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Abstract

This work demonstrates that heretofore undisclosed patterns emerge when the Mie scattered intensity for an arbitrary
sphere of radius R and refractive index m is plotted versus the dimensionless parameter gR, where g = 4mA~ lsin(8/2) is
the scattering wavevector at scattering angle ¢ for wavelength A. When the interference ripple structure is ignored, three
power law regimes can appear. These regimes are dependent on the phase shift parameter p= 2kR|m — 1], where k is the
wave number, with the behavior having universal aspects for a given p. To explain these patterns use is made of a general
concept that the scattered intensity is the square of the Pourier transform, i.e., the structure factor, of the illuminated portion
of the scattering object. If we make an approximation that the illuminate portion of the sphere is an annular shell at large p,
Fourier transformation of the shell and scaling arguments can explain these power laws and the length scales associated with
their crossovers. However, such an approximation is severe and an exact explanation of the new patterns is still lacking.
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1. Introduction

The problem of how light, or electromagnetic
radiation in general, scatterers from a sphere of
arbitrary size and refractive index was solved more

-than 90 years ago through the efforts of 2 number of

workers, most notably Mie, Lorentz and Debye. The
result, often called Lorentz-Mie theory or simply
Mie scattering, gives the scattered intensity as a
function of scattering angle for arbitrary polarization
[1-3]. The equations that describe this scattering are
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quite complex, not withstanding the simplicity of the
spherically symmetric homogeneous sphere, involv-
ing sums over associated Legendre polynomials with
coefficients that involve Ricatti-Bessel and Hankel
functions. Because of this complexity, numerical
results were once very difficult to obtain, and only
with the advent of modern computational machines
are Mie scattering values easily computed. This com-
plexity, however, still obscures the physical meaning
and interpretation of the scattering.

In this paper we show that by plotting the scat-
tered light intensity versus the scattering wavevector,
rather than the scattering angle, patterns emerge
which, to our knowledge, have not been described
before in the literature. These patterns involve the
envelopes of the scattering curves and evolve in a
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coherent fashion from the Rayleigh—Debye—Gans
limit of the Mie results. The evolution is controlled
by the phase shift parameter (Eq. (3b), below). Hav-
ing established this empirical result, we successfully
replicate the patterns with a model that localizes the
electromagnetic field to an annular shell within the
sphere, the thickness of which decreases with in-
creasing phase shift parameter. However, previous
workers have shown that while there is some ten-
dency for the internal field to localize near the inner
surface, our model is too simple, hence a complete
explanation of the patterns remains to be achieved.

2, Mie scattering curves

We limit ourselves to the problem of scattering by
a homogeneous, dielectric sphere of arbitrary radius
R and real refractive index m relative to the medium.
The scattering geometry is also limited to detect the
scattered intensity [ due to vertically polarized inci-
dent and scattered light with a horizontal scattering
plane. This plane is defined by the plane of the
incident (k;) and scattered (k,) wave vectors, ie.,

the scattering angle ¢ is in the horizontal plane. The’

scattering is elastic so both wave vectors have a
magnitude k=2m/A where A is the wavelength.
This is the typical laser light scattering set-up. To
create [ vs. 0 ‘data’ we use a standard Mie scatter-
ing algorithm, BHMIE, given by Bohren and Huff-
man [3].

Fig. 1{a) shows an example of Mie scattering for
an index of refraction m = 1.05 and a variety of
sizes expressed as the size parameter kR. The nor-
malized intensity /(6)/I{(0) vs. 8 is plotted. A pro-
fusion of bumps and wiggles are seen with some
periodicities, but with no particularly coherent pat-
tern. Curves for the larger m = 1.50 in Fig. 2(a) are
even more complex. A major point of this paper,
however, is that #, although conveniently measured
in the laboratory, is not the most propitious parame-
ter for plotting the data. It is well known from other
scattering phenomena, such as X-ray and neutron
scattering [4-6], that the scattering wave vector,

—

g =k, — k;, with magnitude

g=4mwA " sin 6/2 (1)

is a useful independent variabie for describing scat-
tering. One may cite at least two reasons for the

usefulness of g: (1) it results naturally from the”™\

theory for scattering of waves of any type. Scattering
theory finds that the scattered amplitude is the Fourier
transform of the real space structure and ¢ is the
Fourier transform variable; and (2) its units are
inverse length, hence its inverse, ¢!, is the length
scale, or probe length, of the scattering [7]. Given
this latter aspect, ¢ can be combined with R, the
fength scale of the scatterer, to yield a dimensionless
variable ¢R. If universal features reside in Mie scat-

tering, they may reveal themselves in a plot of

normalized intensity vs. gR. We note that such an
analysis is not new, but, remarkably, its application
to Mie scattering appears to be.

Fig. 1(b) and Fig. 2(b) plot the data of Fig. 1(a)
and Fig. 2(a) vs. gR. Definite patterns emerge, some
of which are well know. At small gR a nearly
universal ‘forward scattering lobe’ is seen. Near
gR ~ 1, the fall off is approximately described by the
Guinier equation Iq)/I(0)~ 1~— g*R%/5. After
that, we see patterns less familiar. For m = 1.05 the
periodicity of the interference ripples is A(gR) =
which can be understood with simple interference
arguments. For larger m the periodicity is more
complex. The enhanced backscattering, the ‘glory’,

visible in plots with m =150, shows no particulagem,

pattern but is compressed into the large gR part fo
each size parameter kR. The key features to be
explored here are the envelopes of these plots. Fig.
1(b) and Fig. 2(b} include lines which roughly de-
scribe these envelopes. For small size parameter kR
the envelope is described by a negative four slope,
hence (gR}™*; for larger kR two slopes are seen to
imply (gR)~? crossing over to (gR)™*, and for
m = 1.50 the envelope is dominated by a negative
two slope although a negative four slope is visible at
large gR.

Before proceeding with a study of the envelopes
of the Mie scattering curves, it is valuable to recall
the Rayleigh—Debye—~Gans (RDG) theory for scatter-
ing from a sphere [1-3], because the Mic theory
reduces to RDG in the limit of a small refractive
index and phase shift parameter, Eqgs. (3a) and (3b),
below. The normalized scattered RDG intensity is

I{(gq)/H0) = [3(sin u—ucosu)/( u)3]2 (2a)

|
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Fig. 1. (a) Normalized Mie scattering curves as a function of scattering angle for spheres of refractive index m = 1.05 and a variety of size
parameters; and (b} same as (a} but plotted versus gR. Lines with slope ~2 and —4 are shown,

where
u=gqgR. (2b)

The RDG form is simply the square of the Fourier
transform of the uniform sphere, and in this sense it
is the structure factor of the uniform sphere, since
this is equivalent to the Fourier transform of the
density autocorrelation function. It has an envelope
proportional to (gR)~* for large gR. It is valid in the

limit where the phase shift of the wave across the
sphere is not much different than the phase shift in
the absence of the sphere. The difference in phase
shifts is 2kR|m — 1], the phase shift parameter p [1],
and the condition for RDG of Egs. (2a) and (2b) to
hold is both

lm~-1j<1 (3a)
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Fig. 2. (a) Normalized Mie scattering curves as a function of scattering angle for spheres of refractive index m = 1.50 and a variety of size
parameters; and (b) same as {a) but plotted versus gR. Line with slope —2 is shown.

and
p=2kRim—1l<1, (3b)

To study the behavior of the Mie scattering en-
velopes the interference ripples and the glory near
6= 180° are ignored, only the maxima of the ripples
are plotted to yield the envelopes. Fig. 3 shows the
envelopes of scattering curves for three size parame-
ters kR, but all with the same phase shift parameter
2kR|m — 1. The data show the two power law

regimes seen in Fig. 1(b) and Fig. 2(b), an initial
(gqR)"? then a crossover at large gR to (gR)™*. In
addition, universal behavior is seen in the (gR)™2
regime with the data for different size parameters
overlapping. Carefu! analysis of this and other plots
(e.g., Fig. 2(b)) shows that there is no overlap for
different size parameters in the (gR)™* regime.

A complete picture comes together in Fig. 4
where the envelopes for a wide range of phase shift
parameters are plotted. The picture starts at p=0
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E T that this upward e:rtz)lution is bounde'd from above. by

orl G KHo5G mei 25 a umv;rsal (gR)™* power law with a coefficient

3 -2 & KR=24m=20 approximately equal to two. Thus some envelopes,

- [ ™ such as those for p =12, 24, 48 (in Fig. 3), and 96
g o'mgg have two power law regimes as described above:
E 15-3[ (gR)™? and c(gR)™ where ¢ > 9. Empirically, we
J 4 find the crossover occurs approximately at gR = p™?,
E 14l but this varies slowly with 4R as evidenced by the
s | lack of overlap in the (gR)™* regime for large p. We
Esk remark that past evaluation of Mie scattering has

F bhase Shift Parameter =48 emphasized the importance of the size parameter kR,

1E8 L P I s we now see that the phase shift parameter is also

! 1 100 quite significant. What is the explanation of these
aR two power laws and the reason for the crossover?

Fig. 3. The envelopes of the normalized Mie scaitering curves for
spheres for three different size parameters kR and refractive
indices m but constrained to all have the same phase shift

parameter p = 2kRlm 1] 3. Interpretation

We attempt to address the question posed in the
which is the RDG limit. As the phase shift parameter last paragraph with two equivalent approaches, a
increases, the (gR)™* envelope moves up and away scaling argument and a Fourier transform. Both rely
from the RDG limit at 9(gR)~*. However, it appears upon an understanding of how the optical field is
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Fig. 4. The envelopes of the normalized Mie scattering curves for a wide range of size parameters and refractive indices versus gR. Curves
with the same phase shift parameter fall togetber. As the phase shift parameter increases from zero, the curves depart from the
Rayleigh—Debye—Gans limit. Lines representing 9(gR)™* and 2(¢gR)~? indicate small p and large p limits, respectively, for these curves.
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distributed throughout the volume of the scattering
sphere. With regard to this distribution, we will
make a simplification that does not appear accurate
yet does reproduce the patterns observed. The scal-
ing argument is presented first.

Oh and Sorensen [8] have recently presented a
simple, physical scaling argument to explain wave
scattering from an arbitrary system of scatterers. In
this approach the sphere is represented as a uniform
system of point-like scatterers with spacing much
less than the sphere radius as in Fig. 5 (right side).
When p =0, an incident wave scatters from each of
these scatterers equally and, since they are point-like,
isotropically in the scattering plane. These waves add
up to create a scattered wave with amplitude

N
E(g) « Ze‘@"ﬁ. (4)

In Eq. (4) r; is the position of the jth scatterer
within the sphere. When g is small such that ¢~ ! >
R, ie., gR <1, all the waves scatter in phase, then
E ~N and I(0) ~ N* ~ RS and there is no g (hence
) dependence. This explains the forward scattering
lobe. As @ increases, ¢ increases and q“ decreases.
When g~ ! <R, the spherical system of scatterers
can be broken up into touching regions of radius
g~ ', as drawn in the right side of Fig. 5. Each of
these ‘g-regions’ has Nq scatterers in it, and since
these scatterers are afl within q" of each other, they
scatter in phase. Then E ~ N, so that [, ~ N}, N, is
proportional to the volume of the g-region so that

g-regions

Fig. 5. Schematic of a system of point-like scatterers in a spherical
particle of radius R. Also drawn are g-regions of radius ¢!, The
right side is the uniformly illuminated, p = 0 case, where p is the
phase shift parameter. The left size represents the large p situation
in which the illumination is confined to a surface layer of thick-
ness £

N, ~(q')* thus I, ~ ¢~ °. Since the interior of the
sphere (a region at a depth of ¢! or greater) is
uniform, no total finite angle scattering results from
the interior, a consequence of the Ewald—Oseen
extinction theorem (only fluctuations scatter light)
[9}; hence onmly scattering from the surface is seen.
The number of g-regions on the surface is
R? /(g™ ')* =(gR)". Since the g-regions are farther
apart than g~', their scattered waves add randomly
hence the scattered intensity is proportional to their
number (gR)*. Then the total scattered intensity is
the product of the number of g-regions on the sur-
face and the scattering per g-region to yield

TaxRq*, g>R7. (5)

This scaling argument successfully reproduces
Porod’s law [4,10] which predicts the scattering is
proportional to ¢~* and the surface area of the
sphere. Eq. (5) when normalized by 7(0) ~ R® yields

I(q)/1(0y«(gR) ™, q>R", (6)

which successful explains the power law seen in Fig.
4 for small p.

Any crossover between dependencies of I vs. g
implies a length scale in the scattering system of
magnitude g;', where g, is the g-value of the
crossover. For example, the crossover near gR ~ 1,
where 7~ g° (the Rayleigh regime) crosses over to a
g-dependent regime, is well known to be due to the
finite size of the sphere. Figs. 3 and 4 show a new
crossover at large gR which we find empirically to
be g;' ~R/p< R. What is the length scale g; ' 71t
is known that as p increases for a sphere, the
internal electromagnetic field inside the sphere is no
longer uniform and tends to localized near the inner
surface of the sphere, and the field in the interior
diminishes [11-13]. For our analysis we greatly sim-
plify the internal field as localized to a layer of width
£ just within the surface of the sphere. This is shown
schematically on the left side of Fig. 5. We have also
drawn for this side of Fig. 5 a g-region of intermedi-
ate size, that is R > ¢~' >/ In this case the number
of g-regions will be as above for Porod scattering,
(gR)?. But now the number of illuminated scatterers
in the g-region will not be proportional to the g-re-
gion volume. Instead, the roughly 2d layer of illumi-
nated scatterers along the inner surface of the sphere



C.M. Sorensen, D.J. Fischbach / Optics Communications 173 (2000) 145153 151

Ty T LU e & e Ty T

Ry/R,= 0.80

Intensity

1E-3
1E-4

1E-5

1E6

1 10 100
aR,

Fig. 6. Scattered intensity given by Eq. (9a) versus gR, for a
spherical shell of inner and outer radii R; and R, respectively.

will be intersected by the g-regions to form circular
2d layers (like cookies with a cookie cutter). Then
the number of illuminated scatterers in the g-region
N, is proportional to {g™')?, hence the scattered
intensity per g-region will go as I, ~ ¢™*. Combin-
ing this with the number of g-regions we find

TaRq2, 7 '>g>R7. (7)

Since the interior of the sphere is not illuminated at
large p, the zero angle scattering is the in phase
addition of waves from only the illuminate surface
layer, hence E ~ R* and [(0) ~ R*. Then normaliza-
tion of Eq. (7) yields

I(q)/1(0)x(qR)?, /7 '>g>RL. (8a)
This successfully explains the dependency for large
p at intermediate gR seen in Fig. 4. Finally, when
g~ ' becomes smaller than the layer thickness Z, it
cannot see the layer and the Porod law, Eq. (5)
returns at ¢ >~ '. However, normalization at large
p is by K0) ~ R* which, when applied ta Eq. (5)
yields :

I(q)/1(0) xR*(gR) ™", g>/"" (8b)
This explains both the —4 power law in this regime
and the lack of data overlap for different kR values.

It is interesting that van de Hulst [1] presented a
rigorous argument that in the limit of kAR — «, m —
1, and 6 — 0, the scattering function approaches a
limit that is a function of p and z only, where
z=kR@. Since gR — z as # — 0, this is very similar

to the universality of I vs. ¢ parameterized on p
shown in Figs. 3 and 4. His result applies for the
complete scattering function, not just the envelope,
but is limited to small # and m. The approximate
universality on p and gR proposed here holds for all
# and m but applies only to the overall structure of
the scattering function, i.e., the envelope.

The second approach to describing the Mie scat-
tering envelopes in Fig. 4 is a straightforward Fourier
transform. The important concept is that the scattered
field is the Fourier transform of only the illuminated
portion of the sphere, not necessarily the entire
sphere. We again represent the illuminated portion of
the sphere as an annular region, and let the inner and
outer radii be R, and R,. The Fourier transform can
be solved analytically to yieid

1(q)/1{0)
3 2
=|———(sinu—ucosu—sinv+wvcosv)
w-v
(%)
where
u=qgR, ) (9b)
and
v=gR,. (9c)

This is just a linear combination of the RDG Eqgs.
(2a) and (2b) for the two radii. Eq. (9a) is plotted for

—r T — T T T
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Intensity
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m
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Fig. 7. Envelopes of scattered intensities given by Eq. (92) for
spherical shells of inner and outer radii R, and R, respectively.
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R,/R,=0.8 in Fig. 6. Readily apparent in Fig. 6 are
the three power law regimes, (gR,)°, (gR,) %, and
(gR,)™* and a similarity to the complete Mie curves
in Fig. 1(b) and Fig. 2(b). The envelopes of Eq. (9a)
for R,/R,=0,08, 09,095, and 0.98 are shown in
Fig. 7, and again, the similarity to Mie scattering in
Fig. 4 is striking.

4, Comparison to experiment
Here we make a brief comparison to experiment

to lend some reality to the computational and theo-
retical arguments. Most scattering experiments in-
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Fig. 8. Light scattering intensity (arbitrary units) from a water
droplet aerosol {diameter = 0.5 pm): (a) plotted versus scattering
angle; and (b) plotted versus scattering wave vector g. Lines of
slope —2 and —4 are drawn.

Bl

volve ensembles of particles. Any modest polydis-
persity smears out the interference ripples leaving
only the envelopes of the curves [14]. As an exam-
ple, Fig. 8 displays light scattering data from a water
droplet aerosol, Fig. 8(a) shows the data plotted
versus @, Fig. 8(b) vs. g. Plotted versus # yields no
physical interpretation other than enbanced forward
scattering; plotted versus g the data are consistent
with the three power law regions described herein.

5. Discussion

The empirical patterns we have found bring some
degree of coherency to the complex results of Mie
scattering from a sphere. In hindsight, use of ¢, or
better the dimensionless gR, is the obvious choice
for the independent variable for examination of the
scattered intensity since it is the primary variable in
scattering theory. Use of @ follows from experimen-
tal convenience, but is not physically motivated. We
recomnmend scattering data always be plotted versus
g g

QOur model of scattering from a sphere as the
Fourier transform of an illuminated annular region
with thickness decreasing with increasing p is suc-
cessful in reproducing the major features of the
empiricial patterns that we have uncovered. Unfortu-
nately, however, this model is a poor representation
of the true internal field. Certainly, at p = Q the field
is uniform as we assumed. Previous workers have
shown that as p increases, nonuniformity develops
with a tendency for the field to grow at the inner
surface. Beyond this, however, our model is much
too simple to describe the inner field. Perhaps since
we are dealing with only the semiquantitative aspects
of the envelopes (not the complete curves) our sim-
plification is enough.

A positive feature of our simple model is that it
has allowed us to develop a new conceptualization of
scattering which is that the scattering curve is the
square of the Fourier transform of the illuminated
portion of the scattering object weighted by the
amplitude of the illumination. In the language of
small angle X-ray [4,5] and peutron scattering [6] we
can say that the Mie scattering curve is the structure

=
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factor, but not of the sphere, rather only of the
illuminated portion of the sphere.

We conclude with a physical picture of light
scattering from a sphere which can be inferred from
the results above. At smali phase shift parameter p,
the entire sphere is uniformly illuminated. When ¢ is
small (relative to R™') as well, the waves scattered
from all portions of the sphere are in phase hence
constructively interfere to give the scattered field
with no g dependency. Larger g causes the illumi-
nated interior to scatter waves that in the far field
destructively interfere with each other at all finite ¢
{Ewald—Oseen extinction) leaving only a surface
boundary (of thickness ¢~') to contribute to the
scattering. This yields Porod scattering with a (gR) ~*
dependency. In the other extreme of large p the
sphere is not uniformly illuminated due to the elec-
tromagnetic nature of the wave and the necessary
boundary conditions. The low g scattering vields
constructive, in-phase addition of all the waves from
the illuminated region and no ¢ dependency. Larger
g can resclve the illuminated region leading to the
(gR)~?* dependency. Yet larger ¢ confines the scat-
tering to the surface boundary hence Porods’ Law,
(gR)™* returns. It is interesting to remark that scat-
tering from the sphere’s interior can be eliminated
for two reasons, either through Ewald—Oseen extinc-
tion of the illuminated interior or through electro-
magnetic exclusion of the field from the interior. The
former leads to surface boundary scattering and
Porod’s Law, the latter to surface layer scattering
and the inverse quadratic dependency.
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