigh differential scattering
cross section for the monomer is (Kerker 1969)

d¾

dÄ
D k4a6 F(m); [26]

where

F(m ) D
m2 ¡ 1

m2 C 2

2

: [27]

The scaling approach becomes applicable when we assume
that the monomers scatter (and absorb) independently. Then they
see only the incident light wave and none of the waves scattered
by their neighbors; that is, there is no intracluster multiple scat-
tering. With this and the concepts of the scaling approach, it
then follows that the differential scattering cross section for the
aggregate is

d¾ agg

dÄ
D N 2 d¾ m

dÄ
S(q ): [28]

For absorption the particle independence and nonmultiple
scattering conditions imply the simple result

¾
agg
abs D N¾ m

abs; [29]

where for a Rayleigh monomer

¾ m
abs D 4¼ka3 E(m ); [30]

E(m) D Im
m2 ¡ 1

m2 C 2
: [31]

The total scattering cross section is related formally to the
differential cross section by ¾ D (d¾=dÄ)dÄ, where dÄ D
d(cos Á)dµ is the solid angle differential. This form, however,
ignores polarization. For the common experimental situation of
light vertically polarized relative to the scattering plane which
contains µ , the polarization causes an additional factor of sin2 Á

(Sorensen 1997). Thus

¾ D
2¼

0

1

¡1

d¾

dÄ
sin2 Á d(cos Á) dµ: [32]

Substitution of the expression for the differential cross section
of a fractal aggregate, Equation (28), leads to an integral over
the structure factor, which leads to algebraically elaborate re-
sults with any of the forms currently used and discussed below.
Therefore we follow Dobbins and Megaridis (1991), who used
the small q Rg , Guinier form (see Equation (48) below) universal
to all structure factors and which can be integrated to yield ¾sca »
(1 ¡ (2=3)k2 R2

g ), where k D 2¼=¸. To turn this into an expres-
sion good for all q Rg (not just the Guinier regime), they wrote
the generalization (1 ¡ 2=3k2 R2

g ) ’ (1 C (4=3D)k2 R2
g)¡D=2.

This strategy, although not mathematically rigorous, was based
on analogy to the Fisher–Burford (1967) (see below) structure
factor and its small q Rg expansion. The � nal expression for the
total scattering cross section is

¾ agg
sca D N 2¾ m

scaG(k Rg); [33]
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where the single particle total Rayleigh scattering cross section
is simply

¾ m
sca D

8¼

3
k4a6 F [34]

and where

G(k Rg ) D 1 C
4

3D
k2R2

g

¡D=2

: [35]

Dobbins and Megaridis (1991) compared Equations (33)–
(35) to both simulation data for total scattering of Mountain
and Mulholland (1988) and their own porous sphere model with
success.

Koylu and Faeth (1994a), Kazakov and Frenklach (1998), and
Mulholland and Choi (1998) have all considered the problem of
the total scattering cross section for an aggregate. Koylu and
Faeth (1994a) and Kazakov and Frenklach (1998) integrated,
via Equation (32), the Dobbins and Megaridis (1991) structure
factor (see Table 2 below) for unpolarized incident light. Rather
complex equations were obtained and used successfully by both.
However, their results have a singularity at D D 2 and hence are
rapidly varying at D D 1:8, which is problematic. Our attempt
to perform the integral in Equation (32) for polarized incident
light (the more common laser laboratory situation) led to sim-
ilar singularities at D D 2 when D was assumed not equal to
2 and a logarithmic divergence when it was assumed D D 2.
Both groups noted that the Dobbins and Megarides result, Equa-
tion (35), is in error at large k Rg . Figure A1 of Kazakov and
Frenklach shows good agreement for k Rg · 3, but for k Rg ¸ 10
Equation (35) is 20% too small. Mulholland and Choi (1998)
performed the integral in Equation (32) for unpolarized incident
light and the Fisher–Burford structure factor, Equation (52) be-
low. Again a complex equation was obtained, but the result does
not have a singularity at D D 2. One possible drawback to this re-
sult is that we have shown (Sorensen et al. 1992a; and see below)
that the Fisher–Burford form does a poor job of describing the
q -dependent structure factor of real aggregates over predicting
the scattering when q > R¡1

g . Comparison of the Mulholland and
Choi total scattering to the results above is good for k Rg · 1,
but for k Rg ¸ 10 it is 25% bigger than that predicted by Koylu
and Faeth and Kazakov and Frenklach, hence 45% bigger than
the prediction of Equation (35), all for D ’ 1:8. Below, when
we discuss the albedo, we will see that Equation (35) is suc-
cessful even when k Rg ’ 25. The straightforward simplicity of
Equation (35), lack of singularities, and validity of S(q) make
it a good choice, but consideration of the integrated forms is
advised at large k Rg .

The structure factor is a consequence of the scattering of a
uniform wave of any sort from a weakly scattering cluster. Being
a Fourier transform of the real space structure it is a mathemat-
ical idealization. By “putting in the optics” to lowest order we
give reality to the problem by identifying the wave as electro-
magnetic, more precisely light. The complete description must
account for the facts that the wave may scatter more than once

within the aggregate, multiple scattering, and the � elds across
the individual monomers may not be uniform, i.e., the so-called
Rayleigh approximation breaks down.

This � rst description of fractal aggregate scattering and ab-
sorption, presented above, represents a � rst-order approximation
to the true situation. The weak, single scattering approximation
is essentially the � rst Born approximation of quantum mechan-
ical wave theory. However, since we are dealing with light, this
term seems inappropriate. Although the Rayleigh approxima-
tion has been taken for the monomers, the scattering from the
aggregates, unlike Rayleigh scattering, will have a scattering an-
gle dependency. Because of this weak scattering yet scattering
angle dependent situation, it is appropriate to call this � rst-order
approximation the RDG approximation, as coined by Koylu and
Faeth (1994a), in analogy to the theory of the same name that
describes weakly scattering yet � nite-sized spheres. As we will
see, it is a most viable description for D < 2. Table 1 compiles
the results above for the RDG theory for scattering and absorp-
tion by an aggregate.

Rigorous Derivation of the Structure Factor
Both Equations (10) and (11) are viable for calculating the

structure factor of a scattering object. They yield equivalent re-
sults and each has its regime of facility. To gain more under-
standing of their relationship, we convert the sums to integrals
by introducing the density function (number per unit volume) of
a system of scatterers as

n(Er ) D N ¡1
N

i

±(Er ¡ Eri ); [37]

where ± is the Dirac delta function. Then

N

i

ei Eq¢Eri D N ei Eq ¢Ern(Er ) dEr : [38]

Comparing Equations (8) and (38) shows that the amplitude of
the wave scattered from a system of N scatterers is proportional
to the Fourier transform of the density function. The structure
factor is the N ¡2 normalized square of this amplitude, as written
in Equation (10).

Now we recall the convolution theorem of Fourier analysis
(e.g., Hecht 1998) that states that the product of Fourier trans-
forms is the Fourier transform of the convolution of the nontrans-
formed functions. That implies that the structure factor, which
is the square of the Fourier transform of the density function,
is also the Fourier transform of the convolution of the density
function with itself. The self-convoluted density function is

g(Er ) D n(Er ¡ Er 0)n(Er 0) dEr 0: [39]

Then the convolution theorem implies

S(Eq ) D ei Eq ¢Er g(Er ) dEr : [40]
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Table 1
RDG cross sections for scattering and absorption by an aggregate of N monomers of

radius a and refractive index m

Absorption:

¾ m
abs D ¡ 4¼ka3 E(m ), (30)

¾
agg
abs D N ¾ m

abs . (29)
Differential scattering:

d¾ m

dÄ
D k4a6F(m ), (26)

d¾ agg

dÄ
DN 2 d¾ m

dÄ
S(q), (28)

where

E(m) D Im m2 ¡ 1
m2 C 2

, (31)

F(m ) D m2 ¡ 1
m2 C 2

2

. (27)

The structure factor (see also Table 2):

S(q) D 1 q Rg ¿ 1 (36a)

D 1¡ q2 R2
g=3; q Rg

<» 1 (36b)

D C(q Rg)¡D; q Rg > 1: (36c)
Total scattering:

¾ m
sca D

8

3
¼k4a6F (m ), (34)

¾
agg
sca D N 2¾ m

scaG(k Rg ), (33)
where, for a fractal aggregate,

G(k Rg ) D 1 C 4
3D k2 R2

g

¡D=2

. (35)

Now we show that Equation (40) is equivalent to Equation
(10). Use of Equation (37) for the double sum in Equation (11)
implies

S(Eq) D N ¡2
N

i

N

j

ei Eq ¢(Eri ¡Er j ) D n(Er )n(Er 0)ei Eq ¢(Er¡Er 0 ) dErdEr 0:

[41]

Changing variables of the right-hand side (RHS) of Equa-
tion (41) to Er and Eu D Er ¡ Eu 0, we obtain

S(Eq) D n(Er )n(Er ¡ Eu)ei Eq ¢EudEr dEu: [42]

Now apply Equation (39) to Equation (42) to obtain

S(Eq ) D g(Eu)ei Eq¢EudEu; [43]

which is equivalent to Equation (40).
The function g(Eu) of Equation (43) is well known in the scat-

tering literature and beyond, not so much as the self-convolution
but as the density autocorrelation function. Its importance tran-
scends scattering theory and for condensed matter includes the

thermodynamics of the system. The standard description of the
structure factor is that it is the Fourier transform of the all im-
portant density autocorrelation function, i.e., S(Eq ) and g(Eu) are
Fourier transform pairs. This is the description of Equations (11)
and (40). However, there is an equally valid but less used view
given by Equation (10) combined with Equation (38), namely,

S(Eq ) D n(Er )ei Eq ¢ErdEr
2

: [44]

Equation (44) shows that the structure factor is the square of the
Fourier transform of the density. As we have seen, these two
points of view are connected by the convolution theorem.

Under the assumption of isotropy, S(Eq ) D S(q) and g(Eu) D
g(u) and the solid angle integration can be performed on Equa-
tion (43) to yield

S(q) D 4¼ g(u)
sin qu

qu
u2du: [45]

Before we proceed with Equation (45) for various explicit physi-
cal realizations of the density autocorrelation function, it is valu-
able to study both the small and large q behavior of the structure
factor.
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q Rg < 1 Behavior of the Structure Factor.
The Guinier-Regime

We expand the integrand of Equation (45) for small qu. To
do this, � rst pull the factor of 4¼ into Equation (45) to create
a volume integral, 4¼u2du D dEu. Next expand x¡1 sin x ’
1 ¡ x2=3!. Then Equation (45) becomes two integrals, the � rst
of which is unity by the normalization of g(u) so that we obtain

S(q ) ’ 1 ¡
q2

6
u2g(u)dEu: [46]

We show in Appendix A that

R2
g D

1
2

u2g(u)dEu; [47]

where Rg is the radius of gyration of the aggregate. Hence at
small q we obtain

S(q ) ’ 1 ¡
1
3

q2 R2
g: [48]

This result is often called the Guinier equation (Guinier 1939;
Guinier et al. 1955; Teixeira 1986). It is sometimes written as
S(q ) ’ exp[¡q2 R2

g=3] and is valid for q Rg < 1. (Note that this
de� nes what ismeant by “small q.”) Its form is independent of the
form of g(u). Its great utility is that it allows for measurement
of the aggregate size regardless of the refractive index of the
aggregate.

q Rg > 1 Behavior of the Structure Factor and the
Fractal Cluster Density Autocorrelation Function

In order to consider the large q Rg behavior of the structure
factor with Equation (43), an explicit form for the density auto-
correlation function must be used. The general form is expected
to be (Teixeira 1986)

g(r ) D Ar D¡dh(r=» ); [49]

where A is an appropriate constant, d is the spatial and D is
the fractal dimension, h(r=» ) is a cutoff function faster than any
power law, and » is a characteristic length representing the size
of the cluster. The r D¡d term is the fractal part, and when Fourier
transformed yields S(q ) / q¡D , the well-known characteristic
behavior for fractal scattering at large q , and a result obtained
above from scaling arguments. The perimeter of the aggregate
is described by the cutoff function h(r=» ), which is independent
of the fractal nature.

Before we describe the current best expressions for h(r=» ),
we discuss the generic behavior of S(q ) as a function of D and
the cutoff function. To do this we write the cutoff function as

h(r=» ) D e¡(r=» )̄ ; [50]

where the larger the value of ¯ , the sharper the cutoff. Jullien
(1992) and, in particular, Nicolai et al. (1994) have studied the
behavior of S(q ) as a function of D and ¯ for d D 3.

Figure 8 shows the effect of ¯ for a fractal dimension of
D D 2. As ¯ increases, the real space cutoff becomes sharp.
In q -space, Figure 8 shows that as ¯ increases a distinct hump
develops just beyond the Guinier regime near q Rg » 2. After the

Figure 8. Structure factor versus q Rg for fractal aggregates all
with D D 2, but with different values of the cut-off exponent ¯.
The Debye function is for a random chain.

hump, the characteristic power law q¡D ensues but at different
levels depending on ¯. To describe these levels we write the
asymptotic structure factor as

S(q Rg À 1) D C(q Rg )¡D; [51]

where C is a constant quantifying the level. Figure 8 shows
that the values of C decrease as ¯ increases. Also notice that
for very large ¯, “ripples” occur due to the sharp cutoff. The
minima in these ripples occur at q Rg ’ 3:2 and 6.7. These can
be compared to the � rst minima in the RDG equation for a d D 3
sphere, which has the sharpest possible physical cutoff, which
are at q Rg D 3:5 and 6.0 (see Figure 6 and recall Rg D

p
3=5R

for a solid sphere).
Figures 9 and 10 show the effect of D on S(q ) for ¯ D 1

(exponential) and ¯ D 2 (Gaussian) cutoffs. In each case the
asymptotic slope on these log-log plots is¡D for all D < d D 3.
For ¯ D 1 and D just less than 3, S(q ) comes out of the Guinier
regime with a slope of ¡4, the Porod result for a smooth surfaced
sphere of D D d D 3. This Porod law crosses to slope ¡D at
larger q Rg . However, this crossover extends beyond the Guinier
regime, and hence becomes noticeable, only for D >» 2:9. For
¯ D 2 the hump near q Rg » 3 is part of the functionality S(q ) D
exp[¡(q Rg )2=3] which results at D D 3. S(q ) » q¡D again for
all D < 3 asymptotically beyond this hump. For D D 2:9
the crossover to power law begins near q Rg ’ 5. Thus we
conclude that for these two, as we shall see, common cutoffs,
the asymptotic S(q) » q¡D behavior begins immediately after
the Guinier regime for all D <» 2:9.

Explicit Forms for the Structure Factor
As seen above, the fractal aggregate structure factor is depen-

dent on both the fractal dimension D and the sharpness of the



D
ow

nl
oa

de
d 

B
y:

 [K
an

sa
s 

S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
rie

s]
 A

t: 
21

:4
9 

27
 J

un
e 

20
07

 658 C. M. SORENSEN

Figure 9. Structure factor for exponential cut-offs (¯ D 1)
and a variety of fractal dimensions D. Large q Rg slopes are
¡D, except when D D 3:0, and then the slope is ¡4.

cutoff as determined by ¯ . Explicit calculation of the structure
factor as the Fourier transform of the density autocorrelation
function shows that the functional form of the structure factor is
determined by ¯ , and once the form is set D becomes a parameter
in that functional form. Use of the Fourier transform of g(u) has
been limited to two values of ¯ : ¯ D 1, the exponential cutoff,
and ¯ D 2, the Gaussian cutoff. The exponential cutoff has the
longest history, having been used in some of the earliest studies
of fractal aggregate scattering by Freltoft et al. (1986), Berry

Figure 10. Structure factor for Gaussian cut-offs (¯ D 2) and
a variety of fractal dimensions D. Large q Rg slopes are ¡D,
except when D D 3:0, and then the functionality is S(q ) D
exp[¡(q Rg)2].

and Percival (1986), and Teixeira (1986). The resulting structure
factor and the relation of » to the cluster radius of gyration
Rg are listed in Table 2. The sharper Gaussian cutoff was � rst
proposed in our work (Sorensen et al. 1992a). Again the resulting
structure factor and relation to Rg are given in Table 2. Two
forms are given; they are related by the Kumar Transformation
(Abramowitz and Stegun 1965). Both represent in� nite series,
but the second form, with the negative argument converges faster.
Unfortunately, neither form converges very fast and therefore
high speed computing is necessary for � tting to data.

A number of other structure factors have been proposed, only
one of which is related to a correlation function with a general-
ized exponential cutoff, Equation (50). Based on the real space
analysis of simulated DLCA clusters, Mountain and Mulholland
(1988) found a best � t to Equation (50) with ¯ D 2:5§0:5. This
is within error consistent with the Gaussian cutoff, but not the ex-
ponential. The resulting equation for the structure factor does not
appear to be analytically solvable, but Mountain and Mulholland
calculated it numerically. Hurd and Flower (1988) proposed that
the fractal aggregates had sharp spherical perimeters, hence the
cutoff is described by the autocorrelation function of a sphere.
Because we have shown that the density autocorrelation func-
tion is equivalent to a self convolution, this cutoff may be called
the “overlapping spheres” cutoff because the convolution inte-
gral essentially overlaps the real space density function. Its form
can be calculated analytically and is given in Table 2, but the
resulting structure factor must be calculated numerically.

Another popular expression for the structure factor is the so-
called Fisher–Burford or modi� ed Ornstein–Zernike (Fisher and
Burford 1967; Martin et al. 1986; Teixeira 1986) form

S(q ) D 1 C
2

3D
q2 R2

g

¡D=2

: [52]

This formula came to us from the way � uids near a critical point
scatter waves, although there need not be any connection be-
tween fractal aggregates and critical � uids. The Fisher–Burford
form is equal to the exponential structure factor at D D 2 and
is a good approximation near D D 2. Its great advantage is its
simplicity.

Dobbins and Megaridis (1991) proposed a straightforward
structure factor not based on any density correlation function.
Its form, also given in Table 2, is based on use of the Guinier
formula at small q Rg and the expected power law C(q Rg)¡D at
large q Rg with a condition of continuity in the function and its
slope where they meet. This puts a condition on the constant C ,
which is also given in Table 2.

Lin et al. (1990b) gave polynomial expansions for the struc-
ture factor based on � tting the polynomial to the structure factor
of computer-generated aggregates created via both diffusion-
limited and reaction-limited (DLCA and RLCA, respectively)
algorithms. The polynomials were built with the correct low q Rg

(Guinier) and large q Rg (power law) limits. Again, these forms
are given in Table 2.
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Figure 11. Comparison of various theoretical forms for the
structure factor S(q ): upper section shows the structure factors,
lower section shows the normalized deviation from the Gaussian
structure factor (±S D S ¡ SG ). Key: E D exponential; HF D
Hurd and Flower; G D Gaussian; L D Lin et al.; DM D Dobbins
and Megaridis; MM D Mountain and Mulholland.

All these structure factors are compared in Figure 11
(Sorensen et al. 1992a). The Gaussian, Dobbins and Megaridis,
overlapping sphere, and Lin et al. DLCA structure factors are
all consistent to within 10%. The exponential structure factor is
much too high at large q Rg , and the Mountain and Mulholland
structure factor is 20–30% lower than the agreeing group at large
q Rg .

Figure 11 shows that the various structure factors differ in the
coef� cient of the power law C in Equation (51) This coef� cient
can be calculated from the various forms in Table 2, and the
results as a function of D are displayed in Figure 12.

Figure 12 shows that in the DLCA aggregate regime near
D ’ 1:8, the Gaussian, Dobbins and Megaridis, and Lin et al.
forms all yield a coef� cient C within a few percent of unity.
This is consistent with the comparison in Figure 11, and this
comparison also implies that the overlapping sphere structure
factor would also yield (C ’ 1) for D ’ 1:8 had we calculated
it. In contrast, the exponential and Fisher–Burford forms yield
large values of C; C D 2:73 and 2.44, respectively, for D D 1:7.
Both of these are rapidly varying functions of D in this regime
as well, in contrast to the other structure factors.

The relevant question now is what cutoff, hence what struc-
ture factor, best describes fractal aggregates? Previous work

Figure 12. Coef� cient C of the power law S(q ) D C(q Rg )¡D

for the structure factor of a single fractal aggregate when
q Rg À 1 as a function of the fractal dimension D for various
structure factors: FB D Fisher–Burford; expo D exponential cut
off; DM D Dobbins and Megaridis; L D Lin et al.; Gaus D
Gaussian cut off.

from this laboratory (Sorensen et al. 1992a) considered light
scattering from soot fractal aggregates in � ames. It was found
that structure factors derived from autocorrelation functions with
roughly Gaussian, ¯ D 2, cutoffs gave the best � ts to the data
when the effect of the aggregate polydispersity was included.
The structure factor derived from the exponential, ¯ D 1, cutoff
did a poor job of � tting the data, as did the Fisher–Burford form,
which approximates the exponential structure factor. We also
found that if the effects of polydispersity were not included, i.e.,
if the experimental data were � t with the single cluster struc-
ture factors, the best � ts were obtained with the exponential
and Fisher–Burford forms. Of course, such a � t cannot be cor-
rect because real systems are polydisperse. Below we will see
that polydispersity increases the effective value of C so that
the exponential and Fisher–Burford forms with their too large
C values can � t the data, thus demonstrating why these two
forms work so well for � tting data when the analysis overlooks
polydispersity. Subsequently we used TEM images of soot ag-
gregates thermophoretically captured from a � ame to compute
g(u) directly (Cai et al. 1993). Again cutoffs much sharper than
exponential, and well described by a Gaussian, were found. Lin
et al. (1990a) created both DLCA and RLCA aggregates with
computer simulation. These were Fourier transformed to S(q )
and then an average S(q ) was � t to a polynomial in q Rg. These
are given in Table 2. Nicolai et al. (1994) � t both these DLCA
and RLCA structure factors to structure factors derived from
Equations (45), (49), and (50) with arbitrary ¯ and found that
¯ D 2 � t best. Recently, Haw et al. (1995) have also concluded
that a cutoff signi� cantly faster than exponential is necessary to
describe scattering data.
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Given the experimental evidence in favor of a structure factor
derived from a Gaussian cutoff and the agreement of the coef� -
cient C in the relevant range of fractal dimensions with other em-
pirically based structure factors, we shall take C D 1:0 § 0:05
as the best value to describe the power law regime of the structure
factor of a single aggregate with D in the range 1.7–2.2.

This major variation in the C values of the asymptotic regime
is important. But as yet we have only a partial story with regard
to � tting real scattering data. Nearly any real system will be
polydisperse in cluster size, and that affects the overall appear-
ance of the structure factor, especially in the large q Rg regime,
and hence the value of the power law’s coef� cient.

The Structure Factor of an Ensemble
of Polydisperse Aggregates

Any real experiment detecting scattered radiation from an
ensemble of fractal aggregates will involve a polydisperse (in
cluster size) ensemble. Aggregates are a result of aggregation,
which always gives a � nite width to the cluster size distribution.
This polydispersity causes the shape of the observed structure
factor to be different than that of the structure factor of any sin-
gle cluster in the distribution (Nicolai et al. 1994; Sorensen and
Wang 1999). The single cluster structure factor, dependent on
the cutoff and D, was described above. Now we consider how
the shape is modi� ed by a distribution in cluster sizes. The mod-
i� cations will occur in both the Guinier and power law regimes.

One could argue that only an individual aggregate has a struc-
ture factor, not an ensemble of aggregates. However, an ensem-
ble of aggregates will scatter light and the scattered intensity
when plotted versus q gives an effective structure factor for the
ensemble. To consider the optical structure factor for an ensem-
ble of aggregates, we will use the RDG approximation in Table 1
for our analysis of the effect of polydispersity on the ensemble
structure factor.

In general, the effective structure factor for an ensemble of
aggregates can be written as

Seff (q ) D N 2 n(N ) S[q Rg(N )] dN N 2n(N )dN; [53]

where n(N ) is the size distribution, i.e., the number of clusters
per unit volume with N monomers per cluster. The number of
monomers per cluster and the cluster radius of gyration are re-
lated by Equation (1). Certainly one procedure to � t data is to
select a single cluster structure factor and an appropriate size
distribution and then � t the data numerically to Equation (53)
with � t variables such as D and the size distribution parameters
of most probable size, distribution width, etc. Such a procedure,
while viable, can be easily abused because the � tter can lose
sight of the physical meaning of the � t parameters. How often
has reliance on a goodness of � t parameter been substituted for
physical sense of the � t? Here we attempt to create an analysis
that relies on physical sense and simplicity.

Useful analytical solutions to the polydispersity problem in
the power law regime can be obtained if we ignore the Guinier

regime and represent the single aggregate structure factor by its
Rayleigh and power law limits:

S(q ) D 1; q Rg ¿ 1 [23a]

D C(q Rg )¡D; q Rg À 1: [23b]

To compute the results of Equation (53) applied to Equa-
tions (23), we de� ne the i th moment of the size distribution
as (Equation (B4))

Mi D N i n(N ) dN: [B4]

Note that the moment is an average and could also be written as
N̄ i or hN i i. With Equation (1), we � nd

Seff(q ) D 1; q Rg ¿ 1 [54a]

D
M1

M2
koC (qa)¡D; q Rg À 1: [54b]

The functionality on monomer radius a in Equation (54b)
can be useful when a is known, as we will see. Here, however,
we continue to consider the experimental situation. Since an ex-
periment deals with an ensemble of different-sized aggregates,
we require S(q) as a function of qhRgi, where hRgi is the “av-
erage” Rg measured by the experiment. Since the experiment
is scattering, the average is determined by the scattering. The
average Rg is best determined from analysis of scattering in the
Guinier regime. Below (Equation (88)) we will show that this is
the z-average radius of gyration

R2
g;z D a2k¡2=D

o
M2C2=D

M2
: [55]

Recalling once again the laboratory, the experimentalist will
measure an uncalibrated I (q ) and normalize it with the Rayleigh
regime scattering, I (0), to obtain Equations (54). He or she will
then use the Guinier regime to determine Rg;z , Equation (55).
Then plot I (q )=I (0) versus q Rg;z to obtain the structure factor
of the ensemble. Thus we use Equations (54) and (55) and sub-
stitute on koa¡D to obtain

Seff (q ) D 1; q Rg ¿ 1 [56a]

D C
M1

M2

M2C2=D

M2

D=2

(q Rg;z )
¡D; q Rg À 1:

[56b]

The most notable result in Equations (56) is that the coef� -
cient of the power law is modi� ed by the polydispersity of the
ensemble. Thus a strong warning is that if this modifying fac-
tor is signi� cantly different than unity, then use of single cluster
structure factors on scattering data could yield erroneous results.
The result also opens an opportunity to measure, to some degree,
the polydispersity of the ensemble.
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We next evaluate the polydispersity factor in Equation (56b),
which we shall call C p:

C p D
M1

M2

M2C2=D

M2

D=2

: [57]

Then Equation (56b) becomes

Seff (q ) D CC p(q Rg;z)
¡D; q Rg À 1: [58]

Given a size distribution, the polydispersity factor C p can be
calculated. It is well established that an aggregating system de-
velops a self-preserving, scaling distribution (Friedlander and
Wang 1966; Wang and Friedlander 1967; van Dongen and Ernst
1985) given by (see Appendix A)

n(N ) D Ax¡¿ e¡®x ; [59]

where x is the relative size

x D N=s [60]

and s is a mean size. Notice size in this context is the aggre-
gation number, N . The exponent ¿ is a measure of the width
of the distribution with large ¿ implying a broad distribution.
This scaling form is valid when x > 1, the small x form being
different. Since scattering strongly weights the large end, i.e.,
x > 1, of the distribution, the small x has little effect on the prop-
erties of scattering from an ensemble of aggregates and hence
can be ignored. Some details of the distribution are described in
Appendix A.

Other forms for the size distribution of aggregates exist, but
caution must be exercised in their use. For example, the intu-
itive log-normal distributions are frequently used in the liter-
ature. However, we have shown (Sorensen et al. 1992b) that
these distributions yield erroneous values for distribution mo-
ments higher than the second when compared to the exact scaling
distribution. For the second moment and lower, the distributions
agree well. Since scattering involves higher moments, such as
M2C2=D ’ M3 for D ’ 2, it is erroneous to use the log-normal
distribution for light scattering analysis.

In Appendix B we derive a general expression for the ith
moment of the scaling distribution, Equations (A6) and (A8).
With this, we � nd the polydispersity factor to be

C p D
1

2 ¡ ¿

0(3 ¡ ¿ C 2=D)

0(3 ¡ ¿ )

D=2

; [61]

where 0(x ) is the gamma function. In Figure 13 we graph C p as
a function of the width parameter ¿ for a variety of fractal dimen-
sions D. We � nd C p in general to be signi� cantly greater than
unity, thus our warning not to use single cluster structure factors
for analysis of scattering experiments involving a polydisperse
ensemble of aggregates is quite appropriate. In particular, for
DLCA in the continuum regime it is expected and well veri� ed
that ¿ D 0 and D D 1:75 to 1.8. Then from Equation (61) or

Figure 13. The polydispersity factor C p, Equation (61), which
describes the level of the power law regime of the structure factor
of a polydisperse ensemble of fractal aggregates, Equation (58),
as a function of the polydispersity exponent ¿ for various fractal
dimensions.

Figure 13 we � nd C p D 1:53. As the Knudsen number of the
aggregates increases above 0, the continuum regime is left and
¿ becomes negative (Wang and Sorensen 2000) and then swings
back to positive values in the free molecular limit (Mulholland
et al. 1988; Oh and Sorensen 1997). Hence C p would vary with
the kinetic regime. The signi� cance of C p is that its measure-
ment allows for a determination of the polydispersity exponent
¿ . We have applied Equation (61) for measuring the size distri-
bution exponent with success (Sorensen and Wang 1999), and
we describe this in the Optical Particle Sizing section below.

SCATTERING OF LIGHT
The study of electromagnetic scattering from aggregates has

a long history. For our purposes aggregates can be classi� ed into
two categories: 1) geometric aggregates in which the spherical
monomers are arranged into geometric patterns such as linear
chains, zig-zag chains, planes, spheres, etc., and 2) fractal ag-
gregates. We will not consider other situations such as particles
within particles or dispheres.

The essential question that must be understood for scattering
from any body of � nite size parameter, ka > 0, is how much does
that body interact with itself during scattering? For an aggregate,
this question becomes how much does the scattering from the
other monomers of the aggregate in� uence the total � eld at a
given monomer? For a single sphere the question is the same,
we need only to make the sphere an aggregate by dividing the
sphere into a number of domains analogous to the monomers
of the aggregate. If the interaction is negligible, the � eld at the
monomer is just the incident � eld and the � rst order result of
independent scattering, the RDG theory given above (Table 1)
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results. These intracluster interactions may be called multiple
scattering, a term used to mean that the � eld at a given monomer
is due to the incident � eld plus the � elds scattered by all the
other monomers in the aggregate. Calculation of the � elds due to
the other monomers is an iterative process. One � rst calculates
the � eld at a given monomer due to all the other monomers,
assuming the � elds they see are just in incident � elds. This yields
a corrected incident � eld for that monomer. This is repeated for
all the monomers in the system to complete the � rst iteration. The
process can then be repeated with the corrected incident � elds
for asmany iterations as deemed necessary. Usually the � elds are
assumed uniform across the monomer, thus the monomers act as
dipoles. Hence multiple scattering can also be called “coupled
dipole scattering.”

GEOMETRIC AGGREGATE LIGHT SCATTERING
Geometric aggregates have a longer history because the frac-

tal concept applied to aggregates is relatively new. Ku and Shim
(1992) did a nice job of reviewing this subject up to 1992 and
have also made detailed comparisons of three prominent elec-
tromagnetic approaches to this problem. The oldest approach
is that of Jones (1979), which is based on an original formula-
tion derived from Maxwell’s equations by Saxon (1974). The
Jones approach, when corrected (Ku 1991), considered multi-
ple scattering to second order in reciprocal distance between
monomers. They also considered the coupled dipole method
of Purcell and Pennypacker (1973) (PP), which views each
monomer as a dipole (hence a Rayleigh scatterer) and includes
multiple scattering to third order. Finally, they considered the
volume integral equation formulation (VIEF) of Iskander et al.
(1989) (ICP), which is very similar to the coupled dipole ap-
proach in that multiple scattering is included to third order, but in
addition a self-interaction term, where the � eld in the monomer
sphere induces an interaction with itself, is included. All three
approaches assumed uniform � elds across the monomer parti-
cles (the Rayleigh approximation). The refractive indices used
were m D 1:71 C 0:0i, 2.98 C 0.56i, and 1.7 C 0.7i, the last of
which represents soot formed in a � ame.

The results of the intercomparisons of these three methods
and comparisons with the exact Mie results available for spher-
ical particles favored the ICP approach slightly over PP and
greatly over Jones. For dense, spherical aggregates the failure
of the Jones solution was ascribed to insuf� cient handling of
multiple scattering. ICP and PP began to fail for angular scatter-
ing patterns near k R » 5, where R is the cluster sphere radius.
This work explicitly demonstrates the importance of multiple
scattering as the size parameter for a sphere takes it out of the
Rayleigh regime.

A variety of geometric aggregates were also studied. Lin-
ear chains, zig-zag chains, side-by-side chains, rectangles, etc.
Again ICP was a bit better than PP due to the inclusion of the
self term in ICP and both were much better than the Jones solu-
tion hence, once again, accentuating the importance of multiple
scattering.

Lou and Charalompopoulous (1994) utilized Saxon’s (1974)
integral equation to obtain a general form for the scattering
from an assembly of Rayleigh particles. They concluded that
the verdict against the Jones solution is not so negative as con-
cluded by Ku and Shim. They also agreed with Ku and Shim
that the self term is important. Comparisons were made with
a soot-like m D 1:7 C 0:7i for straight chains and dense
aggregates.

For our purposes here, important qualities that also come out
of Ku and Shim’s comprehensive study is that the absorption and
the near forward angle scattering cross sections for the “chain-
like” arrays (i.e., linear arrays, zig-zag and double linear arrays)
are proportional to N and N 2, respectively. This is the simple
RDG result predicted from scaling and expected if no multiple
scattering occurs. Thus these functionalities endure despite the
presence of multiple scattering. Finite size, D < 2, aggregates
with soot-like refractive indices all show between 10 to 60%
(the latter is an extreme case) enhancements in both scattering
and absorption when multiple scattering is included. Another
important result is that the depolarization ratio ½v D IVH=IVV

(see below) is nonzero and increases with N . Since ½v D 0 in the
single scattering limit, ½v is a direct indicator of multiple scat-
tering. However, as we shall see below, ½v increasing with N is
not found for fractal aggregates, the increase being symptomatic
of geometric aggregates.

Fractal Aggregate Light Scattering
Theoretical Studies. The onset and importance of multiple

scattering for fractal aggregates has been studied extensively,
mostly in the context of testing how well the simple RDG the-
ory works under various conditions and lesser so in regard to
depolarized light scattering. Studies of the optics of fractal ag-
gregates date back to Berry and Percival (1986), who made
the Rayleigh approximation for the monomers (ka ¿ 1) and
considered arbitrary fractal dimension D. The aggregates were
assumed to have an exponential cutoff, hence their ultimate re-
sult for scattering was the exponential structure factor, Table 2.
Multiple scattering was studied by assuming all the monomers
experienced the same multiply scattered � eld from its neigh-
bors, a mean � eld approximation. Formulas for scattering and
absorption with multiple scattering were not derived, but its im-
portance relative to single scattering was studied. For D < 2 it
was concluded that multiple scattering contributes a small con-
stant amount relative to single scattering. For D > 2, however,
multiple scattering can become signi� cant and grow relative to
single scattering as N increases. The onset of its signi� cance was
set at N >» (ka)¡D=(D¡2). Nelson (1989a) continued the work of
Berry and Percival with further investigation of multiple scatter-
ing. She found that indeed when D < 2 the multiple scattering
relative contribution tends to a constant. For D > 2, however,
the total scattering cross section � rst rises like N 2¡2=D , due to
single scattering, but then crosses over as N ! 1 to a N 2=D

dependence as multiple scattering dominates. The absorption
cross section crosses over from N to N 4=D¡1 dependencies. The
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scattering result is intuitively pleasing since it is the same as
the geometric limit for spheres where ¾sca » R2 » N 2=3. How-
ever, also expected is ¾abs » N 2=3, which is inconsistent with
N 4=D¡1 at D D 3. Also, despite these changes the power law
q¡D dependency remained as multiple scattering increased.

This impediment at large N for fractal aggregates with D > 2
of scattering and absorption by multiple scattering has inter-
esting implications. The same amount of material dispersed in
D < 2 aggregates rather than compressed into compact, sphere-
like clusters with D > 2 will be much more effective at scatter-
ing and absorption. This has important consequences for nuclear
winter (Colbeck and Harrison 1986; Nelson 1989b) or meteor
impact scenarios as well as current day concerns regarding en-
ergy balance in the atmosphere. The effect of mass dispersion
is well illustrated for the case of absorption by the work of
Hage and Greenberg (1990), who considered a cube made of
either 1000, 3375, or 8000 smaller cubes all with a size param-
eter ka D 0:19. These smaller cubes were either packed into a
larger cube with complete ef� ciency, hence a porosity p D 0, or
they were uniformly dispersed into large cubes parameterized
by p > 0. Note that p is related to the volume fraction f of
the small cubes in the larger cubes by f D 1 ¡ p. The smaller
cubes were spread uniformly over the volume of the large cube
and hence the “aggregates” were not fractals but rather, to use
their term, “� uffy aggregates.” The absorption was calculated
using both the VIEF method and the Maxwell-Garnet effective
medium theory (1904) in combination with Mie theory. Both
methods agreed well.

The results are shown in Figure 14. Note how as the poros-
ity increases the absorption cross section increases for the same
amount of material. Furthermore, at p D 1, i.e., the dispersed
(very � uffy) case, Figure 14 shows ¾abs=N ’ 280=1000 D 0:28,
900=3375 D 0.27, and 2150=8000 D 0.27, thus ¾abs » N in

Figure 14. Absorption cross section for a cube composed of N
smaller cubes with size parameter ka D 0:19. When the porosity
is 0, all the small cubes are touching to form a compact large
cube. As the porosity increases toward 1, the smaller cubes are
separated and placed randomly on a larger cubic lattice occupy-
ing a fraction 1 ¡ p of the sites.

all cases. Also at p D 1; ¾abs=N is directly proportional to the
imaginary part of m (each ¾abs approximately doubles for a given
N as the imaginary part of m doubles). At the other extreme,
p D 0, the completely dense case, ¾abs » N 2=3 for m D 1:33 C
0:5i (¾abs=N 2=3 ’ 170=10002=3 D 1:7, 380=33752=3 D 1.7,
700=80002=3 D 1.7) and approximately so for m D 1:33C0:25i .
This N 2=3 dependency implies only the surface of the dense ag-
gregate is absorbing light. The discrepancy for m D 1:33 C
0:25i can be explained by the fact that with a smaller imagi-
nary part for m, the wave penetrates deeper into the cube and
is not constrained to the surface. Hence the absorption will
have a dependency between the surface N 2=3 and volume N
dependency.

Singham and Bohren (1993) used the coupled dipole method
to study multiple scattering in both DLCA, D ’ 1:8, and DLA,
D ’ 2:5, aggregates. Their aggregates had as many as N D
1000 monomers with a soot-like refractive index of m D 1:75 C
0:5i and monomer size parameters as large as ka D 0:628. In
general, they found for the differential scattering cross section
that inclusion of the dipolar interactions (multiple scattering)
had essentially no effect when ka D 0:157 and only a small
effect (ca. 10% from reading their graphs) when ka D 0:314
for the D ’ 2:5, DLA aggregates. Moreover, the effect was to
decrease the cross section.

The impediment is also, at � rst thought perhaps, counterintu-
itive. Why should multiple scattering yield less scattering? The
answer is that it is waves that are scattering and they can inter-
fere. Multiple scattering in essence removes the � eld from the
interior of the aggregate leaving only the surface material active
at scattering and absorption. Realize that this is different than as-
sumption3 of our scalingapproachabove. There we assume each
scatterer experiences the same � eld, whether inside the system
or not. But the interior scatterer’s scattered waves destructively
interfere in the far � eld at all nonzero scattering angles as a con-
sequence of the Ewald–Oseen extinction theorem. In contrast,
when the system has D > 2, multiple scattering abolishes the
� eld at the interior scatterers; there is no � eld to scatter.

An alternative approach to the integral formulation is that
based on the principal of superposition developed by Bruning
and Lo (1971), who achieved the � rst successful formulation
of electromagnetic wave scattering from more than one sphere.
In this method the scattered � eld of the aggregate is the su-
perposition of the � elds from individual monomers, which are
expressed as vector spherical harmonics with origins at each
sphere. Then clever use is made of addition theorems in which
harmonics expanded about one origin can be expanded about an-
other so that the � elds from all the monomers can be combined
to yield the � eld from the aggregate. This yields an exact result
incorporating internal multiple scattering. It also includes higher
order multipoles from the sphere, whereas the volume integral
formulation considers the spheres as electric dipoles only.

This superposition method has been applied to biospheres
(Brunning and Lo 1971; Fuller 1991, 1994; Mishchenko and
Mackowski 1994; Mackowski 1994), clusters of spheres
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(Gerardy and Ausloos 1982; Mackowski 1994; Fuller 1995a;
Mackowski 1995), planar arrays (Quinten and Kreibig 1993),
and spheres with inclusions (Fuller 1995b). The method is still
progressing and the reader is referred to a new book edited by
Mishchenko, Hovenier, and Travis (2000), and in particular the
article by Fuller and Mackowski (2000) in that book.

Results that can be used here for aggregate studies have been
given by Mackowski (1994 and 1995). For two touching spheres
it was noted that even for a very small size parameter of ka D
0:01, both absorption and scattering were 5 to 10% bigger than
that predicted by RDG. For straight chains, this grew both as a
function the number of monomers and jm ¡ 1j to be as large as
40% enhancements over RDG. Fractal aggregates with D D 1:9
also show increased absorption and extinction cross sections of
about 5–20% over the RDG prediction.

Mackowski (1995) has also used an electrostatics analysis to
calculate absorption and scattering from fractal aggregates with
D D 1:9 andvariable N . The restriction to this analysis is that the
aggregate size must be less than the optical wavelength. Under
this condition there is no length scale, so the size parameter
of the monomer is arbitrary. For a soot-like refractive index in
the visible region of m D 2 C 1i , scattering and absorption
are 10 and 25% larger than the RDG limit. For midinfrared
wavelengths, however, where m ’ 3 C 2i , the absorption cross
section is a factor of two or more greater than the RDG result.

Fractal dimension D D 2 appears to be an important bound-
ary above which the effects of internal multiple scattering
become increasingly important with size. In fact, the D D 2
boundary is important in other physical aspects as well (Oh
and Sorensen 1997b; Cai and Sorensen 1994; Teixeira 1986).
The simplest basis for this is that when D < 2, projection of
the three-dimensional aggregate onto a two-dimensional plane
can be achieved with very little monomer-monomer occultation.
When D > 2, however, one can’t possibly compress this greater
dimensionality onto the smaller dimensional d D 2 plane. We
say when D < 2 the cluster is transparent, whereas for D > 2
it is opaque. The results for scattering and absorption discussed
above appear to be affected by this.

The importance of D D 2 to the optics can be made a bit
more quantitative by considering the aggregate as a dispersion
of one optical material, the monomers, in another, the vacuum,
and then applying the Maxwell-Garnet effective medium theory.
This theory is good for low and uniform density dispersions, the
second condition is not satis� ed by fractal aggregates. Under
this caveat, we proceed. The Maxwell-Garnet theory predicts
that the effective index of refraction is related to the refractive
index of the dispersed phase and its volume fraction f by

m2 ¡ 1

m2 C 2 eff

D f
m2 ¡ 1

m2 C 2
: [62]

We simplify this to

(m ¡ 1)eff / f (m ¡ 1); [63]

an approximation quite good when m ! 1 and not too bad
otherwise.

For a fractal aggregate the volume fraction of monomers can
be approximated as

f D
Na3

R3
g

: [64]

More accurate expressions for f could be concocted, but given
the other approximations, they are not warranted. Equation (64)
does have the correct functionality. Finally, we use the funda-
mental scaling relationship for fractal aggregates, Equation (1).
Combining this with Equations (63) and (64) yields (ko D 1)

(m ¡ 1)eff / (Rg=a)D¡3(m ¡ 1): [65]

We now argue in analogy to the RDG theory for spherical
particles which requires that the phase difference betweena wave
that travels through the particle and one that travels the same
distance alongside the particle be small. This is the phase shift
parameter ½ and the condition requires ½ D 2kajm ¡ 1j < 1.
This phase-shift parameter for anaggregate becomes, withEqua-
tion (65),

2k Rgjm ¡ 1jeff D 2kjm ¡ 1ja3¡D R D¡2
g : [66]

For a given optical wave number k and monomer of size a and
refractive index m , Equation (66) shows that for D < 2 the phase
shift parameter gets smaller with increasing aggregate size. Thus
the condition to be much less than one can be ultimately satis� ed
and, if our analysis is sound, the RDG theory should hold. On
the other hand, for D > 2 increasing Rg increases the cluster
phase shift parameter, taking it further away from the regime in
which the RDG theory can be successful. At this time, Equation
(66) must be viewed with some caution because of the misuse of
the Maxwell-Garnet theory. Future work to test Equation (66)
would be valuable.

In a similar vein, Khlebtsov (1993) used the principle of the
anomalous diffraction approximation of van de Hulst (1957) to
calculate the absorption and scattering cross sections for fractal
aggregates at large N . Anomalous diffraction implies a regime
where the size parameter k Rg can increase without bound, but
the phase shift parameter is � xed well below unity. This is
the essence of the argument that led to Equation (66) above.
Khlebtsov uses Maxwell-Garnet theory to � nd the effective re-
fractive index of the aggregate as a function of the radial position
in the aggregate, rather than the cruder average over the whole
aggregate used above. He � nds asymptotic results consistent
with RDG for D < 2 in that both the absorption and scattering
cross sections go as N as N ! 1. For D > 2 he � nds a cross-
over in the scattering functionalities from N 2¡2=D and N , re-
spectively, to both obeying N 2=D as N ! 1. This latter result
is consistent with geometric optics, i.e., a shadow.

Mulholland et al. (1994) included the magnetic dipole term
along with the electric dipole in their coupled dipole (multiple
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scattering) study of DLCA (D ’ 1:9) aggregates with N D 2
to 165. For soot-like aggregates (i.e., a complex refractive index
of m D 1:7 C 0:7i ) they found that this coupled electric and
magnetic dipole (CEMD) calculation led to enhanced scattering
and absorption (several percent) over RDG for primary particles
with size parameters ka <» 0:25, but this crossed over to smaller
cross sections at larger ka. For silica aggregates (with a real re-
fractive index of m D 1:55) the scattering cross section showed
no cross over, rather it increased relative to the Rayleigh cross
section monotonically with monomer size parameter by as much
as 20% by ka D 1:0. The cross section enhancement was inter-
preted as due to the enhanced � elds, relative to the incident � eld,
at each monomer due to the multiple scattering, whereas the re-
duction in cross section for larger ka was interpreted as due to
monomer shielding. Inclusion of the magnetic dipole extended
the range of the coupled dipole method (i.e., versus using only
electric dipole coupling) from ka ’ 0:5 to ’ 1:0 for soot-like
aggregates and spheres.

In a subsequent paper, Mulholland and Mountain (1999) used
the CEMD calculation for a broader range of N , viz. up to
1390, and included orientational averaging of the clusters, a fea-
ture lacking in the earlier work. They found that the absorption
cross sections were about 10 and 20% larger than predicted by
RDG for clusters with monomer size parameters of ka D 0:05
and 0.21, respectively, with 3 · N · 1000. For clusters with
monomer size parameter ka D 0:6, however, the absorption
cross section fell monotonically with N from values 20% larger
than RDG to 30% smaller by the time N ’ 1000. The speci� c
extinction was 21 to 36% larger than the RDG (i.e., no multi-
ple scattering) prediction for N in the 100 to 1000 range and
ka D 0:15 to 0.30.

Frey et al. (1988) also used coupled electric dipoles to study
the effects of multiple scattering for soot-like fractal aggregate
scattering. Their study varied D through the values 1.0, 1.5, 1.9,
and 3.0 and N · 512. For D D 1:5 and 1.9, the µ D 0 scattering
increased by 20% as the monomer size parameter ka increased
from 0.1 to 0.5.

In summary, it appears that for DLCA (D ’ 1:8) aggregates
multiple scattering can affect the scattering and absorption cross
sections by 10 to 20%. For small ka there is an enhancement
which can cross over to a reduction if the refractive index has
a signi� cant imaginary part, as does soot. Fractal dimension
>2 can also see an eventual diminution of cross section as size
increases.

It is worthwhile to remind ourselves that Mie theory for light
scattering by a sphere shows an analogous diminishment rela-
tive to RDG and Rayleigh theory as the sphere size increases.
This is illustrated in Figure 15. For small size, scattering is
proportional to volume squared or radius to the 6th power. In-
cluded in Figure 15 is the Rayleigh scattering limit for the to-
tal cross section, Equation (34), which has this functionality.
Notice how it overpredicts the scattering relative to Mie the-
ory. In the limit of large size (more precisely, when the phase
shift parameter ½ D 2k Rjm ¡ 1j is much greater than 1) the

Figure 15. Total Mie scattering cross section for incident
polarized light with ¸ D 500 nm for a spherical particle with
a refractive index of m D 1:33 (e.g., water) versus size pa-
rameter k R calculated using the BHMIE algorithm of Bohren
and Huffman (1983) (thick line). Also drawn are lines repre-
senting the Rayleigh scattering cross section calculated using
Equation (34) and the geometric plus diffraction cross section,
2¼R2, for the large k R limit. Values of the phase shift parameter
½ D 2k Rjm ¡ 1j are also given at various points.

scattering crosses over to the geometric limit which has two
parts: the geometric cross section or shadow of magnitude ¼ R2,
and diffraction around the geometric edge also of magnitude
¼ R2 (Kerker 1969; Bohren and Huffman 1983). These total to
2¼ R2 and this functionality is included in Figure 15. In un-
published work we have shown that the R2 functionality in the
½ D 2k Rjm ¡ 1j > 1 limit can also be explained as due to
a combination of two things: � rst, the light localizes near the
surface of the particle when ½ >» 4 due to its electromagnetic
nature. The surface is proportional to R2, hence the scattered
wave amplitude is proportional to R2. In the forward direction
the in-phase scattering constructively adds these waves to yield
an intensity proportional to R4. Combined with this is the fact
that this forward-scattering lobe narrows with increasing R ac-
cording to q » R¡1. Therefore the solid angle of this forward
lobe narrows with R¡2. These two functionalities yield the R2

dependency seen in Figure 15, predicted by Mie scattering and
by the usual geometric argument given above. The important
concepts to obtain from our argument is the importance of the
� eld localization at the surface, and a concomitant lack of illu-
mination in the interior, of the sphere. Notice how this is similar
to the concept of monomer shielding if we divide the sphere
into a system of monomers. Also notice that two approaches
to the problem of scattering could be taken: � rst, a multiple
scattering argument for a system of scatterers representing the
sphere, or second, the classical electromagnetic approach. This
author suspects that both approaches yield the equivalent result,
viz. exclusion of the � eld from the interior of the sphere with
a concomitant negative deviation from RDG theory at large ½.
It would be valuable to quantitatively make this comparison for
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spheres. For fractals with a real refractive index and D < 2, we
can speculate based on this and Equation (66) that a signi� cant
diminishment of scattering relative to RDG will never occur
because ½ decreases with increasing aggregate size. However,
if the refractive index has an imaginary part, then absorption,
not multiple scattering, can shield the interior from the incident
� eld and consequently diminish the scattered intensity as seen
by Mulholland and Mountain.

In a series of papers, Farias et al. (1995, 1996a, 1996b)
have directly addressed the validity of the RDG theory com-
pared to the VIEF formalism, as expressed by Iskander et al.
(1989), for fractal aggregates. In their � rst two papers, the com-
puter simulated aggregates were soot-like with D D 1:7 to 1.8,
m D 1:57 C 0:57i , N D 16 to 256, and ka D 0:1 to 0.4. Both
orientation and ensemble averaging were employed. The agree-
ment for both scattering and absorption between VIEF and RDG
was 10% or better. The second paper included both aggregate
and monomer polydispersity and the agreement remained very
good. This work � rmly establishes the RDG approximation for
fractal soot.

Most recently, Farias et al. (1996b) generalized their compar-
ison of VIEF and RDG to a wide variety of aggregates with a
wide range of refractive indices, jm ¡ 1j D 0:1 to 2.0, aggregate
sizes, N D 16 to 256, monomer sizes, ka D 0:01 to 1.0, and
fractal dimensions, D D 1:0 to 3.0. Figure 16 is a recreation of
their results for the scattering cross sections for D ’ 1:8 aggre-
gates. Added to the � gure is the curve representing a constant
phase shift parameter for the aggregate

2k Rgjm ¡ 1j D 3: [67]

To calculate Rg we used ka and Equation (1) with ko D 1:3.
Values other than 3 would also yield hyperbolic curves either
closer or further from the origin. There is nothing special about
3 except that it is near unity and yields a curve that does a nice
job separating the regions of where RDG theory is adequate or
not. Region I extends in a peninsula beyond the boundary of
Equation (67), but as Farias et al. (1996b) point out, this is due
to cancellation of compensating, larger errors.

It is worthwhile to note both enhancements and dimunitions
of the cross sections relative to the RDG cross section as indi-
cated by the C and ¡ signs, respectively, in Figure 16. This is in
qualitative agreement with the conclusions of previous results
discussed above, but now resolved in jm ¡ 1j versus ka space.

The effect of fractal dimension was also studied. Farias et al.
concluded the deviation from RDG was not a strong function
of D. This conclusion, however, may be in error, because a and
N were held � xed while D was varied. As D increases, Rg

will decrease and the important phase shift parameter, Equation
(67), will decrease as well. Since a decrease in the phase shift
parameter should improve the deviation, the relative constancy
of the deviation implies increasing D for a � xed size would
increase the deviation.

Figure 16. Deviation contour plot of the RDG theory from
the more exact VIEF calculation for the scattering cross section
as presented by Farias et al. (1996b) for a D ’ 1:8 fractal
aggregate composed of N monomers with various refractive
indices m and size parameters x p D ka. Also drawn are dashed
lines of constant phase shift parameter for the aggregate ½ D
2k Rgjm ¡ 1j D 3, Equation (67). Regions I, II, and III represent
errors of ·10%, 10% to 30%, and ¸30%, respectively. The plus
sign indicates the RDG predicts a larger scattering cross section
than VIEF, negative is smaller. Note that the ordinate axis does
not include 0.
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 668 C. M. SORENSEN

Figure 17. Deviation contour plot of the RDG theory from the
Mie theory for the total scattering cross section of a spherical
particle with various refractive indices m and size parameters
k R. These results were taken from Kerker (1969). Also drawn
is a line of constant phase shift parameter for the sphere, ½ D
2k Rjm ¡1j D 1. Regions I, II, and III represent errors of ·10%,
10 to 100%, and ¸100%, respectively. Note the peninsula of
small error along the m-axis similar to Figure 16.

Our � nal conclusion is that the aggregate phase shift parame-
ter is a key quantity in predicting the validity of the RDG theory.
Whether this phase shift parameter should include Maxwell-
Garnet averaging of the refractive index as expressed by Equa-
tion (66), or more simply the monomer refractive index as in
Equation (67), is an interesting speculation but remains to be
substantiated. For fractal aggregates with D ’ 1:8, the RDG
is quite good (10% error or better) as long as the phase shift
parameter, Equation (67), is <1. We expect that as D increases
the RDG accuracy declines at constant aggregate phase shift
parameter. At D D 3, we obtain a dense sphere. Kerker et al.
(1963) have compared the RDG result for the sphere to exact
Mie calculations and we reproduce these results in Figure 17
along with the phase shift parameter condition, Equation (67).
As seen previously in Figure 16, Figure 17 shows that Equation
(67) does qualitatively demark the range of validity of the RDG,
D D 3 theory, however, not as successfully at large m and ka.
(We remark that for a sphere Rg D

p
3=5R, but the qualitative

comparison here does not warrant this detail.) The facility of the
phase shift parameter for nonfractal shapes, such as the geomet-
ric shapes of Ku and Shim, is not known. Future work in this
regard and as a function of D for fractal aggregates would be
interesting, although one must question the utility.

Experimental Studies. An experimental test of the RDG
theory for fractal aggregates seems simple enough. One need
only scatter and absorb light from a system, determine size and
morphological parameters, and compare these to samples col-
lected from the system. Unfortunately, however, both the optical

and the sampling methods have uncertainties beyond that of the
validity of the RDG theory. Moreover, the optical and sampling
methods measure different moments of the distribution of aggre-
gates that exists in any real system. Add to this the uncertainty
of how the sampling method perturbs the system, and one can
see the comparison is far from straightforward. Despite these
worries, we must try, and a few groups have done just that.

Soot in � ames, an aerosol, is the only venue in which scat-
tering and absorption as described by RDG theory have been
comprehensively compared to sampling with microscopic ob-
servation. Soot offers an advantage in that it has a complex
refractive index with a signi� cant imaginary part. Thus one can
make use of the different functionalities of scattering and ab-
sorption on cluster size, N 2 and N , respectively, as given in
Equations (28) and (29). We will describe below how this al-
lows a combination of structure factor, calibrated scattering,
and absorption measurements to give complete optical deter-
mination of the size and morphology of an aggregate through
measurement of Rg; D; N , and a. Soot in a � ame is also hot,
hence it can be collected quickly by thermophoresis (Dobbins
and Megaridis 1987), which does not appear to have a size bias
for submicrometer soot.

Whereas the complex refractive index of soot is an advan-
tage, it is also a disadvantage in that it is poorly known. Many
soot refractive index measurements exist in the literature, and at
present it is the opinion of this author that there is little reason
to chose one measurement as the best (see Table 4 below). This
soot uncertainty leads to uncertainties in N and a determined
from light scattering measurements of about a factor of 2.

Another source of uncertainty for any optical versus sampling
comparison lies in the proportionality constant ko in Equation
(1). The importance of this constant for light scattering measure-
ments was realized early in our work (Sorensen et al. 1992b). In
that work we estimated that ko D (5=3)D=2 based on the N D 1
limit of Equation (1). For D D 1:8 this yields ko D 1:58. Wu
and Friedlander (1993) surveyed a variety of simulation and ex-
perimental results to conclude that ko was in the range 1.05 to
1.59. Mountain and Mulholland (1988) simulated DLCA ag-
gregates and found ko D 1:55 when D D 1:9. In contrast,
Sampson et al. (1987) studied stereo TEM images of soot to
� nd ko ’ 3:4 with D ’ 1:44. Using the data of Sampson
et al. (1987), Puri et al. (1993) found ko ’ 3:5 with D ’ 1:40.
We remark that these values of D are much smaller than ex-
pected based on current � ndings that D ’ 1:7 to 1.8, consis-
tent with a DLCA mechanism. In � tting N versus Rg data, ko

and D are anticorrelated. If we reanalyze the Puri et al. data
and force D D 1:75, a force which is not inconsistent with
the data, we � nd ko D 1:3. Since then, two groups have made
careful attempts to determine ko: our group at Kansas State and
efforts lead by Köylü at Michigan and Yale. In our work we
have collected soot from premixed methane � ames (Cai et al.
1993) and with TEM analysis found Equation (1) to hold with
ko D 1:23 § 0:07 and D D 1:74 § 0:04 and from acetylene dif-
fusion � ames (Sorensen and Feke 1996) to � nd ko D 1:66 § 0:4
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and D D 1:84 § 0:11. Our numerical simulations of DLCA
have yielded ko D 1:19 § 0:1 and D D 1:82 § 0:04 (Sorensen
and Roberts 1997) and ko D 1:30 § 0:07 with D D 1:80 § 0:03
(Oh and Sorensen 1997b). Köylü et al. (1995) have extensively
sampled a number of � ames to � nd (on average) ko D 2:7 with
D D 1:65 and performed computer simulations to � nd ko D 2:4
with D D 1:75. Their simulations, however, were performed
“with the additional restriction that the aggregates should have”
ko in the area near 2.4. Köylü and Faeth (1994a, 1994b) using
fractal aggregate light scattering techniques � nd ko D 2:3 with
D D 1:8. Similar results were found by Köylü et al. (1995),
who also summarized the past work on ko. In their optical work,
Köylü et al. use a soot refractive index of m D 1:57 § 0:56i .
This yields a large value of E=F . Other possible soot refractive
index values yield E=F as much as a factor of two larger (see
Table 4 below). By Equation (110) below, use of these other
refractive index values would cause the optically determined ko

values of Köylü et al. to be smaller by a factor of 2. The jury is
still out on this discrepancy, so the uncertainty remains.

Observation of sampled soot withTEM involves visualization
of a two-dimensional projected image of the three-dimensional
cluster. Thus one must know how to reconstitute the true three-
dimensional parameters such as Rg , D, and N from the two-
dimensional image. This problem seems to be largely solved
with modest uncertainty through efforts of a number of groups
(Köylü et al. 1995; Oh and Sorensen 1997).

Finally, one must contend with the polydispersity of the soot.
Light scattering and absorption measures moments of the dis-
tribution. These are discussed extensively below in the Optical
Particle Sizing section. These moments can be of fairly high
order, such as R2

g / M2C2=D=M2 ’ M3=M2. Then to make an
accurate comparison to direct TEM observation of sampled soot
requires good statistics at the large size end of the distribution.
This end, however, is inherently poorly populated, hence good
statistics are hard to achieve.

In our work (Cai et al. 1993) we performed optical struc-
ture factor measurements in combination with absolute scatter-
ing/extinction measurements via methods described below on
a premixed methane/oxygen � ame. We found Rg and D de-
termined from the optical and sampling methods to compare
well, within 5%. Aggregation number N and monomer size were
strongly dependent on ko and the soot refractive index for the
optical measurements and on the statistics of the size distribution
in the case of N for the sampling measurements. These led to un-
certainties of about a factor of 2 and the comparisons fell within
this range. We concluded that there was no egregious error in
the RDG theory and that sampling and optics were consistent.

Köylü and Faeth (1994a, 1994b) using laminar and turbulent
� ames had similar results. Rg and D agreed typically within 5%
between the two methods, although an acetylene diffusion � ame
systematically yielded Rg from sampling about 50% larger than
the optical method. TEM measurements of N and a were used,
along with soot refractive indices, ko, and sample statistics, to
calculate the scattering which compared well with the data.

It is edifying that the two experimental methods, optical and
sampling, agreed within their uncertainties, which are large for
a and N . That Rg and D agree well is not a stringent test of RDG
since the theoretical studies discussed above and to be discussed
below in regard to depolarization indicate that the I (q ) versus q
behavior, i.e., the structure factor, is not signi� cantly affected by
deviations from RDG. The more exacting test lies in measure-
ments of N and a, which is related to the absolute (as opposed
to the relative) nature of I (q) versus q scattering and absorption
cross sections. As a light scatterer and as one who has labored
with sampling measurements, my money is on the light scatter-
ing technique with the RDG theory. Once ko and refractive index
are well known, which they eventually will be with our diligent
efforts, light scattering with its ability for an unbiased sampling
of the entire polydisperse distribution of clusters will prove to
be far more accurate and easier to interpret than sampling. For
now we retreat to the theoretical work described earlier that has
substantiated RDG to 10%.

Depolarized Scattering
Single scattering of vertically polarized light into a horizon-

tal scattering plane, the usual laser light scattering experimental
set up, will yield vertically polarized scattered light. Any mul-
tiple scattering will incur some depolarization of the scattered
light, which for the set up above means that some horizontally
polarized scattered light will occur. Hence the presence of de-
polarization is an indicator of multiple scattering. The relative
amount of depolarization may be quanti� ed by the depolariza-
tion ratio

½v D
IVH

IVV
; [68]

where IVH designates the intensity of the light with a horizontal
polarization scattered from a vertically polarized beam and IVV

is for both incident and scattered light vertically polarized. In
the single scattering limit ½v D 0:

In an experiment, multiple scattering can occur either be-
tween two different clusters, intercluster scattering (e.g.,
Sorensen et al. 1976, 1978), or within one cluster, intraclus-
ter scattering. The former is typically an experimental pain, the
latter, however, is useful to indicate the end of the RDG approx-
imation and possibly for investigating the internal structure and
anisotropy of the aggregate.

In our laboratory we studied depolarized scattering from
laminar, premixed, sooting � ames of methane, ethylene, and
propane (Lu and Sorensen 1994). These � ames were well char-
acterized with IVV, which was dominated by single scattering
to yield in situ measurements of Rg; N ; D(D 1:79 § 0:1), and
a(D 15 § 3 nm). IVH was measured at small angles to achieve
the Rayleigh regime (q Rg < 1) and the resulting depolarization
ratio is plotted in Figure 18. There it is shown that the depo-
larization ratio is at most a percent and is well described by

½v » N ¡0:6 [69]
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Figure 18. Comparison of the � ame data for the depolariza-
tion ratio versus average number of aggregates per cluster and
calculation. The soot clusters are fractals with D ’ 1:75. Fits
are shown for a dipole-induced-dipole multiple scattering algo-
rithm assuming a soot refractive index of m D 1:6 C 0:6i . The
solid line is for no � eld averaging and no necking, the dashed
line is for � eld averaging over the monomer and no necking, and
the dot-dashed line is for both � eld averaging and necking.

with good � ame to � ame consistency. Since for q Rg < 1, IVV »
N 2, Equation (69) implies IVH » N 1:4 in the aggregate Rayleigh
regime (i.e., q Rg < 1).

Two analyses where used to explain the result. First, a scal-
ing argument was presented for double scattering, an argument
which we extend here. To lowest order the scattering of light is
governed by the electric dipole tensor (Jackson 1962; Sorensen
et al. 1976). The electric � eld at Er2 due to an oscillating dipole
Ep at Er1 is given by

EE(Er2) D k2 $
T (Er21) ¢ Ep(Er1); [70]

where k D 2¼=¸ and the electric dipole tensor is given by

$
T (Er12) D

eikr 21

r21
1 C

i

kr12
¡

1

k2r 2
21

$
I

¡ 1 C
3i

kr21
¡

3

k2r2
21

r̂21r̂21 ; [71]

where r12 D jEr2 ¡ Er1j. In scattering an oscillation dipole Ep is
induced by an applied � eld

Ep(Er1) D $
® ¢ EE(Er1); [72]

where
$
® is the polarizability tensor.

The electric dipole tensor has terms involving powers of kr12.
The � rst term, (kr12)0 D 1, dominates the other two terms when
kr12 À 1. This term is called the far � eld term and is the most
common situation because scattering usually involves detec-
tion at a point much farther away from the scatterer than the
wavelength. The other extreme is when (kr12 )¡2 dominates for

kr12 < 1. This term is called the near � eld term. We shall call
the (kr12 )¡1 term the intermediate term. Note that while it can
contribute to the tensor when kr12 » 1 it can never dominate.

We now consider single and double scattering scaling with
k, monomer size a, and monomers per aggregate N . For single
scattering the scattered � eld is

ESS » k2TFF®Eo: [73]

The leading term in the electric dipole tensor is the far � eld
term, TFF » eikr12 =rD, where rD is the distance to the detec-
tor. For small monomers in the Rayleigh regime ® » a3. For a
modest amount of multiple scattering, single scattering is by far
the major contributor to IVV, so IVV » E2

SS . Moreover, in the
aggregate Rayleigh regime, qRg < 1, the N monomers will add
their scattered � elds in phase. With all this, we � nd

IVV » N 2k4a6; [74]

as expected from Equations (26), (27), and (36a).
Double scattering provides an interesting twist on the usual

scattering arguments in that the internal scattering event can in-
volve terms of the dipole tensor other than the usual far � eld term.
In the small cluster limit, kr12 < 1 for all pairs of monomers,
and then the near � eld term dominates. The sequence of double
scattering is an internal event followed by an event that takes the
photon out of the aggregate, a far � eld event. Thus

EDS » k2TNF® ¢ k2TFF ® ¢ Eo; [75]

where TNF is the near � eld term of the electric dipole tensor.
From Equation (71), TNF » hr¡3

12 ik¡2, where hr ¡3
12 i indicates an

average all pairs of monomers within a cluster. Since r12 is a
center-to-center monomer distance, it scales with the monomer
size, hr ¡3

12 i » a¡3. This average can also be determined by
integration with the density autocorrelation function g(Eu) which
describes, given a particle at Er , the probability of another particle
at Er C Eu. Then

r¡3
12 D u¡3g(Eu)dEu: [76]

This and the fundamental scaling relation (Equation (1), R »
aN 1=D) yields

r¡3
12 » a¡3 N¡3=D: [77]

The last ingredient for double scattering is that, since it involves
two scattering events within the N monomer aggregate, it is
proportional to N (N ¡ 1) » N 2. Then, with all this, Equation
(75) becomes

EDS » N 2 ¢ k2k¡2a¡3N ¡3=Da3 ¢ k2a3 ¢ Eo

» N 2¡3=Dk2a3 Eo: [78]



D
ow

nl
oa

de
d 

B
y:

 [K
an

sa
s 

S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
rie

s]
 A

t: 
21

:4
9 

27
 J

un
e 

20
07

 LIGHT SCATTERING BY FRACTAL AGGREGATES: A REVIEW 671

Again for modest multiple scattering, double scattering domi-
nates IVH so IVH » E2

DS to yield

IVH » N 4¡6=Dk4a6 Io: [79]

Combining this with Equation (74), the depolarization ratio is
expected to be

½v » N 2¡6=D: [80]

We stress that Equation (80) has no wavelength or monomer size
dependence.

Equation (80) can be compared to experiment. For D D 1:8
Equation (80) predicts ½v » N ¡1:3, which quantitatively dis-
agrees with the experimental N ¡0:6 measured dependency but
does, at least, explain the decrease of ½v with increasing N .
Equation (80) does describe well the lack of wavelength de-
pendence that was measured in our experiment. However, this
measurement was con� ned to the small range of ¸ D 459 to
514.5 nm (available with an ArC laser).

Equation (80) depends on the near � eld term of the elec-
tric dipole tensor being dominate. This requires kr12 < 1 for all
pairs of monomers. Since ¸ ’ 500 nm, this implies r12 < 80 nm,
which requires a fairly small cluster; by Equation (1) N < 25.
Some of our clusters were this big or larger, see Figure 19. There-
fore we make similar scaling arguments for the other two terms
in the electric dipole tensor to � nd the following dependencies
for ½v when measured in the aggregate’s Rayleigh regime (i.e.,
qRg < 1), where IVV » k4a6N 2:

½v » N 2¡6=D; near � eld [81a]

» k2a2 N 2¡4=D; intermediate term [81b]

» k4a4 N 2¡2=D; far � eld. [81c]

Figure 19. The depolarization ratio versus number of
monomers per aggregate for linear chains calculated with the
same algorithm as used in Figure 18. m D 1:6 C 0:6i and
ka D 0:2.

The results in Equations (81) apply for qRg < 1, but the
arguments for IVH are independent of q (hence µ ). Thus we
expect IVH to be isotropic. This is physically reasonable since
for any incident and scattered direction an in� nite and fairly
random number of intermediate scattering directions (i.e., those
between the � rst and second scattering events) can occur. This
is substantiated by Lindsay et al. (1987), who calculated the
depolarized scattering for D D 1:77 gold fractal aggregates and
found it to be isotropic.

As the aggregate size increases, the functionality of ½v will
shift from Equation (81a) to Equation (81c). For D D 1:8 this
shift will cause the exponent of N to range from ¡1.3 through
¡0.2 to 0.9. For aggregates of intermediate size with kr12 » 1,
all three terms above will be active and some average depen-
dency will occur. Then it is reasonable that the experimentally
observed ½v » N ¡0:6 dependency lies between Equations (81a)
and (81b) when D ’ 1:8.

We conclude that the scaling arguments are useful for visu-
alizing how the complex formulas of Equation (71) contribute
to the functionalities of the scattered � elds. Scaling is invoked
to uncover simplicity in apparent complexity, which we have
done, but the need to � nd an average behavior among Equations
(81) vitiates scaling’s quantitative ability. Thus we resort to a
numerical calculation.

The numerical calculation of Lu and Sorensen (1994) in-
volved a set of DLCA clusters created with an off-lattice simula-
tion. These clusters had a fractal dimension of D D 1:75 § 0:10.
The scattered � eld from these aggregates was calculated with it-
eration to yield a self-consistent, electric dipole-induced-dipole
result. We gave these aggregates a soot index of refraction of
m D 1:6 § 0:6i , a monomer size parameter of ka D 0:2 (at
¸ D 488 nm, a D 15:5 nm), and used N D 3 to 98 with orien-
tational averaging.

We found large cluster-to-cluster variation with values of ½v

ranging by a factor of 5. The average values for an ensemble of
aggregates, however, when plotted versus N showed ½v » N¡x

with x D 0:6 § 0:1 in excellent agreement with the experiment.
However, the magnitude of the calculated ½v was about a factor
of 8 too small.

Attempts to obtain quantitative agreement to the magnitude
of ½v required a number of strategies. Improvements were gained
by considering the a D 15:5 nm monomers as extended objects.
This is usually unnecessary for such small (a ¿ ¸) particles, but
the near � eld term has a rapid r ¡3 dependency so that the � eld
scattered from a nearby monomer changes signi� cantly over the
volume of the receiving monomer. This � eld averaging correc-
tion increased ½v by a factor of about 2, as shown in Figure 18.
We also attempted to simulate the real soot aggregate by in-
cluding “necking,” i.e., nonpoint contacts, between monomers
in our calculation. This also caused a factor of about 2 increase
in ½v , also shown in Figure 18. Despite these efforts, the cal-
culated ½v values are still too small. In unpublished work, we
found a quantitative � t could be obtained by varying the refrac-
tive index. The � t did not yield a unique value for the refractive
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index but did yield a unique mass speci� c extinction. When the
two corrections above were included, the best � t extinction was
8.1 § 1 m2/g, which corresponds to m D 1:5 § 1:0i , among
other values.

We applied our self-consistent electric dipole-induced-dipole
calculation to a linear chain of soot monomers to � nd ½v increas-
ing monotonically with N as shown in Figure 19. This is very
different than the monotonically decreasing functionality of de-
polarization seen in small fractal aggregates. This serves to stress
the great difference between random fractal aggregates and var-
ious contrived “geometric” aggregates, such as linear chains, in
scattering nature. Any worker purporting to study random aggre-
gates formed in nature with such geometric aggregates should
beware.

Chen et al. (1987) and Keyes et al. (1987) (Seeley et al. 1988)
considered second-order multiple light scattering from a general
context of higher-order correlations within the aggregate, cor-
relations more subtle than and not described by the fractal di-
mension of the aggregate. Their work involved diffusion limited
aggregates (DLA), i.e., aggregates formed via single particles
diffusing to a (relatively) � xed aggregate (Witten and Sander
1981; see also Family and Landau 1984; Viscek 1992) and bond
percolation aggregates (BPC). These models give D ’ 2:5 and,
while found in other aspects of nature, do not seem to occur in
aggregating aerosols and colloids where cluster-cluster aggre-
gation is the rule. They found that the second-order scattering
should scale as IDS » N x , and a renormalization group analysis
found x D 4¡6=D, entirely consistent with our Equation (81a).
Both groups used only the “long wavelength limit” of the electric
dipole tensor, i.e., the near � eld term. Simulations found x ’ 1:1
for DLA and 1.6 for BPC, the latter in agreement with x D
4¡6=D when D D 2:5. Both groups concluded that this demon-
strated second-order light scattering’s ability to distinguish two
families of clusters with essentially the same fractal dimension.

We concur with this conclusion and offer the following ex-
planation. Pearson and Anderson (1993) have shown that the
structure factors of DLA and BPC differ, the DLA being much
less uniform in S(q ) versus q than BPC. In recent work (Oh and
Sorensen 1998) we have shown that whereas DLCA clusters are
essentially homogeneous in q -space with a fractal dimension
of D D 1:8, the DLA aggregate shows DLCA structure with
D D 1:8 over length scales on the order of 10a. With this, near
� eld scaling arguments for IDS or ½v from DLA would imply
use of a fractal dimension smaller than the overall D D 2:5,
perhaps as small as the local structure D D 1:8. The value
x D 1:1 D 4 ¡ 6=D implies D D 2:07, which is consistent with
this argument.

Other work on depolarization is largely consistent with the
story above. Frey et al. (1988) considered intra-aggregate mul-
tiple scattering for fractal aggregates with Rayleigh monomers
with size parameters of ka · 0:5. The electric dipole tensor
used included only the far � eld and intermediate term (i.e.,
second order in (kr )¡1). The monomers were soot-like with
m D 1:6 C 0:8i . Clusters had fractal dimensions of D D 1,

1.5, 1.9, and 3.0 and monomer numbers of 16 to 512. The cal-
culated depolarization ratios were small, on the order of 10¡4.
The depolarization decreased with N , characteristic of fractal
aggregates. Our analysis of their data plotted in their Figures 4
and 5 yields ½v » N ¡0:7 for D D 1:5 and 1.9. This is in good
agreement with our data. Comparison to Equations (81) would
imply a contribution due to the near � eld term (81a), which was
not included in their calculation; a puzzle I can’t explain. De-
spite this, this study qualitatively supports our picture here that
½ decreases with N when q ! 0.

Mulholland and coworkers (1994, 1999) also considered de-
polarization in their CEMD calculations. However, they de� ned
depolarization, differently than here, as

½H D
IHH

IVV
; [82]

i.e., the incident beam is horizontally polarized as well as detec-
tion of horizontal polarization. The advantage of this de� nition
of depolarization is that it is a sensitive, monotonic function
of particle size for single spheres with size parameter, ka, less
than about 2.5 (Kerker 1969). This fact has been used in the
past for size measurements (Kerker 1950, 1969). Mulholland
et al. reasoned that if the RDG theory for fractal aggregates
is accurate, then the assumption that forms the basis for RDG
theory, viz. that there is no intra-aggregate multiple scattering,
is true as well. With no multiple scattering, the sole source of
depolarization would be the individual monomers. This would
then allow for a measurement of monomer size in the aggre-
gate. Unfortunately, these hopes proved unsupported by their
CEMD calculations. A comparison of a ½H for a single sphere
and an aggregate of N D 17 spheres showed that the depolar-
ization for the aggregate is more than an order of magnitude
larger than for the sphere. Thus multiple scattering within the
aggregate overwhelms the depolarization due to the individual
monomers.

This multiple scattering can be described by the scaling de-
scription of Equations (81) because the leading contribution to
IHH at a 90± scattering angle is double scattering. The near � eld
term should dominate when k Rg

<»1. For N D 17, Equation (1)
with ko D 1:3 implies this will happen when ka <» 0.24. Fig-
ure 20 shows that for ka <» 0.24 ½H is only a weak function
of monomer size, less so for smaller ka, in agreement with the
prediction of Equation (81a). For ka > 0:24, Figure 20 shows
that the dependency crosses over to ½H » a2. This agrees with
Equation (81b) and the concept that for larger clusters the in-
termediate � eld term must become important. Mulholland and
Mountain also looked at the N dependencies of ½H . For small
monomers with ka D 0:05, hence small clusters, they found
½H » N¡0:55. Equation (81a) for near � eld multiple scattering
predicts ½H » N¡1:3 when D D 1:8 but also when scattering
is constrained to an angle small enough that qRg < 1, hence
Ivv » N 2. Since Mulholland and Mountain used µ D 90±,
much of their data is outside of this regime, so that Ivv » N .
Then scaling Equation (81a) would predict N¡0:3. These two
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Figure 20. Depolarization ratio ½H D IHH=IVV D CH (90)=
CV (90) at µ D 90± for four soot-like aggregates of N D 17
spheres generated by a DLCA algorithm (hence D » 1:8). The
monomeric spheres have m D 1:7 C 0:7i and size parameter
x D ka. Calculation was performed using the coupled electric
and magnetic dipole algorithm by Mulholland and Mountain
(1999).

extremes are consistent, within the admittedly wide range, with
the computed data. The trend remains favorable for bigger ka
as the exponent x of ½H » N x increases with increasing clus-
ter size. This is expected via the scaling argument as the inter-
nal scattering progressively uses more of the intermediate and
far � eld terms, hence develop dependencies similar to Equa-
tions (81b) and (81c), as the cluster size grows.

The discussion and results above show that intra-aggregate
multiple scattering exists for typical clusters; it can be simply
understood with scaling arguments, and it is the dominant mech-
anism for depolarization. So if it exists, is RDG void? Figure 21
shows our attempt to answer this. The same iterative dipole-
induced-dipole program that successfully calculated ½ due to
multiple scattering shown in Figure 18 was used to calculate
the total light scattered as a function of q for the same aggre-
gates. Comparison to the strictly single scattering, hence RDG,
case shows the same shape, hence same structure factor, with a
uniform enhancement in scattering of »10%. This small devi-
ation is consistent with the numerous studies discussed above.
We surmise for soot-like particles with D ’ 1:75 that multiple
scattering is signi� cant for depolarization, but it is minor for the
overall scattering of light.

For future work on depolarization I advocate use of ½v, Equa-
tion (68) over ½H , Equation (82). Measurement of ½H yields

Figure 21. Total VV scattering from a soot-like aggregate of 50
monomers with m D 1:6 C 0:6i and ka D 0:2 with and without
multiple scattering between the monomers. This was calculated
with the same dipole-induced-dipole algorithm used in Figure
18.

experimental and interpretational dif� culties: i) most lasers are
vertically polarized so polarization rotation is necessary for ½H .
ii) Detection of IHH must be exactly at µ D 90±, otherwise single
scattering contributes. Any � nite collection angle compromises
this requirement. iii) µ D 90± is ill de� ned relative to the impor-
tant parameter qRg. The scattering regime, hence nature of the
scattering, is determined by whether qRg < 1 or >1. µ D 90±

may be in either depending upon Rg (and ¸ but less so since
its variation range is limited by lasers and detectors). The sim-
plest regime to work in is q Rg < 1, the aggregate Rayleigh
regime.

OPTICAL PARTICLE SIZING
One of the major motivations for understanding how aggre-

gates scatter and absorb light is so that this knowledge can be
used for in situ light scattering and absorption measurements
of particle size, morphology, and number density. Light scat-
tering is noninvasive, remote, and, even without these favor-
able attributes, as good as or better than any other more direct
method. Indeed, why should real space be any better than recip-
rocal space?

The Optical Structure Factor
Scattered intensity versus angle is the most fundamental mea-

surement for sizing. Angle is, of course, the experimental pa-
rameter, but it is the functionality with q that we strongly advo-
cate because it leads us to understand the scattered intensity and
quantify our analysis. We will call measurement of I versus q
an optical structure factor measurement. From the optical struc-
ture factor one can in principle determine the aggregate Rg and
D, the polydispersity of the aggregate size distribution, and the
monomer size a if short wavelengths or large a is available. All
this is obtainable without the need to know the refractive index of
the particle or aggregate. These facts are outlined schematically
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Figure 22. Schematic representation of the scattered light in-
tensity I (q ) versus q D 4¼¸¡1 sin µ=2, where µ is the scattering
angle, from an ensemble of fractal aggregates of dimension D
with N monomers per aggregate on a log-log plot. In the en-
semble n is the number density of clusters and Nm is the total
number of monomers, nN D Nm.

in Figure 22. Many examples of optical structure factor measure-
ments on particulate systems exist in the literature (Schaefer et al.
1984; Martin et al. 1986; Hurd and Flower 1988; Zhang et al.
1988; Gangopadhyay et al. 1991; Bonczyk and Hall 1991, 1992;
Dobbins and Megarides 1991; Sorensen et al. 1992b; Köylü and
Faeth 1994a, 1994b; Köylü 1998; Sorensen et al. 1998; Xing
et al. 1999).

An example from some of our early work (Gangopadhyay
et al. 1991) is given in Figure 23 for a soot aerosol in a premixed
methane/oxygen � ame. Increasing height above burner h means
later in the aggregation process. Inspection of Figure 23 shows
that with increasing height, the bend in the optical structure
factor, i.e., where the slope of I versus q goes from 0 to negative,
progresses to smaller q . A cardinal rule is that a change in slope
implies a length scale. In this case the length scale is the overall
aggregate size, and since R » q¡1, this is a direct observation,
albeit qualitative, of the aggregate size increasing with time.
Notice the essentially isotropic scattering at h D 8 nm to indicate
very small particles. Figure 24 presents a more recent example of
scattering from a titania aerosol. Note the scale in q is an order of
magnitude smaller than in Figure 23, hence the clusters of titania
are an order of magnitude larger. In Figure 24 a signi� cant power
law regime is seen with a slope implying D ’ 1:7. Notice also
other general features. The I (q D 0) limit (the Rayleigh regime)
increases with either height above burner or run time. This is
the Tyndall effect (see below) that as a system coarsens as it
scatters more light. On the other hand, the power law regime

Figure 23. Scattered light intensity I (q ) as a function of the
scattering wave vector q for 5 different heights above burner h
for a premixed methane/oxygen � ame.

in Figure 24 is approaching an intensity constant with time as
described above.

Quantitative analysis of the optical structure factor proceeds
in two steps (Gangopadhyay et al. 1991; Sorensen et al. 1992b).
First, the Guinier regime is analyzed to yield the aggregate ra-
dius of gyration. The Guinier equation, Equation (48), may be

Figure 24. Scattered light intensity I (q ) as a function of the
scattering wave vector q for 5 different times (runs) of an ag-
gregating titania aerosol.
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Figure 25. Flame soot aerosol data of Figure 23 plotted for a
Guinier analysis, Equation (83).

expressed as

I (0)=I (q ) ’ 1 C
1

3
R2

gq2: [83]

This implies that a graph of I (0)=I (q ) versus q2 should be lin-
ear with a slope of R2

g=3. Such a plot has a venerable history
since the axes and the result are the same as for the Zimm plot
of biophysics (Zimm 1948; Tanford 1961; Kerker 1969). The
data of Figures 23 and 24 are so plotted in Figures 25 and 26,
respectively. Figure 25 is a proper Guinier analysis in that, for

Figure 26. Titania aerosol data of Figure 24 plotted for a
Guinier analysis, Equation (83). Note that the bulk of the data
extend beyond the Guinier regime.

Figure 27. Inverse normalized scattered intensity versus
(q Rg )2. Lines are calculated for a Gaussian structure factor
with D D 1:75 convoluted with a size distribution: mono-
monodisperse; ¿ D 0:0, 0.5, 1.0, and 1.5 are for the scaling
distribution, Equation (A5). Data are from a soot aerosol in a
premixed methane/oxygen � ame.

the most part, for the data used qRg < 1, which is equivalent
to I (0)=I (q ) < 4=3. Figure 26 is not so proper since data well
beyond the Guinier regime are used in the Guinier analysis. We
have shown that this is acceptable for analysis of fractal aggre-
gate systems with polydispersity determined by the aggregation
kinetics. We describe this below in reference to Figure 27.

Equation (83) yields the aggregate radius of gyration for a
system of monodisperse aggregates. Nearly any real particle
system will have a polydisperse distribution of aggregate sizes,
hence Equation (83) must be modi� ed to read

I (0)=I (q ) ’ 1 C
1

3
R2

g,measq
2; [84]

where Rg,meas is the Guinier measured radius of gyration. This
represents an average over the distribution weighted by the light
scattering cross section. Rg,meas is suf� cient for describing the
“average” radius of gyration of an ensemble of aggregates.

A more detailed approach is necessary if we are to describe
what “average” means and relate the measurement to other mea-
surements of the aggregate size. We can determine how Rg,meas

is related to the radius of gyration of the mean-sized aggregate
from the effective structure factor for the entire ensemble, Equa-
tion (53). We use the fact that I (0)=I (q ) D Seff (0)=Seff (q ), then
substitute the Guinier expansion for S[q Rg(N )], Equation (48),
into Equation (53) to � nd

I (0)=I (q ) D 1 ¡ (q2=3) N 2 R2
g(N )n(N )d N N 2n(N )d N ;

[85]

D 1 ¡ (q2=3)R2
g;z : [86]
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Equations (85) and (86) de� ne the so-called z-average value
of the radius of gyration, a term which applies whenever the
size distribution is weighted by the square of the mass. Next we
substitute R2

g D a2k¡2=D
o N 2=D, which follows from Equation

(1), into Equation (85) to obtain

I (0)=I (q ) D 1 ¡
1
3

q2a2k¡2=D
o

M2 C 2=D

M2
: [87]

Equations (84), (86), and (87) imply

R2
g,meas D R2

g;z D a2k¡2=D
o

M2 C 2=D

M2
: [88]

Equation (88) shows that Rg,meas is strongly in� uenced by the
large end of the distribution because it depends on high order
moments, viz. »M3=M2 when D » 2.

What is the mean size hN i? There are, in fact, an in� nite
number of ways to de� ne mean size, as described in Appendix B,
Equation (B3). Light scattering in the Rayleigh regime of the
aggregate where I / N 2 “chooses” a convenient de� nition as
the ratio of the second and � rst moments of the distribution. We
will write this as s2 D M2=M1. It then follows from Equation (1)
that the radius of gyration of this mean size is

Rg;2 D ak¡1=D
o s1=D

2 : [89]

Equations (88) and (89) can be combined with s2 D M2=M1 to
obtain

R2
g;2 D R2

g;z
M2

M1

2=D M2

M2 C 2=D
: [90]

This equation gives the radius of gyration of the mean size de-
� ned by M2=M1 in terms of the radius of gyration measured
from the Guinier analysis.

We now have both Rg;z and Rg;2 expressed in terms of mo-
ments of the distribution. If we know the distribution, we can
directly relate the two. We will assume again that the distribution
is the self-preserving, scaling distribution. Then we can apply
Equation (B7) to change Equation (90) to

R2
g;2 D R2

g;z
m1 C 2=D

2

m2 C 2=D
: [91]

The expression for mi for the scaling distributions is given in
Equation (B8).

Precisely speaking, this Guinier analysis should be limited to
qRg · 1, which corresponds to I (0)=I (q ) · 4=3. Often, how-
ever, the data are not plentiful and precise enough within these
bounds to yield an accurate Rg. Indeed, the data of Figure 26
extend well beyond these limits. We have found (Cai et al. 1995)
both through experience with real data and numerical calcula-
tions to create simulated data with the complete structure factors
of Table 1 that I (0)=I (q ) versus q2 remains linear well beyond
these limits and data up to about I (0)=I (q) » 2 can be trusted to

yield accurate Rg values. Moreover, divergence from linearity
beyond this empirical limit are related to D, ¯ , and ¿ . If D and ¯

are known, this allows for a measurement of the polydispersity
exponent ¿ . Figure 27 gives an example of this behavior. Such
a measurement appears viable, but this procedure has yet to be
stringently tested with data.

The power law regime yields the fractal dimension D by its
slope. Of course one would like tohave a good decade of linearity
to get a good measure of this slope, but this is rarely the case,
e.g., Figure 23. Moreover, the true power law character doesn’t
really show until qRg

<» 5. Hence one must beware when data
in this regime are limited.

A well-endowed power law regime has another advantage
besides easy extraction of an accurate fractal dimension, and
that is a measure of the polydispersity using Equations (58)
and (61). In a recent study (Sorensen and Wang 1999) we mea-
sured the structure factors of both a titania aerosol aggregating
via DLCA kinetics and a polystyrene colloid aggregating via
RLCA kinetics. Fractal dimensions of 1.7 and 2.15 were found
for these two systems, respectively, in agreement with previous
work (Jullien and Botet 1987; Lin et al. 1990b). To illustrate
the different coef� cients in the power law regime, we plot in
Figure 28 (qRg;z )D S(qRg;z ) versus qRg;z . By Equations (56)
such a log-log plot will initially rise with a slope of D, then
level off for qRg;z > 1 to the value CCp . From our consid-
erations of the single cluster structure factor above we expect
C D 1:0, thus the level in Figure 28 is C p , with values dra-
matically different for the two systems. Our complete analysis
of several sols found ¿ D 0:24 § 0:23 for the DLCA aerosol

Figure 28. Scattered light structure factor S(q ) multiplied by
(q Rg, meas)D versus (q Rg, meas ). Rg, meas (D Rg;z) is the radius
of gyration measured with the Guinier analysis and D is the
fractal dimension. Data for two systems are shown: an aerosol
aggregating via DLCA with D D 1:75 and a colloid aggregating
via RLCA with D D 2:15. The constant level at large q Rg, meas

is, by Equation (58), CC p D C p since C D 1. From C p and
Equation (61) or Figure 13, the polydispersity can be measured.
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and ¿ D 1:5 § 0:2 for the RLCA colloid, values consistent
with previous work (van Dongen and Ernst 1985; Weitz et al.
1985; Brown and Ball 1985; Lin et al. 1990b). Thus the level of
the power law regime provides a convenient and straightforward
measure of the aggregate polydispersity.

In summary, the optical structure factor is a very able method
capable of yielding Rg, D, and the polydispersity ¿ . The particle
refractive index need not be known. If data beyond q Rg ’ 5
are not available, the D measurement can only be considered
qualitative. In � tting optical structure factor data one should use
one of the structure factors for which C D 1 (see Table 2 and
Figure 12). The � t should also include the size distribution of
the aggregates (i.e., the polydispersity). One procedure is to use
the integral of Equation (53) and � t the effective structure factor
to the data. This is laborious and opaque. We have found that an
excellent procedure is to determine Rg with the Guinier analysis
using small q data and then D with a log-log plot (or � t) using
large q data. Then the polydispersity can be determined via C p

and the analysis depicted in Figure 28.

Absolute Scattering and Extinction
Scattering, calibrated to make an absolute measurement, and

extinction can yield the aggregate (or particle) volume equiv-
alent sphere radius Rv and volume fraction fv of material and
cluster number density n in the sol if the refractive index is imag-
inary through methods pioneered by D’Alessio (D’Alessio et al.
1975; D’Alessio 1981) for soot in � ames. Combination of the
optical structure factor measurement with scattering/extinction
measurements allows for a remarkably complete characteriza-
tion of aerosols or colloids of particles with a complex index of
refraction such as soot (Sorensen et al. 1992b; Köylü 1998). The
methods yield Rg , D, and ¿ via the optical structure factor; Rv

and n via scattering/extinction; and N and a when combined.
In the following we will describe this method in the context of
carbonaceous soot, a system to which the scattering/extinction
method has been widely applied, but in principle it will work
whenever the particle refractive index has an imaginary part. We
start by considering scattering and extinction.

The classical scattering/extinction method (D’Alessio et al.
1975; D’Alessio 1981) relies upon the different functionalities
of the scattering and extinction on the aggregate size. It was orig-
inally developed under the assumptions of spherical particles in
the Rayleigh regime, both of which are limitations for aerosols
such as � ame soot. The RDG theory for aggregates, however,
releases the method from these limitations.

Scattering and extinction are determined by the cross sections
and the number density of the aggregates n. Let Is be the light
scattered intensity at a detector which subtends a given solid
angle relative to the scattering volume a given distance away
when the incident intensity is Io. Then (Sorensen 1997)

Is D co Ion
d¾ agg

dÄ
; [92]

where co is a constant accounting for the unknown solid angle,

distance, etc.; it can be determined with calibration. Now with
Equation (28) above we have

Is D co Ion N 2 d¾ m

dÄ
S(q); [93]

combining with Equation (26) yields

Is D co Ion N 2k4a6F (m )S(q ): [94]

These equations result from use of single aggregate formulas
and hence apply to ensembles of single-sized aggregates, i.e.,
monodisperse systems. Generalization to the polydisperse case
involves integration over the size distribution. In such an inte-
gration the terms nN (to be obtained below) and nN 2 become
the moments of the size distribution M1 and M2, respectively,
as de� ned by Equation (B4). Absolute scattering measurements
are best performed in either the Rayleigh (q Rg < 1) or power
law (q Rg > 1) limiting regimes so that the functionalities on
aggregation number N are simple. Failure to recognize this can
cause error. Equations (36a) and (36c) provide these limits for
the structure factor. Combining these with Equation (94), we
obtain for the Rayleigh regime

Is D IoconN 2k4a6F (m ) (monodisperse) [95a]

D Ioco M2k
4a6F(m) (polydisperse): [95b]

For the power law regime we use Equations (1), (36c), and (94)
to � nd

Is D co IonNk4a6koC(aq )¡D (monodisperse) [96a]

D co IoM1k4a6koC (aq )¡D (polydisperse): [96b]

Equations (95b) and (96b) are the polydisperse forms of (95a)
and (96a). The value of co can be determined by scattering
from gases and liquids of known Rayleigh ratio or standard
colloid solutions, such as commerically available monodisperse
polystyrene microspheres. In Table 3 we compile Rayleigh ratios
for some common substances. Note that the units of a Rayleigh
ratio are steradian¡1 cm¡1 and so are equivalent to a differ-
ential cross section (steradian¡1 cm2) times a number density
(cm¡3).

The extinction measurement is performed by comparing the
incident light before and the transmitted light after it passes
through a length ` of the system

IT D Io exp(¡¿ext`): [97]

The extinction turbidity ¿ext is related to both the absorption and
total scattering cross section and the soot cluster number density
n by

¿ext D n ¾
agg
abs C ¾ agg

sca : [98]
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Table 3
Rayleigh ratios are differential scattering cross sections

multiplied by number densities, hence their units are cm¡1

steradiam¡1. They may be used for calibration of scattering
from an unknown if the calibrating � uid and the unknown have
the same scattering volume length, collection solid angle and
incident power. Since incident intensity is power per unit area,
the cross-sectional area of the scattering volume is not relevant

so long as it is not too wide to be totally observed by the
detector. The Rayleigh ratios below are for T D 25±C and

p D 1 atm. They are for incident light polarized perpendicular
to the scattering plane (i.e., vertical polarization, usually) and
no polarizer on the detector. The units below are 10¡6 cm¡1

steradian¡1. The literature review for this table includes
Rudder and Bach (1968), Kerker (1969), D’Alessio (1981),
and Olivier et al. (1992). The uncertainty is ca. §5%. Gas

Rayleigh ratios vary as ¸¡4. Liquid Rayleigh ratios are more
complex and our examination shows a rough ¸¡4:66 variation

Material ¸ D 514:5 nm ¸ D 488 nm

H2 0.0038 0.0047
Ar 0.0154 0.019
O2 0.0148 0.0183
N2 0.0173 0.0214
CO2 0.034 0.042
CH4 0.0386 0.0477
Xe 0.0943 0.117
C2H4 0.102 0.126
C2H6 0.113 0.140
CCl4 13 17
C6H6 29 37
C6H5CH3 32 41
CS2 33 170

From Equations (29) and (33), Equation (98) becomes

¿ext D n N ¾ m
abs C N 2¾ m

scaG(k Rg) : [99]

With Equations (30) and (34) we obtain

¿ext D n 4¼ Nka3E(m ) C
8
3

¼ N 2k4a6 F(m)G(k Rg ) : [100]

We will � rst consider the extinction in the so-called Rayleigh
limit where ¾abs À ¾sca. Then turbidity is the � rst term in Equa-
tion (100):

¿ext ’ nN 4¼ka3E (monodisperse) [101a]

’ M14¼ka3 E (polydisperse): [101b]

The � rst moment M1 is the total number of monomers per unit
volume, 4¼a3=3 is the volume of a monomer, so

fv D nN
4¼a3

3
D

¿ext

3k E
(monodisperse); [102a]

fv D M1
4¼a3

3
D

¿ext

3k E
(polydisperse) [102b]

is the aerosol or colloid volume fraction.
Comparison of Equations (95a) and (101a) for the monodis-

perse case shows that a ratio of these equations eliminates the
unknown n and leaves Na3 the volume equivalent “scattering/
extinction” radius Rv . If ¿ext in Equation (101a) is � rst squared
and then ratioed by Equation (95a), the factors of (Na3)2

cancel and the unknown cluster number density remains. Thus
from the measured ¿ext and Is , the aggregate volume equivalent
sphere radius Rv and number density can be obtained.

The same procedure for the polydisperse case, Equations
(95b) and (101b), yields

n2 D
M1

s2
D

k

4¼

2 F

E2

¿ 2
ext

Is=Ioco
[103]

and

R3
v D a3 M2

M1
D

4¼

k3

E

F

Is=Ioco

¿ext
: [104]

The monodisperse calculation is simple, but unrealistic; the
polydisperse calculation is more complex, but realistic. Thus,
regrettably, we must use the polydisperse calculation, but we
shall keep the monodisperse calculation whenever heuristically
useful. In that regard the volume equivalent sphere is written as
R3

v D a3 N in the monodisperse case and R3
v D a3M2=M1 in the

polydisperse case. This latter formula is completely reasonable
because the ratio of any two consecutive moments of the size
distribution is a mean size, i.e., sp D M p=M p¡1, see Appendix B.
Certainly the units are correct and that is all one needs. Thus we
in essence have the average number of monomers per aggregate
hN i D s2 D M2=M1. The average number of aggregates per unit
volume of aerosol is the total number of monomers per volume,
M1, divided by a mean size, which in general is n p D M1=sp.
Equation (103) allows n2 D M1=s2 to be determined.

An important lesson from these polydispersity considerations
is that light scattering, in particular light scattering making use
of the Rayleigh regime, selects the mean size s2 from all the
possibilities sp .

In Figure 29 both Rg , determined via the optical structure
factor, and Rv , determined via scattering extinction, Equation
(104), are plotted for a � ame soot aerosol as a function of height
above burner. This � gure demonstrates the rami� ed nature of
the aggregate, since Rg becomes signi� cantly greater than the
volume equivalent Rv .
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Figure 29. Aggregate radius of gyration Rg determined via
the optical structure factor and volume equivalent sphere radius
Rv determined via the scattering/extinction analysis for a soot
aerosol in a premixed ethylene/oxygen � ame as a function of
height above burner.

Scattering and extinction methods applied to sizing of soot
particles in � ames have a long and venerable history. Early work,
for lack of a theory for scattering and absorption by aggregates,
used electromagnetic theory for spherical or ellipsoidal particles
either in the Rayleigh approximation or with the full Mie theory.
With our understanding of aggregate scattering and absorption,
we now see that these early scattering/extinction methods are
successful in measuring the soot volume fraction and the volume
equivalent radius.

Combined Optical Structure Factor and
Scattering/Extinction Measurements—Complete
Characterization of the System

We now take stock of what we have and, consequently, what
we can get from combined optical structure factor and scatter-
ing/extinction measurements. The optical structure factor yields
Rg , D, and ¿ . With Rg and D, one can calculate G . If the
complex index of refraction is known (see below), calibrated
measurement of Is and ¿ext yields the mean number of ag-
gregates per volume n2 and the aggregate volume equivalent
radius Rv .

Selecting and gathering these quantities further in their
monodisperse form we have R3

v D a3 N , Rg , D, and from Equa-
tion (1) we have N D ko(Rg=a)D. The two equations in this
ensemble have two unknowns, a and N , which can be solved
for given the other measured values. This is the principle of the
combined optical method that allows for complete aggregate
characterization.

We proceed with the polydisperse case. We have R3
v D a3s2

and from Equation (88) R2
g;z D a2k¡2=D

o M2C2=D=M2. This mo-
ment ratio must be evaluated in terms of s2. From Equation (B6)

we � nd

R2
g;z D a2 k¡2=D

o s2=D
2

m2C2=D

m2
: [105]

Solving the two equations, two unknowns situation yields

hN i D s2 D Rg;z R¡1
v

m2

m2C2=D

1=2

k1=D
0

3D
3¡D

; [106]

a D R D
g;z R¡3

v

m2

m2C2=D

D=2

k0

1
D¡3

: [107]

The values of mi for the scaling distribution are given in
Equation (B8).

The combined optical structure factor, scattering/extinction
method represents a very powerful optical diagnostic for com-
plete characterization of soot particles in � ames. This method
was tested in our laboratory by comparing it to TEM analysis
(Cai et al. 1993). As described above, the method was success-
ful, but ultimately limited by the uncertainty in the refractive in-
dex of the soot. This has become through the years the Achilles
heal of all optical diagnostics for soot aerosols involving scatter-
ing/extinction. Fortunately the optical structure factor is immune
to this problem, hence Rg and D measurements are relatively se-
cure. Below (Table 4) we describe the current knowledge of the
soot refractive index. Although these soot refractive index un-
certainties can cause large uncertainties in Rv, a, and hN i D s2,
these are uncertainties in accuracy, not precision. Thus mea-
surements looking for changes or trends are not affected by the
uncertainty in m.

Examples of these measurements are shown in Figures 30
and 31, which show a and hN i D s2, respectively, for a pre-
mixed ethylene/air � ame. In particular, the graph of monomer
size a versus height above burner shows how the precision of the
measurement can indicate when surface growth ends, indicated
by when a stops increasing.

Equations (103) and (104)were derived under the assumption
of ¾abs À ¾sca, hence ¿ext ’ n¾abs. We now consider the exact
case when

¿ext D n ¾
agg
abs C ¾ agg

sca : [98]

Fortunately, the modi� cations are straightforward and one � nds

n2 D
M2

1

M2
D

k

4¼

2 F

E2

(¿ext ¡ 4¼G Is=Ioco)2

Is=Ioco
[108]

and

R3
v D a3 M2

M1
D

4¼

k3

E

F

Is=Ioco

(¿ext ¡ 4¼G Is=Ioco)
: [109]

These equations replace Equations (103) and (104). Note that
the assumption, ¾abs À ¾sca, is equivalent to G D 0. As before,
the value of Rv can be used in Equations (106) and (107) to
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Table 4
Soot refractive indices

Reference ¸(nm) Refractive index E F Comments

Dalzell and Saro� m (1969) Visible 1.57 C 0.56i 0.260 0.218 Standard value
Roessler and Faxvog (1980) 515 1.75 C 0.5i 0.200 0.242 Mean of review
Pluchino et al. (1980) 488 1.7 C 0.7i 0.285 0.305 8 ¹m carbon sphere
Lee and Tien (1981) 633 1.9 § 0.1 C (0.55 § 0.1)i 0.19 0.30 Soot
Sloane (1983) 633 1.7 C 0.8i 0.32 0.352 Soot
Mullins and Williams (1987) 633 1.85 C 0.4i 0.149 0.245 Soot
Chang and Charalampopoulos (1990) 540 1.77 C 0.63i 0.244 0.291 Soot
Stagg and Charalampopoulos (1993) 633 1.53 C 0.38i 0.184 0.147 Soot
Köylü and Faeth (1996) 515 1.54 C 0.48i 0.229 0.180 Soot
Mulholland and Choi (1998) — 1.55 C 0.8i 0.366 0.332 Soot speci� c mass extinction

yield s2 D hN i and a. Figures 30 and 31 show results both
uncorrected (G D 0) and corrected (G 6D 0) for scattering effect
on extinction.

Köylü and Faeth (1996) have ratioed absolute scattering in
the power law regime, Equations (96), and extinction, Equations
(101), to obtain a formula independent of the state of aggregation

Is

¿ext
D

co

4¼
(ka)3

F(m)

E(m)
ko (aq )¡D : [110]

They obtained Equation (110) under the assumption that C D 1,
an assumption which has been validated above. This formula
is useful for in situ measurement of either the monomer size
a, the coef� cient ko, or the ratio F(m)=E(m ), depending on
which two of these one already has from independent mea-

Figure 30. Monomer radius a versus height above burner h for
soot fractal aggregates in an ethylene/oxygen premixed � ame.
Uncorrected assumes no scattering contribution to the extinction
and uses Equations (107) and (104). Corrected corrects for the
contribution of scattering to extinction and uses Equations (107)
and (109).

surements. Köylü and Faeth applied Equation (110) to a mea-
surement of F(m )=E(m). Then with values of E(m) obtained
from a consensus of the literature (Dalzell and Saro� m 1969;
Lee and Tien 1981; Charalampopoulos and Chang 1988) de-
termined the soot refractive index to be m D 1:54 C 0:48i for
turbulent diffusion � ames of acetylene, propylene, ethylene, and
propane in air. This value was based on TEM measurements of
the monomer size a and previous measurements of ko to be
2.44 (their k f D 8:5 § 0:5 where ko D k f =2D). Their spe-
ci� c value is F (m )=E(m) D 0:78 § 0:09, which is in agree-
ment with the same ratio measured by Dalzell and Saro� m and
Charalampopoulos and Chang. On the other hand, if we use
ko D 1:30, as found in much of our work, then their work im-
plies F (m )=E(m) D 1:46 § 0:17, which is in good agreement
with the Lee and Tien value of 1.58.

Figure 31. Mean aggregate size s2 D M2=M1 D hN i versus
height above burner h for soot fractal aggregates in an ethy-
lene/oxygen premixed � ame. Uncorrected assumes no scatter-
ing contribution to the extinction and uses Equations (106) and
(104). Corrected corrects for the contribution of scattering to
extinction and uses Equations (106) and (109).
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In subsequent work Köylü (1998) used Equation (110) to
measure monomer particle size a given the knowledge of m
and ko derived above. In principle this is a nice way to make
monomer size measurements, but one must be careful not to
make a circular argument and instead derive the input variables
from completely independent measurements.

The Albedo
How large is the correction for G 6D 0? A useful way to

consider this question is to study the albedo, which is the ratio
of scattering to total extinction (Kerker 1969):

! D ¾sca=¾ext D ¾sca=(¾sca C ¾abs ): [111]

For a particle or aggregate with a real refractive index (no
imaginary part), ¾abs D 0 hence ! D 1. With Equation (111),
the extinction turbidity of Equation (98) can be modi� ed to

¿ext D n ¾
agg
abs (1 ¡ !agg)¡1: [112]

For systems with a complex refractive index consider � rst a
Rayleigh scattering sphere. Equation (111) with Equations (30)
and (34) gives

!ray D 1 C
3

2
(ka)¡3E=F

¡1

: [113]

In the Rayleigh regime, ka < 1 so the second term in (113)
dominates, hence

!ray ’
2
3

(ka)3 F=E : [114]

This cubic dependency with size must level off as ka approaches
1, but then the Rayleigh equations are no longer valid. As an ex-
ample, let ka D 0:2, typical of a soot monomer (if ¸ D 488 nm,
a D 15:5 nm), and let 2=3 (E=F ) D 1 (see Table 4), then
! D 8 £ 10¡3. This small value justi� es Equation (114) for
ka < 1.

For an aggregate use of Equations (29), (30), (33), and (34)
in Equation (111) yields

!agg D 1 C
3
2

E=F (ka)¡3(NG(k Rg ))¡1
¡1

; [115]

where G(krg) is given by Equation (35). This albedo is plot-
ted for soot in Figure 32. The calculations were performed for
¸ D 500 nm. With Equation (1), one can see that Equation (115)
contains the factor 3(E=F )=2ko, which we set equal to 1 in our
calculation. This is a typical value combination for soot fractal
aggregates; for example, if ko D 1:3, as we have contended, then
this would require E=F D 0:87, typical of soot (see Table 4
below). Figure 32 shows that initially !agg » R D

g , but this

quickly saturates for Rg
>» 100 nm. Recall Equation (114),

where for a sphere !Rag » a3. For a typical monomer size of
a D 20 nm, !agg saturates at 0.2.

Figure 32. The albedo, the ratio of scattering to extinction,
versus radius of gyration for a soot-like fractal aggregate calcu-
lated using Equation (115) with D D 1:75, (E=F )=ko D 2=3,
and ¸ D 500 nm. Results for 3 different monomer sizes a are
shown.

We now deal with the accuracy of Equation (115), which
essentially tests the accuracy of G(k Rg) as well. Mulholland
and Choi (1998) gave experimental values for the albedo of soot
produced by laminar and turbulent acetylene and ethane � ames.
Monomer sizes for these � ames were reported as a D 24 and
34 nm, respectively. Albedo values in the range of 0.19 to 0.25
were found, consistent with the calculated values at large Rg in
Figure 32. This � gure is for ¸ D 500 nm, and Mulholland and
Choi used ¸ D 632:8 nm. Calculation of ! with Equation (115)
with ¸ D 632:8 nm in the asymptotic range Rg > 200 nm with
m D 1:55 C 0:8i , a value proposed by Mulholland and Choi,
and ko D 1:3, yields ! D 0:14 and 0.20, somewhat smaller,
but given all the input parameters with their uncertainities, still
consistent with the experimental values.

Mulholland and Mountain (1999) have applied their coupled
electric and magnetic dipole calculation to simulated DLCA ag-
gregates (D ’ 1:8), as described above, to calculation of the
albedo as well. Their particles had m D 1:7 C 0:7i , which leads
to E=F D 0:93. They used three different monomer size pa-
rameters, x p D ka D 0:05, 0.21, and 0.60. We assume their
fractal aggregates have D D 1:8 and ko D 1:3, and then calcu-
lated !agg from Equation (115). This calculation is compared to
their computer data in Figure 33 quite successfully. These nice
comparisons bouy up our con� dence in Equation (115), the cor-
rections to calculation of Rv and n2 to be described immediately
below, and our con� dence in the form of G, Equation (35).

To use the albedo to correct the scattering/extinction measure-
ments follow a similar procedure that led to Equations (103) and
(104), viz. combine Equations (95b), (112), and (29) and (30)
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Figure 33. The albedo, the ratio of scattering to extinction,
versus number of primary spheres (monomers) in soot-like frac-
tal aggregates with D ’ 1:8. Data points were calculated by
Mulholland and Mountain (1999) for m D 1:7 C 0:7i , lines
were calculated with Equation (115). Three different primary
particle size parameters, x p D ka, are shown.

to obtain

n2 D
k

4¼

2

F=E2 ¿2
ext

Is=IoCo
(1 ¡ !)2; [116]

and

R3
v D

4¼

k3

E

F

Is=IoCo

¿ext
(1 ¡ !)¡1: [117]

These are straightforward modi� cations of Equations (103) and
(104). One can now estimate errors incurred by not account-
ing for scattering contributing to the extinction. From Figure 30
for a D 20 nm, we � nd ! ’ 0:2 for Rg

>» 100 nm. Thus,
by Equation (116) n2 would need a »40% downward correction
if Equation (103) was used instead of Equation (108), and
by Equation (117) Rv would need a »7% upward correction
if Equation (104) was used instead of the more correct version,
Equation (109). Propagation of these errors into s2 D hN i and
a via Equations (106) and (107) is straightforward.

The Refractive Index of Soot
Throughout this history perhaps the greatest uncertainty has

come from a poorly known, complex index of refraction for
soot. Does it depend on fuel type, burner conditions, soot age,
etc? What is its dispersion with ¸? These important questions are
largely unanswered because the uncertainty in any measurement

Figure 34. The ratio E(m)=F(m), Equations (31) and (27), as
a function of the real and imaginary parts of the refractive index
m.

of the refractive index of soot is probably greater than changes
due to these functionalities.

In Table 4 a variety of soot refractive indices m D n C i k
available in the literature are given. Scattering and absorption
involve the functions E (m ) and F (m ), Equations (27) and (31),
and the interpretation of scattering and absorption data involves
E=F and F=E2. Figures 34 and 35 plot these as a function of the
imaginary part k for various real parts n. We see variations in
E=F of as much as a factor of 2 and in F=E2 of as much as a factor
of 3. These uncertainties propagate into the parameters we desire
to measure, such as n2, Rv , hN i, and a via Equations (108) and

Figure 35. The ratio F(m)=E(m)2, Equations (27) and (32),
as a function of the real and imaginary parts of the refractive
index m.
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Figure 36. Schematic of the Tyndall effect for fractal aggre-
gates. The scattered intensity increases in a narrowing Rayleigh
regime as the system coarsens through aggregation. The power
law regime is invariant with aggregation. Sequence of time is
circles, triangles, squares, and diamonds (earliest to latest).

(109), and fv via Equation (102). For example, not knowing
E=F to better than a factor of 2 implies Rv is uncertain by
»26%. Of course, some authors have their favorite m and such
uncertainties don’t exist for them. Less cynically, the precision
in the measurements is considerably better than this uncertainty,
and precision allows for detection of changes, which can be very
valuable.

The Tyndall Effect
Before we leave the subject of sizing, we describe the evolu-

tion of the scattered intensity in an aggregating system. We make
the reasonable assumption that the total number of monomers per
unit volume in the system is a conserved quantity during aggre-
gation. This will hold if there are no sources, such as nucleation
or surface growth (the latter keeps the monomer number den-
sity constant but increases the monomer size, hence scattering
cross section) or sinks, such as settling, or wall losses. We also
require no expansion or contraction of the system to maintain
constant volume. Then we use for the Rayleigh regime Equa-
tions (92), (26), (21), and (36a) and for the power law regime
Equations (92), (26), (27), and (36b) to represent the scattering
in the Rayleigh and power law regimes as

I / nN 2¾ m
sca; q Rg < 1; [118a]

I / nN 2¾ m
sca(q Rg )¡D; q Rg > 1: [118b]

The monomer concentration is the product of the cluster con-
centration and the number of monomers per cluster, nm D nN .
Moreover, Equation (1) implies R¡D

g D a¡Dko N ¡1. ThenEqua-
tions (118) become

I / nm N ¾ m
sca; q Rg < 1; [119a]

I / nm ko ¾ m
sca(qa)¡D; q Rg > 1: [119b]

Since nm is a constant, we see that as aggregation proceeds, N
increases and the scattering in the aggregate Rayleigh regime
increases in direct proportion to N . On the other hand, the scat-
tering in the power law regime remains a constant. This is an
expression of the Tyndall effect, the increase in scattering as a
system aggregates, but here we see that the increase is con� ned
to the Rayleigh regime. Figure 36 displays this schematically,
and Figure 24 gives an example from an aggregating aerosol.

CONCLUSION
If left with the allowance of only one � nal and brief remark,

I would say “q .” It is q , the scattering wave vector, that is phys-
ically motivated with an inverse that describes the length scale
probed by the scattering experiment. Conceptualization of the
scattering as a function of q allows for facile interpretation of
the scattering function. This is in strong contrast to the scatter-
ing angle µ , which, although experimentally convenient, gives
no physical insight for the scattering process. Plot the scattering
data versus q .

If allowed a second remark, I would say “logarithmic.” This
is, by and large, a geometric universe not an arithmetic one,
and therefore we should space our detectors and plot our data
accordingly.

Beyond these comments, I will let the work above speak for
itself.

REFERENCES
Abramowitz, M., and Stegun, I. A., editors. (1965). Handbook of Mathematical

Functions, Dover, New York.
Berry, M. V., and Percival, I. C. (1986). Optics of Fractal Clusters Such as

Smoke, Optica Acta 33:577–591.
Bohren, C. E., and Huffman, D. R. (1983). Absorption and Scattering of Light

by Small Particles, Wiley, New York.
Bonczyk, P. A., and Hall, R. J. (1991). Fractal Properties of Soot Agglomerates,

Langmuir 7:1274–1280.
Bonczyk, P. A., and Hall, R. J. (1992). Measurement of the Fractal Dimension

of Soot Using UV Laser Radiation, Langmuir 8:1666–1670.
Born, M., and Wolf, E. (1975). Principles of Optics, Pergamon, Oxford.
Brown, W. D., and Ball, R. C. (1985). Computer Simulation of Chemically

Limited Aggregation, J. Phys. A 18:L517–L521.
Brunning, J. H., and Lo, Y. T. (1971). Multiple Scattering of EM Waves of

Spheres. Part I. Multipole Expansion and Ray-Optical Solutions, IEEE Trans.
Antennas Propag. AP-19:378–390.

Cai, J., and Sorensen, C. M. (1994). Diffusion of Fractal Aggregates in the Free
Molecular Regime, Phys. Rev. E 50:3397 –3400.

Cai, J., Lu, N., and Sorensen, C. M. (1993). Comparison of Size and Mor-
phology of Soot Aggregates as Determined by Light Scattering and Electron
Microscope Analysis, Langmuir 9:2861–2068.

Cai, J., Lu, N., and Sorensen, C. M. (1995a). Analysis of Fractal Cluster
Morphology Parameters: Structural Coef� cient and Density Autocorrelation
Function Cutoff, J. Colloid Interface Sci. 171:470 –473.

Cai, J., Lu, N., and Sorensen, C. M. (1995b). Fractal Cluster Size Distribution
Measurement Using Static Light Scattering, J. Colloid Interface Sci. 174:456 –

460.
Chang, H., and Charalampopoulos , T. T. (1990). Determination of the Wave-

length Dependence of Refractive Indices of Flame Soot, Proc. R. Soc. Lond.
A 430:557 –591.



D
ow

nl
oa

de
d 

B
y:

 [K
an

sa
s 

S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
rie

s]
 A

t: 
21

:4
9 

27
 J

un
e 

20
07

 684 C. M. SORENSEN

Charalampopoulos , T. T. (1992). Morphology and Dynamics of Agglomerated
Particulates in Combustion Systems Using Light Scattering Techniques, Prog.
Energy Combust. Sci. 18:13–45.

Charalampopoulos , T. T., and Chang, H. (1988). In Situ Optical Properties of
Soot Particles in the Wavelength Range from 340 nm to 600 nm, Combust.
Sci. Tech. 59:401–421.

Chen, Z.-Y., Weakliem, P., Gelbart, W. M., and Meakin, P. (1987). Second-Order
Light Scattering and Local Anisotropy of Diffusion-Limited Aggregates and
Bond-Percolation Clusters, Phys. Rev. Lett. 58:1996 –1999.

Colbeck, I., and Harrison, R. M. (1986). The Atmospheric Effects of Nuclear
War–A Review, Atmos. Environ. 20:1673–1681.

D’Alessio, A. (1981). Laser Light Scattering and Fluorescence Diagnostics of
Rich Flames, Particulate Carbon, edited by D. C. Siegla and G. W. Smith.
Plenum, New York, pp. 207–259.

D’Alessio, A., DiLorenzo, A., Saro� m, A. F., Beretta, F., Masi, S., and
Venitozzi, C. (1975). Soot Formation inMethane-Oxygen Flames. In Fifteenth
Symposium (International) on Combustion. Combustion Institute, Pittsburg,
PA, pp. 1427–1438.

Dalzell, W. H., and Saro� m, A. F. (1969). Optical Constants of Soot and their
Application to Heat-Flux Calculations, J. Heat Transfer 91:100–104.

Dobbins, R. A., and Megaridis, C. M. (1987). Morphology of Flame-Generated
Soot as Determined by Thermophoretic Sampling, Langmuir 3:254–

259.
Dobbins, R. A., and Megaridis, C. M. (1991). Absorption and Scattering of Light

by Polydisperse Aggregates, Appl. Optics 30:4747 –4754.
Family, F., and Landau, D. P., editors. (1984). Kinetics of Aggregation and

Gelation, North-Holland, Amsterdam.
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APPENDIX A
We will prove that

R2
g D

1
2

u2g(Eu) dEu: [A1]

To do so retrace the steps of Equations (35) to (34) to (33), i.e.,
write

u2g(Eu)dEu D u2n(Er ) n(Er C Eu) dEr dEu: [A2]

Let Eu D Er 0 ¡ Er to obtain

(Er ¡ Er 0)2n(Er ) n(Er 0)dErdEr 0: [A3]

Now use the center of mass of the aggregate

Ercm D Ern(Er ) dEr [A4]

in

(Er ¡ Er )2 D [(Er ¡ Ercm ) ¡ (Er 0 ¡ Ercm )]2

D (Er ¡ Ercm )2 C (Er 0 ¡ Ercm )2

¡2(Er ¡ Ercm)(Er 0 ¡ Ercm ): [A5]

Substitute (A5) into (A3). The third term is 0. The � rst two terms
are equal and may be added to obtain

u2g(Eu)dEu D 2 (Er ¡ Ercm )2 n(r )n(r 0) drdr 0: [A6]

The density is normalized so

u2g(Eu)dEu D 2 (Er ¡ Ercm )2 n(r ) dEr : [A7]

The integral on the RHS of Equation (A7) is, by de� nition,
the radius of gyration; hence Equation (A1) is proved. If the
aggregate is isotropic, then g(Eu) D g(u). Rg represents a root
mean square radius.

APPENDIX B
The large size limit of the scaling distribution is

n(N ) D M1s
¡2
p Á(x ); [B1]

with normalized size

x D N=sp; [B2]

mean size

sp(t ) D Mp=Mp¡1; [B3]

and moments

Mi D
1

0
N i n(N ) dN : [B4]
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The reduced size distribution or scaling function is

Á(x ) D Ax¡¿ e¡®x ; [B5]

where ¿ is the kernel homogeneity (Class II kernels, see van
Dongen and Ernst (1985)) and A and ® are constants determined
below.

Substitute Equations (B1) and (B2) into equation (B4) to � nd

Mi D M1 si¡1
p m i ; [B6]

where m is the i th moment of the scaling function

mi D x i Á(x ) dx : [B7]

Substitute Equation (B5) into Equation (B7) to � nd

mi D A®¿¡i¡10(i C 1 ¡ ¿ ); [B8]

where 0(x ) is the Gamma function.
The choice of the mean size sp is arbitrary and hence can be

made in accord with experimental convenience. Once a value of
p is chosen for sp , the value of ® in Equation (B5) is determined
as follows. Substitute Equation (B6) into Equation (B3) to � nd

m p D m p¡1 [B9]

when the mean size is de� ned as sp . Use Equation (B8) in Equa-
tion (B9) to � nd

® D p ¡ ¿: [B10]

The constant A is found from the normalization condition for
the size distribution to the total mass (or volume or number of
monomers) M1. For i D 1, Equation (B6) yields

m1 D 1: [B11]

From this and Equation (B8) one obtains

A D ®2¡¿ =0(2 ¡ ¿ ): [B12]

Next we � nd a relationship between the various mean sizes.
Consider the ratio siC1=si . From Equations (B3) and (B6), this
equals miC1mi¡1m¡2

1 . Then Equation (B8) yields (i C 1 ¡ ¿ )=
(i ¡ ¿ ), which leads to

sn D s1
n ¡ ¿

1 ¡ ¿
: [B13]

In summary, the scaling distribution is given by Equations
(B1), (B2), and (B5). The constants ® and A in Equation (B5) are
determined by the choice of which mean size to use in Equation
(B1), i.e., what value of p, and normalization to the total mass,
and are given by Equations (B10) and (B12), respectively. We
conclude with two simple cases, both of which have ¿ D 0.

If p D 1,

® D 1; A D 1; sn D ns1:

If p D 2,

® D 2; A D 4; sn D ns1:




