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Aggregation Kernel Homogeneity for Fractal Aggregate
Aerosols in the Slip Regime

G. M. Wang and C. M. Sorensen
Department of Physics and Program for Complex Fluid Flows, Kansas State University,
Manhattan, Kansas

A theoretical description of the aggregation kernel homogeneity
for fractal aggregates in the slip regime is developed. Experimental
values of the kernel homogeneity were determined with dynamic
light scattering measurements on titania and silica aerosols at pres-
sures of 1/10 to one atmosphere. These experiments yielded aggre-
gates with a fractal dimension of ca. 1.75 and aggregate radii to
cover a range of Knudsen numbers of 0.04–3.8. Measurement of
the fractal aggregate mobility radius as a function of time dur-
ing aggregation gave the homogeneity. Agreement of theory and
experiment is in general successful.

INTRODUCTION
Aggregation is the fundamental process by which aerosols

and colloids coarsen. Nature presents us with a rich variety of
conditions under which aggregation can occur and the structures
that result. When liquid particles aggregate, coalescence usually
ensues to yield larger drops of the same spherical morphology.
When solid particles aggregate, random structures form. The
past two decades have seen that these random aggregates are
nearly always describable as fractals with a universal fractal di-
mension D f (Forrest and Witten 1979; Mandelbrot 1982; Viscek
1992). Fractal aggregates are well described by

N = ko (Rg /a)D f , [1]

where N is the number of monomer or primary particles in the
aggregate, ko is a constant of order unity, Rg is the radius of
gyration of the aggregate, and a is the monomer radius. This
variety in aggregate morphology is combined with a range of
kinetic regimes in which the aggregation can occur. Colloids
and many aerosols lie in the continuum regime in which the
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ratio of the medium molecule mean free path to the particle ra-
dius, the so-called Knudsen number Kn, is very small. In this
situation, aggregation occurs due to diffusive motion of the par-
ticles. Aerosols can have larger mean free paths, hence larger
Knudsen numbers, but the particle motion can remain diffusive.
The law of diffusion can be inverse size (at Kn = 0) to inverse
size squared at large Kn. For very large Kn, ballistic motion dom-
inates the paths between collisions and the aggregation kinetics
changes again. The combination of variety in both morphology
and kinetics makes aggregation rich in possibilities.

The fundamental description of irreversible coagulation and
aggregation dynamics is the mean � eld Smoluchowski equation
(Friedlander 1977)

@n(v, t )

@t
=

1
2

Z v

0
K (v ¡ u, u)n(v ¡ u, t )n(u, t ) du ¡ n(v , t )

£
Z 1

0
K (v , u)n(u, t ) du, [2]

where n(v , t ) is the number density of aggregates with v mono-
mers at time t , and K (v , u) is the aggregation kernel which
describes the rate at which aggregates with v and u monomers
combine to form new aggregates with v + u monomers. Un-
fortunately, exact solutions to Equation (2) exist only for a few
simple K (v, u). However, for many more complex physical sit-
uations, scaling solutions can be found because K (v, u) can be
a homogeneous function of its variables de� ned as

K ( c v , c u) = c k K (v , u), [3]

where c is a constant and k is the degree of the kernel homogene-
ity. The homogeneity k is very important because it is the key
parameter in the scaling distribution of the aggregates and in the
dynamics, through the dynamic exponent z = (1 ¡ k ) ¡ 1, which
describes the asymptotic behavior, N » t z (see Equation (20),
below).

Previous experimental work on aggregation kinetics has stud-
ied either the overall rate constant, the functionalities of the
growth with time, or both. For liquid drop aerosols we mention
here the work of Wagner and Kerker (1977), who established
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298 G. M. WANG AND C. M. SORENSEN

the validity of the aggregation rate in the slip regime for liq-
uid drops with Knudsen numbers as large as 12. The temporal
functionalities were not studied in the scaling regime of the size
distribution, however, so k as not determined. Previously in our
laboratory (Olivier et al. 1992), we solely used nonperturbative
light scattering measurements to study a liquid drop aerosol with
Kn · 0.26 and found the rate constant in agreement with theory
and, from the temporal functionalities, k = 0.07 § 0.06.

Fractal aggregation kinetics studies date back to work by
Weitz et al. (1984), who studied gold colloids and found a tem-
poral dynamics of R » t1/ D f , where R is a radius of the ag-
gregate for Diffusion Limited Cluster Aggregation (DLCA) ag-
gregates with D f ’ 1.75. Since dynamic light scattering was
used and this technique measures the diffusion coef� cient, R
must be the mobility radius. The implication of this result is that
k = 0, expected in a colloid where Kn ¿ 1 and diffusion is the
rate limiting step. Subsequent work (Weitz et al. 1985; Lin et al.
1990) showed that a reaction limited regime exists as well where
R » et to imply k ! 1. Between these regimes exists either a
crossover (Lin et al. 1990) or a continuous evolution of k from
0 to 1 (Olivier and Sorensen 1990). None of the work on col-
loidal fractal aggregation measured the rate coef� cients of the
aggregation. Work on fractal aggregation beyond the continuum
regime, i.e., Kn > 0, is limited. Those studies that do exist in-
volve light scattering studies of soot particles in � ames, but only
a recent study from this laboratory (Oh and Sorensen 1997) com-
bined current understanding of fractal aggregate light scattering
and an analysis accounting for the fractal morphology in the ag-
gregation kernel. In our work we found a slightly enhanced ag-
gregation rate for D f ’ 1.89 fractal aggregates in the crossover
regime between ballistic and diffusional aggregate motion.

With previous work as a background, there is a need to study
the complex temporal dependencies for fractal aggregation when
Kn > 0. In this paper we present a new theoretical description
of the kernel homogeneity in the slip regime for DLCA aggre-
gates with D f ’ 1.75 and present light scattering data obtained
from aggregating aerosols to substantiate this description. Our
description is consistent with the continuum and free molecular
regimes in the limits of Kn ¿ 1 and Kn À 1, respectively. In
describing the aggregation kernel we will show that complex-
ities arises from two sources: 1) the crossover of the diffusion
coef� cient from inverse radius to inverse radius squared depen-
dencies, which occurs regardless of the fractal nature, and 2)
the behavior of the mobility radius of a fractal aggregate, which
we have recently found (Wang and Sorensen 1999) is related to
both the free molecular to continuum crossover and the small
particle limit.

THEORY

The Aggregation Kernel
The aggregation kernel describes the rate at which two ag-

gregates come together and combine to form a larger aggregate.
This rate depends on the relative motion of the aggregates and

their size. In this work we consider only diffusive motion, not
ballistic motion which can occur in very rari� ed situations. With
diffusive motion, the aggregation kernel is

K (u, v ) = 4 p [D(u) + D(v )] [R(u) + R(v )]. [4]

In Equation (4), D(u) is the diffusion coef� cient and R(u) is the
radius, to be de� ned below, of an aggregate with u monomers.

For spherical particles the radius in Equation (4) is simply
the geometric radius. The diffusion coef� cient depends on the
kinetic regime which is parameterized by the Knudsen number,
Kn (Friedlander 1977). For Kn ¿ 1 the continuum regime is
obtained and the Stokes–Einstein equation holds:

DSE =
kT

6 p g R
. [5]

In Equation (5), k is Boltzmann’s constant, T is the absolute
temperature, and g is the shear viscosity of the medium. When
Kn À 1, the free molecular regime is obtained and the Epstein
equation holds:

DEp =
3

8 q R2

³
mkT

2 p

1́/2³
1 +

p

8
b

¡́ 1

. [6]

In Equation (6), q is the gas medium mass density, m is the gas
molecule mass, and 0 · b · 1 is the accommodation coef� cient.

In the “slip” regime where Kn » 1, the Cunningham correc-
tion factor can be applied to the Stokes–Einstein form in Equa-
tion (5) to allow a continuous description of the diffusion coef-
� cient between the two limits represented by Equations (5) and
(6). Recently, we have proposed a simpler interpolation scheme
that, when compared to the original data, works nearly as well
(Sorensen and Wang 1999). We write

D = DSE[1 + A Kn] [7]

or equivalently

D =
kT

6p g (m f p)
[Kn + A Kn2]. [8]

In Equations (7) and (8), A = 2.25 /(1 + b p /8) and m f p in
Equation (8) is the mean free path of the medium molecules.
The simplicity of these equations makes analysis of the aggre-
gation kernel in the slip regime easier than with the Cunningham
correction factor. They also allow us to make an important ap-
proximation regarding the homogeneity in the slip regime, which
we describe below.

For fractal aggregates application of Equation (4) requires
an understanding of both the diffusive mobility (� rst term) and
the geometric size (second term) of the aggregate (Mulholland
et al. 1988; Matsoukas and Friedlander 1991; Rogak and Flagan
1992). For the geometric size we shall use a proportionality to
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AGGREGATION KERNEL HOMOGENEITY 299

the radius of gyration which, unlike a perimeter radius, can be
precisely de� ned for an aggregate. We write

R = cRg , [9]

where c is a constant of order unity. For fractal dimensions
D f > 2, aggregates are projectionally opaque so no cluster could
possibly pass through another cluster and Equation (9) should
hold. For D f not too much smaller than 2, e.g., D f ’ 1.75,
however, a planar projection of the aggregate would have holes
indicating the possibility of one cluster passing through another,
and then Equation (9) would fail. However, the clusters rotate as
well as diffuse and rotational averaging would eliminate these
holes. Moreover, diffusion of a cluster through a projectional
hole of another seems very unlikely; a projection requires a
straight path. These arguments indicate that a given aggregate
sees another aggregate as a blur of size Rg. Finally, following
others, we remark that since Rg » N 1/ D f when D f < 2, the
aggregate cross section is greater than the sum of the individual
monomer cross sections, but unlike others, we claim that with
rotational averaging this is not unphysical. Thus we conclude
Equation (9) holds for DLCA aggregates, and perhaps for all
D f .

The diffusion of a fractal aggregate can be described with
Equations (7) or (8) with R replaced by Rm , the mobility radius
of the aggregate. This replacement de� nes Rm as the radius of
a spherical particle with the same diffusion coef� cient as the
aggregate. It is easy to show (Sorensen and Wang 1999) that
this forces us to de� ne the Knudsen number in terms of the
mobility radius as

Kn = m f p / Rm . [10]

In previous work we used the radius of gyration in Equation
(10), but we now believe this is not as facile a de� nition as that
using Rm . We propose that Equation (10) applies to all particles,
viz. spheres, aggregates, etc.

To proceed, the characteristics of Rm for a fractal aggregate
have to be determined. In recent work we have addressed this
issue experimentally (Wang and Sorensen 1999). It is convenient
to describe Rm relative to the well-de� ned radius of gyration as
the ratio Rm / Rg . We have found that Rm / Rg increases with
D f . Here we will consider only DLCA aggregates, which are
very common, with D f ’ 1.75. The dependency of Rm / Rg

on the kinetic regime, parameterized by Kn, is detailed, and
we describe it with the aid of Figure 1. This � gure is similar to
Figure 8 of Wang and Sorensen (1999), where we � rst discussed
these results, only now we use the Knudsen number de� ned
with Rm rather than Rg . To begin our description consider an
“aggregate” containing only one spherical particle, i.e., N = 1.
Then the mobility radius is the sphere’s geometric radius R, and
the radius of gyration (the mean square radius) can be shown
to be Rg =

p
3/5R. Thus Rm / Rg =

p
5/3 = 1.29 in the

aggregate’s single sphere (N = 1) limit regardless of Kn. A
dotted line in Figure 1 marks this limit. When Kn À 1, it has

Figure 1. Schematic diagram for the ratio Rm / Rg for a fractal
aggregate with D f = 1.75 as a function of the Knudsen number
Kn = m f p / Rm . All functionalities on Kn start at the single
sphere (N = 1) limit and then proceed to smaller Kn with larger
N , where N is the number of monomers per aggregate.

been established empirically that (Meakin et al. 1989; Cai and
Sorensen 1994)

Rm = aN x [11]

with x = 0.44 § 0.03. We discussed how for small N this agrees
very well with a calculation by Chan and Dahneke (1981) for
straight chains. Since Rg = a(N / ko)1/ D f via Equation (1), then

Rm / Rg = k
1/ D f
o N x ¡ 1/ D f . This result forces ko = 1.56 when

D f = 1.75 via the N = 1 limit (recall, Rm / Rg = 1.29), a value
consistent with previous work from this laboratory. For Figure 1
we express the functionality on N in terms of the Knudsen num-
ber Kn = m f p / Rm » N ¡ x . Then, for D f = 1.75,

Rm / Rg » Kn(1 ¡ x D f )/x D f [12a]

= Kn0.30 for Kn À 1. [12b]

Following Wang and Sorensen (1999), the description of
Rm / Rg for a fractal aggregate as a function of N starts with the
N = 1, monomer limit of Rm / Rg = 1.29. The Knudsen num-
ber of the monomer depends on its size and the mean free
path of the medium. In the other limit of large aggregates Kn
will be in the continuum regime where we have found that
Rm / Rg = 0.70 § 0.05, a constant. Thus, as N increases from
one, Rm / Rg must evolve from 1.29 to 0.70, but the manner in
which this occurs can be complex. If the Knudsen number for
the monomer, which we will call the monomer Knudsen num-
ber, is large, Rm / Rg will drop away from 1.29 with decreasing
Kn in accord with Equation (12). Note that when the monomer
Kn is > (1.29 /0.7)1/0.3 ’ 8, the ratio Rm / Rg can evolve to val-
ues < 0.7 before the continuum regime is entered. Then further
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300 G. M. WANG AND C. M. SORENSEN

increase in N , hence decrease in Kn, would necessitate the ratio
to increase with decreasing Kn in order to join with the contin-
uum value of 0.7. For clusters with monomer Kn · 1, the fall
from 1.29 to 0.7 with decreasing Kn is monotonic, but the func-
tionality is unknown. Here we assume that the functionality is
the same as in the Kn > 1 regime, viz., Equation (12), and this
is consistent with data near Kn <» 1 (Wang and Sorensen 1999).
Figure 1 sketches the behavior of Rm / Rg versus Kn for a variety
of initial monomer Knudsen numbers.

The aggregation kernel for a fractal aggregate is a combina-
tion of the considerations above applied to Equation (4). The
interplay of the diffusion coef� cient of Equation (8) and the
mobility radius described in Figure 1 is somewhat complex, but
straightforward. Scaling arguments could be made to determine
the dynamic exponent z = 1/ (1 ¡ k ) based on the functionalities
of D, Rm, and Rg on size N if the kernel was homogeneous; but
it is not. The slip regime, Kn » 1, � nds the diffusion coef� cient
crossing over from an inverse R to an inverse R-squared de-
pendency, which results in an inhomogeneous function. This is
obvious with an inspection of Equation (8) and results regardless
of the mathematical description of the crossover. Thus a simple
description of scaling and the dynamics in the Kn » 1 regime
seems lost.

Despite these problems, we will persevere with an approx-
imation. A log-log plot of D versus Kn, shown in Figure 2a,
crosses over from a slope of one to two. D is a homogeneous
function of Kn in the large and small limits with homogeneity
equal to the slope on this plot. Our approximation is that D is
a homogeneous function of Kn for any Kn and the degree of
homogeneity is the slope of this plot. We call the slope s, hence
D » Kns and the slope is plotted in Figure 2b.

The degree of homogeneity of the kernel to be used to deter-
mine the scaling dynamics of the aggregation is its power-law
functionality on N . To determine this, � rst write Equation (4)
combined with Equation (9) as

K » DRg . [13]

By (1), we have Rg » N 1/ D f = N 0.57. The functionality of D
on N is a combination of the approximation D » Kns and the
functionality of Rm on N , which is determined by the behavior of
the ratio Rm / Rg in Figure 1. This plot is reproduced in Figure 2c.
There are perhaps many ways to plot these parameters, but we
have found that using Kn as an independent variable, rather
than N , keeps track of the kinetic regime for both D and Rm .
Moreover, use of the ratio Rm / Rg uni� es the mobility relative
to the value of 0.7 when Kn < 1.

Values for the kernel homogeneity can now be calculated
using Figures 2a, b, and c and the equation

k = ¡ sx + 1/ D f . [14]

Recall that x = 1/ D f ’ 0.57 for Kn < 1 and 0.44 for Kn > 1.
For example, consider when the monomer Kn = 100. Then for

Figure 2. Graphical procedures to determine the effective ag-
gregation kernel homogeneity. a. Diffusion coef� cient D as a
function of Knudsen number Kn = m f p / Rm as described by
either Equation (7) or (8). b. Slope of D versus Kn. c. Rm / Rg

versus Kn as described in Figure 1. d. The kernel homogeneity
k versus Kn. In (c) and (d) the short-dashed, long-dashed, and
solid lines correspond to each other. The short-dashed behavior
probably does not occur but is a useful reference at large Kn.
The sharp cross overs in (c) from long-dashed to straight line be-
havior leads to discontinuous jumps in k in part (d). Physically,
these transitions are no doubt smoother but their functionality is
unknown.

small N , Figure 2b yields s = 2, and Figure 2c shows that
Rm / Rg is still slopping away from the monomer value, thus
Rm / Rg » Kn0.30 to imply Rm » N 0.44 (Equation (11)). Equa-
tion (13) implies K » (N 0.44 ) ¡ sN 0.57, thus Equation (14) is
k = ¡ 0.44s + 0.57 = ¡ 0.31. As N increases, Kn for the ag-
gregate decreases and the slope s decreases from 2. This causes
k to grow less negative as drawn in Figure 2d with the long-
dashed line. Dif� cult to describe is the “turn around” near Kn >» 1
where Rm / Rg must increase with decreasing Kn. This would
cause k < ¡ 0.31, but we are unable to quantify this with our
present knowledge. After this turn around, when the aggregate
is large enough so that Kn » 1, then Rm / Rg ’ 0.7, a con-
stant, to yield Rm » N 1/ D f . Then the functionality of k with
Kn follows the solid line, which near Kn ’ 1 (Equation (14))
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AGGREGATION KERNEL HOMOGENEITY 301

yields k = ¡ 0.34 since s ’ 1.6. A second example is for a
monomer Kn = 0.1. Then from Figure 2b for small N , s · 1.12,
and we assume the same power law for Rm / Rg as used when
Kn > 1. Then K » (N 0.44) ¡ 1.12 N 0.57 and Equation (14) yields
k = 0.08. As Kn for the aggregate declines (due to increasing N )
the slope s falls to one, hence k follows the long-dashed line to
approach 0.13. However, once the fall from the monomer value
of Rm / Rg = 1.29 reaches the limiting behavior of 0.7, the func-
tionality of k must cross over to the solid line in Figure 2d. For all
situations when Kn ¿ 1, Rm » Rg , thus K » (N 0.57) ¡ s N 0.57 ,
which for s = 1 yields k = 0 by Equation (14). With such
reasoning we constructed Figure 2d, a graph of the kernel ho-
mogeneity versus aggregate Knudsen number for fractals with
D f = 1.75.

The Scaling Solution and the Dynamics
At suf� ciently long times, the homogeneity condition (3)

allows so-called scaling (van Dongen and Ernst 1985) or
self-preserving (Friedlander and Wang 1966; Lai et al. 1972;
Lushnikov 1973; Friedlander 1977) solutions to the Smolu-
chowski Equation (2) of the form

n(v, t ) = M1s ¡ 2
p u (v̂). [15]

In Equation (15) v̂ is the normalized or reduced size

v̂ =
v

sp
[16]

and sp is one of a class of mean sizes indexed by p and de� ned
by

sp(t ) =
Mp

Mp ¡ 1
, [17]

where the unnormalized ith moment of the size distribution is
given by

Mi (t ) =
Z 1

0
v i n(v , t ) dv . [18]

Note that the size sp is a mean number of monomers per aggre-
gate, < N >. Also in Equation (15) is the reduced size distribu-
tion function u (v̂ ) given by

u (v̂ ) = Av̂ k e ¡ a v̂ [19]

for large v̂ . The shape of u (v̂ ) is not a function of time, hence
the distribution is “self-preserving.” The time dependence re-
sides solely in the mean size sp(t ). The large x regime is all we
need to be concerned with in our study because light is scattered
predominantly from the large size part of the cluster distribu-
tion. Moreover, the nature of the aggregation kernel in all three
kinetic regimes is such that “bell shaped” distributions result,
characterized by exponentially decreasing cluster populations
with decreasing size when v̂ < 1 (van Dongen and Ernst 1985).

The parameters A and a in Equation (19) are determined by
normalization of the size distribution and the de� nition of the
mean size sp through p. Some detail is given in Oh and Sorensen
(1997).

A colligative measurement such as light scattering measures
a moment of the distribution, Mi in Equation (18), not the distri-
bution itself, n(v). Thus we must understand the time evolution
of the moments. For those aggregates whose size distribution
has reached a scaling or self-preserving form, the time evolu-
tion of the moments of the size distribution is given by (Olivier
et al. 1992; Oh and Sorensen 1997)

Mi (t ) = Mi (t0)[1 + (t ¡ t0)/ tc](i ¡ 1)z. [20]

In Equation (20), t0 is any chosen time after the size distribution
has achieved a scaling form, and tc is the characteristic aggre-
gation time and is related to the aggregation kernel. Also in
Equation (20), the kinetic exponent z equals

z =
1

1 ¡ k
. [21]

By Equation (17) the mean size of an aggregate is a ratio of
moments of consecutive order. Thus in general it follows from
Equations (17) and (20) that at long time

sp / t z . [22]

From (1) it then follows that Rg » t z / D f .
In this work we measure the mobility radius Rm with dynamic

light scattering. As discussed above and displayed in Figure 1,
the dependency of Rm on the mean size is not as simple as for
Rg . This dependency is given in Equation (11) and x can be
either ’ 0.44 when Kn À 1, or since Rm ’ 0.7Rg when Kn <
1, x = 1/ D f ’ 0.57 in the continuum regime. Given this we
can write

Rm(t ) = Rm(t0)[(1 + (t ¡ t0)/ tc )]xz . [23]

EXPERIMENTAL METHODS
Both TiO2 and SiO2 aerosols were used in this study. The

aerosols were generated by thermal decomposition of either
titanium tetraisopropoxide (TTIP) or tetraethyl orthosilicate
(TEOS), similar to the method reported by Okuyama et al.
(1986). Vapors were generated by heating TTIP or TEOS to
temperatures around 80°C and 30°C, respectively, and then these
were carried into a half meter long tube furnace by dry N2 gas
with a � ow rate of 0.5 l/min. The furnace was set to a temperature
of » 400°C or » 900°C, respectively. The vapors decomposed in-
side the furnace to form particles ( » 35 § 10 nm in diameter, see
transmission electron microscope image in Figure 3) and carried
out of the furnace as an aerosol.

A stainless steel cylindrical chamber (ID = 20 cm, height
= 35 cm) was used to contain the fresh aerosol. At the middle
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302 G. M. WANG AND C. M. SORENSEN

Figure 3. TEM image of a fresh TiO2 aerosol aggregate.

height of the chamber, a curved glass window allowed for light
scatteringmeasurements at scattering angles from h = 0 to 120°.

For the aerosol inside the chamber, the mean free path of the
medium gas (a mixture of air and dry N2)was about 65 nm at am-
bient temperature and one atmosphere of pressure. On the other
hand, Rm for the aggregates ranged from 145 nm to 1600 nm.
Thus Kn under these circumstances was between 0.04 and 0.45.
In order to expand the Kn range, the chamber pressure was re-
duced from 1 atmosphere pressure to 1/2, 1/3, 1/5, and 1/10
atmospheric pressure. This increased the mean free path to as
much as 650 nm. As a result, Kn was extended to values as large
as 3.8.

Light scattering was performed by employing a vertically
polarized Ar ion laser with wavelength k 0 = 488 nm. Static
structure factor measurements were made at scattering angles
from 3 to 120° (Sorensen 1997). Dynamic light scattering used
an ALV5000 digital autocorrelator with the photomultiplier tube
(detector) normally placed at scattering angles between 20 and
90°.

RESULTS AND DISCUSSION

Static Light Scattering
To verify that the generated aerosol contained well charac-

terized DLCA aggregates, static light scattering was carried out
on the aerosols. A typical measurement for an aerosol at at-
mospheric pressure is presented in Figure 4. This graph is a
log-log plot of the structure factor, S(q) = I (q)/ I (0), where

Figure 4. Structure factor of TiO2 aerosol aggregates mea-
sured by static light scattering, which shows a fractal dimension
of 1.75 § 0.1.

I is the scattered intensity, of the aerosol versus the scattering
wave vector q . The scattering wave vector is

q = 4 p k ¡ 1
0 sin

³
h

2

´
, [24]

where k 0 is the wavelength of light. This particular run shows
the investigated aerosol had an average Rg » 790 nm. A linear
� t to the power law regime for q Rg > 4 yielded a slope of
¡ 1.75 § 0.1, which equals ¡ D f . This D f value agrees well with
the commonly accepted fractal dimension for DLCA aggregates.

Dynamic Light Scattering
Dynamic light scattering measures the scattered light inten-

sity autocorrelation function, C(t ) = h I (t )I (0) i , as a function of
lag time t (Berne and Pecora 1976). In general, this autocorrela-
tion decays exponentially with lag time due to diffusive motion
of the aggregate. Hence

C (t ) = B0 + B1e ¡ t / s c , [25]

where B0 is background signal, B1 is a constant, and s c is the
correlation time. Fitting to the autocorrelation curve will yield
s c, which is linked to the diffusion coef� cient D of the aggregate
(Berne and Pecora 1976)

s c = (2Dq
2) ¡ 1. [26]

Figure 5 shows selected DLS measurements carried out at
1/10 atmospheric pressures for the TiO2 aerosol. There are two
apparent decays in the autocorrelation curve: one in a small
time region (t < 0.5 ms) and another in a larger time region
(t > 20 ms). Analysis shows that the � rst decay is exponential
and related to aggregate diffusive motion, hence it contains s c.
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Figure 5. Scattered light intensity autocorrelation function of
a TiO2 aerosol at 1/10 atmospheric pressure as a function of time.
texp is the experimental run time, i.e., the time after chamber � ll-
ingwhen the measurement of C(t )was made. Each measurement
took ca. 20 s.

The second decay has a Gaussian shape and is associated with
density � uctuations (Schaefer and Berne 1972). As the exper-
iment progressed (larger texp), the � rst decay shifted to larger
time, indicating an increase in Rm due to aggregation. Concur-
rently, the second decay also became more apparent with time.
This is associated with the aggregation process as well, since
as the clusters became bigger during aggregation, the number
density decreased. As a result, the density � uctuation increased.

To determine the characteristic correlation time s c , all DLS
runs were � t to a sum of an exponential and a Gaussian term
for the reasons explained above. A � t to the data in Figure 5
by this two-term � t is shown in Figure 6 (dashline). As can be
seen, a reasonable � t was achieved in the � rst and second decay
regimes. However, a mis� t is clearly visible in the intermediate
regime 1 < t < 20 ms. In order to improve the accuracy of
the � tting, a third exponential term was added ad hoc. Hence
the scattered light autocorrelation C(t ) was � t � nally by three
terms:

C(t ) = B0 + B1e
¡ t / s c + B2e

¡ t2 / s 2
2 + B3e

¡ t / s 3 , [27]

where B3 and s 3 are two additional � t variables for the ad hoc
term. As discussed in our previous paper (Wang and Sorensen
1999), the ad hoc term may be related with some extra large
clusters in the aerosol that break off from the furnace wall and
are not associated with the aerosol aggregation. As shown in
Figure 6 (solid line), this three-term � t matches the experimental
data well. Once the correlation time s c was measured by DLS,
Equation (6) (or (7)) with Equation (10) was used to determine
Rm .

Figure 6. Computer � ts to the dynamic light scattering data of
Figure 5.

The Kernel Homogeneity
The Rm data for the three TiO2 aerosols are plotted in Figure 7

in accord with Equation (23). Filling the aerosol chamber takes
appoximately 2 min so we will assume that the aerosols have
achieved scaling distributions by the time we begin taking the
DLS measurements; thus we set t0 = 0. This assumption is
not critical because even if the scaling distribution is not pre-
cisely achieved (and, indeed, only a quasi-self-preserving distri-
bution is achieved in the slip regime, see Wang and Friedlander
(1967), Equation (23) holds to a good approximation, and be-
cause the large time data dominate the � t. Normalizing by Rm(0)

Figure 7. Normalized mobility radius for the TiO2 aerosol as
a function of time t plus the characteristic time tc adjusted to
make these log-log plots most linear. Dashed lines are � ts with
slopes zx .
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Table 1
Experimental Parameters for the Aerosol Systems

Aerosol Pressure Rm(0) Rm( f )
material (atm) (nm) (nm) Kn(0) Kn( f ) N (0) N ( f ) Rm(0)/a zx k

TiO2 1/10 320 800 2 0.8 370 1850 18 0.39 § 0.03 ¡ 0.46 § 0.1
TiO2 1/5 180 450 1.8 0.7 140 680 10 0.41 § 0.03 ¡ 0.38 § 0.1
TiO2 1 145 510 0.45 0.13 90 840 8 0.61 § 0.05 0.05 § 0.08
SiO2 1/10 170 400 3.8 1.6 120 550 9 0.40 § 0.03 ¡ 0.43 § 0.1
SiO2 1/10 210 420 3.1 1.5 180 600 12 0.41 § 0.03 ¡ 0.40 § 0.1
SiO2 1/3 240 670 0.3 0.8 220 1400 13 0.42 § 0.03 ¡ 0.34 § 0.10
SiO2 1/2 180 400 0.32 0.7 140 550 10 0.47 § 0.05 ¡ 0.22 § 0.10
SiO2 1/2 240 800 0.16 0.54 220 1900 13 0.54 § 0.03 ¡ 0.05 § 0.07
SiO2 1/5 170 380 1.9 0.85 120 500 9 0.44 § 0.03 ¡ 0.28 § 0.1
SiO2 1/5 150 350 2.2 0.93 100 440 8 0.42 § 0.03 ¡ 0.36 § 0.1
SiO2 1 270 1600 0.24 0.04 280 6200 15 1.63 § 0.03 0.08 § 0.05
SiO2 1 250 1300 0.26 0.05 240 4300 14 0.54 § 0.03 ¡ 0.05 § 0.06
SiO2 1 280 1000 0.23 0.06 300 2700 16 1.58 § 0.03 0.01 § 0.05

Equation (23) becomes

Rm(t )/ Rm(0) = [(tc + t )/ tc]zx . [28]

This equation shows that a log-log plot of Rm(t )/ Rm(0) versus
t + tc will be linear with the proper choice of tc . Thus our � tting
procedure is to vary tc until this plot is linear; this yields the best
� t tc and the slope of the plot yields the exponent zx . The best
linear � ts to the graphs were obtained with tc = 950 s, 650 s
and 650 s for the 1/10, 1/5, and 1 atm aerosols, respectively.
No quantitative meaning can be inferred from these numbers
without a measure of the aerosol number density as well. How-
ever, the slopes of these linearized plots is zx of Equation (28),
which we � nd to be 0.39 § 0.03, 0.41 § 0.03, and 0.61 § 0.05,
respectively. These along with the values for the other runs are
listed in Table 1.

Also listed in Table 1 are the ranges of the measured mobil-
ity radius, the Knudsen number, and the number of monomers
per aggregate, N . This latter parameter was calculated using
Equation (1), with k0 = 1.3 (Cai et al. 1994; Sorensen and
Roberts 1997; Oh and Sorensen 1997b), the measured (from
TEM) monomer radius, a = 18 nm for both aerosols, Rg =
Rm /0.7 (a fact con� rmed below), and D f = 1.75. The large
N values show the aggregates are mature and justify our use of
scaling relations. The Knudsen numbers show that the experi-
ments are de� nitely in the slip regime.

To obtain the dynamic exponent z, hence the kernel homo-
geneity k via Equation (21), from the data, the value of x of
Equation (11) must be known.

The value of x is either 0.44 or 1/ D f ’ 0.57 depending on
whether Rm / Rg is evolving away from its monomer value, repre-
sented by the lines with slope 0.3 in Figure 1, or whether Rm / Rg

is a constant, the zero slope line at Rm / Rg = 0.7 in Figure 1. The
sloped regions in Figure 1 occur for values of Rm between Rm =
a, the monomer limit, and Rm = a(1.29 /0.7)1/0.3 ’ 8a. Listed
in Table 1 is Rm(0)/a, and we see that initially for all aerosols

Rm(0) > 8a, thus all aerosols are in the constant Rm / Rg = 0.7
regime, hence x ’ 0.57. The dynamic exponent z and concomi-
tant kernel homogeneity k can now be calculated and the values
of k are given in Table 1 as well.

Figure 8 compares the measured homogeneities to theory as
prescribedby Figure 2andexpressed in Equation (14). Theory re-
quires the value of x and, as described above, since Rm(0)/a > 8

Figure 8. Comparison of the theoretically predicted kernel
homogeneity k from Figure 2d to experiment as tabulated in
Table 1. The theoretical prediction is the solid line of Figure 2d,
which corresponds to Rm / Rg ’ 0.7, a constant.
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for all the aerosols, we expect Rm / Rg = 0.7, a constant and
therefore x = 0.57. Then theory predicts for k the solid line in
Figure 2d, and this is reproduced in Figure 8. The data with their
error bars in k and their ranges in Kn show the decreasing trend
in k with increasing Kn as predicted. The agreement is quanti-
tative, within error. Since Rm / Rg is constant, the functionality
of k in Figure 8 is due to the transition of the diffusion coef-
� cient from R ¡ 1

m to R ¡ 2
m functionality through the slip regime.

Our primary assumption was that this would yield a kernel that
could still be described as homogeneous with an effective homo-
geneity dependent on the slope of log D versus Rm (Figure 2b).
The fact that the data show this predicted functionality for the
effective homogeneity thus lends veracity to the assumption.

Some deviation between theory and experiment, on the edge
of the measurement error, is seen for Kn » 0.1, with the ex-
perimental k being about 0.1 too large. This result is similar
to a result from our recent work (Sorensen and Wang 1999),
in which we showed how the power-law regime of the struc-
ture factor could be used to measure the width of the aggregate
size distribution. For the scaling distribution the width param-
eter is the homogeneity k as seen in Equations (19) and (15).
We measured the structure factor for � ve titania aerosols at at-
mospheric pressure, conditions identical to those used here. We
then applied our analysis of the power law regime to determine
the width parameter k . The average of the � ve aerosols was
k = 0.24 § 0.23. This is consistent with the dynamically deter-
mined value here of k = 0.02 § 0.06 (average of the four one
atmosphere aerosols). The theoretical curve in Figure 8, how-
ever, predicts k = ¡ 0.08 for Kn = 0.1. Furthermore, our past
work on liquid drop aerosols (Olivier et al. 1992) found from
dynamical measurements k = 0.07 § 0.06 when Kn » 0.2. As
for the fractal aggregates of this work, the liquid drops of our
previous work should have a diffusion coef� cient crossing over
from Stokes–Einstein (D » R ¡ 1) to Epstein (D » R ¡ 2). Hence k

should follow a curve similar to that drawn in Figure 8 only with
a large Kn limit of k = ¡ 1/3. Then for Kn = 0.2 we can predict
k = ¡ 0.15 for liquid drops, and once again the experimental
value of k is somewhat too large.1 Thus there are three separate
indications, all on the edge of the experimental error, that the
kernel homogeneity near Kn » 0.1 is larger than predicted here.
We do not know the source of this possible discrepancy.

CONCLUSIONS
The primary results of this paper are the predictions for the

aggregation kernel homogeneity k over the entire Knudsen num-
ber range as depicted in Figure 2 and expressed by Equation (14)
and the experimental veri� cation in the dif� cult slip regime as
shown in Figure 8. Uncertainties remain in the functionality
Rm » N x (Equation (11)) in the Kn < 1 range when the aggre-
gate is still falling away from the single particle limit (i.e., when

1In Olivier et al. (1992), we erroneously left out the Epstein regime for
which k = ¡ 1/3 and only considered the ballistic regime when Kn À 1 for
which k = 1/6.

Rm / Rg is not yet constant), the nature of the crossover from this
dependency to the constant Rm / Rg ’ 0.7, and the turn around
in Rm / Rg at large Kn. The approximation that the kernel is ho-
mogeneous in the slip regime with a homogeneity dependent
upon the approximate power-law dependency of the diffusion
coef� cient on aggregate mobility radius (the slope in Figures 2b
and c) appears to be valid. Computer simulation testing of these
results would be valuable.
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NOMENCLATURE

a Monomer (or primary) particle radius.
A Coef� cient determining cross over of diffusion

from Stokes–Einstein to Epstein, see Equation
(8).

A Normalization constant for the scaling func-
tion, see Equation (19).

B0, B1, B2, B3 Coef� cients involved in C(t ).
c A constant of order unity.

C(t ) Scattered light intensity autocorrelation
function.

D Diffusion coef� cient.
D f The fractal dimension.

D(u) Diffusion coef� cient of aggregate with u mono-
mers.

DSE Stokes-Einstein diffusion coef� cient.
DEp Epstein diffusion coef� cient.

k Boltzmann’s constant.

ko A constant of order unity ( ’ 1.3 for DLCA),
see Equation (1).

K (x , y) Aggregation kernel.
Kn The Knudsen number, the ratio of the medium

molecule mean free path to the particle mobil-
ity radius.

m Molecular mass.
mfp Medium molecule mean free path.
Mi i th moment of the aggregate size distribution,

see Equation (18).
n(v , t ) Number density of aggregateswith v monomers

at time t .
N Number of monomers per aggregate.
q The scattering wave vector.
R Particle or aggregate radius used generically.

Rg Radius of gyration of an aggregate.
Rm Mobility radius.

s Exponent describing functionality of the diffu-
sion coef� cient on the Knudsen number.

sp Mean number of monomers per aggregate.
to Initial time.
tc Characteristic aggregation time.

texp Experimental run time, see Figure 5.
T Absolute temperature.
x Exponent describing functionality of the mo-

bility radius on number of monomers per ag-
gregate, see Equation (11).

z The dynamic exponent, z = (1 ¡ k ) ¡ 1.
a Constant involved in the scaling function, see

Equation (19).
b Accommodation coef� cient.
g Medium shear viscosity.
h The scattering angle.
k The degree of homogeneity of the aggregation

kernel.
k o Wavelength of light.
q Medium mass density.
s c The correlation time.

s 2, s 3 Fit variables for C(t ).
u (v ) The scaling function of the size distribution,

see Equation (15).




