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ABSTRACT. We present a new equation to describe diffusion, hence drag, of particles
in the slip regime that is simple, accurate, and useful.

The purpose of this note is to describe a simple
formula for the diffusion coef� cient, and hence
the drag coef� cient, of a particle that applies
over the entire Knudsen number range including
the slip regime. The Knudsen number Kn is the
ratio of the medium molecule mean free path k

to the radius of the particle R, Kn = k / R.
The proposed formula is based on the known

limits for the diffusion coef� cient at Kn = 0 and
Kn ! 1 . At Kn = 0, the continuum limit, the
Stokes–Einstein equation applies (Friedlander
1977):

DSE =
kT

6p g R
. (1)

In Equation (1), k is Boltzmann’s constant, T
is the absolute temperature, and g is the shear
viscosity. At Kn ! 1 , the free molecular limit,
the Epstein equation applies (Friedlander 1977):

DEp =
3

8q R2(1 + a p /8)(mkT

2p )
1/2

. (2)

In Equation (2), q is the medium mass density,
m is the medium molecule mass, and 0 · a · 1
is the accommodation coef� cient.

We have found that a convenient formula for
the diffusion coef� cient that applies at all Kn is
simply the sum of Equations (1) and (2), viz.,

D = DSE + DEp. (3)

Equation (3) is the new idea in this note. This
sum can be algebraically manipulated to yield
physically appealing forms. To do so, use the
relation between the mean free path and the vis-
cosity (Kennard 1938; Allen and Raabe 1982)

g = u q ū k , (4)

where the mean speed of the medium molecules
is

ū = (8kT / p m )1/2, (5)

and u = 0.491(1 + e ), where e ¿ 1 (Ken-
nard 1938). For elastic hard sphere molecules
with no repulsive force, e = 0.016 and thus
u = 0.499. As the repulsive molecular � eld be-
tween molecules increases, e tends to zero and
u tends to 0.491. This value is more realistic
(Allen and Raabe 1982). Combining Equations
(1)–(5) yields

D =
kT

6 p g k
(Kn + AKn2) (6)
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FIGURE 1. The coef� cient A as deter-
mined from Millikan’s data plotted ver-
sus the Knudsen number.

or

D =
kT

6 p g R
(1 + AKn), (7)

where

A = 2.2455 /(1 + a p /8). (8)

This simple formulation applies to the drag on
a particle as well, since the drag coef� cient f
and diffusion are related by the Einstein relation
(Friedlander 1977)

f = kT/ D. (9)

The atavistic Equation (7) harkens back to
the correction for slip proposed by Cunningham
(1910) for the Stokes drag term, f = 6 p g R cor-
rected to 6 p g R / C(Kn), where

C(Kn) = 1 + AKn. (10)

This is identical to the correction in Equation (7).
Knudsen and Weber (1911) realized that A was
not constant and proposed

A(Kn) = a + b exp( ¡ c /Kn). (11)

The combination of Equations (10) and (11)
is usually called the “Cunningham Correction
Factor,” and empirical values of a , b , and c ,
such as those given by Allen and Raabe (1982)
and Buckley and Loyolka (1989), have been de-
termined from the measurements of Millikan
(1923a, 1923b).

In Figure 1 we plot Millikan’s A versus Kn
taken from Allen and Raabe (1982). We see that
A varies from ca. 1.1 to 1.6 as Kn increases from
zero. Thus the results of Equations (6) and (7)
in which A is constant is in error. Moreover,
given the work of Cunningham from long ago,
our work appears to be a step backward. Despite
this, we advocate a constant A and the forms
of Equations (6) and (7) not only because of
their simplicity and physical esthetics, but also
because of their accuracy and usefulness, as we
describe below.

Regarding accuracy, in Figure 2 we plot
the correction factor C(Kn) = 1 + AKn of
Equation (10) vs. Kn and compare this to Mil-
likan’s data. The value of A = 1.612 was used as
determined from Equation (8) and an accommo-
dation coef� cient of a = 1.0. This � gure shows
that the forms of Equations (6) and (7) are quite
accurate with at most a 10% error near Kn ’ 0.5.
Small, reasonable changes in a do not change
this conclusion. The error is comparable to other
uncertainties endemic in aerosol transport and
kinetics studies, hence speci� cation of the drag
correction factor to better than 10% is rarely
warranted.

The simplicity of Equations (6) and (7) makes
them useful. In our work using dynamic light
scattering to determine aerosol particle sizes
(Olivier et al. 1992; Cai and Sorensen 1994;
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FIGURE 2. a) The line is the correction factor 1 + AKn,
where A = 1.612, as proposed in Equation (7) versus the
Knudsen number plotted with Millikan’s data (square
symbols). b) Deviation of the correction factor 1 + AKn,
where A = 1.612, and the data of Millikan. The dashed
line is the standard Cunningham correction formula,
Equations (10) and (11) with ® = 1.155, ¯ = 0.471, and
° = 0.596 from Allen and Raabe (1982).

Wang and Sorensen 1999a), we have found
that inversion of Equation (7) with the exper-
imentally determined diffusion coef� cient D to
calculate the particle size R involves a simple
quadratic equation. This is in contrast to inver-
sion of Equations (10) and (11), the standard
Cunningham correction, which involves a com-
plex transcendental equation.

In other work involving aggregation kinetics
(Wang and Sorensen 1999b), we have found
Equation (6) or (7) much easier to use than
the standard Cunningham correction formula
for both data analysis and scaling analysis. In
particular, scaling analysis of aggregation takes
advantage of the algebraic homogeneity of many
physical aggregation kernels to predict scaling
or self-preserving size distributions as solutions
to the Smoluchowski equation which governs
aggregation (Friedlander 1977; van Dongen and
Ernst 1985). Furthermore, the degree of homo-
geneity determines the temporal functionalities
of the aggregation. Use of the Cunningham cor-

rected diffusion coef� cient yields a very nonho-
mogeneous aggregation kernel which does not
allow physical insight regarding a scaling so-
lution or the dynamics. On the other hand, the
proposed Equation (6), while not homogeneous,
is the sum of two homogeneous functions, and
this allows for physical insight into both the scal-
ing of the size distribution and the dynamics. We
will make use of this in a future publication in-
volving aggregation kinetics.

A � nal bene� t of the formalism we have pre-
sented here is in regard to the de� nition of the
Knudsen number for nonspherical and aggre-
gate particles. The problem for these particles is
that their radius is ill de� ned, hence ambiguous,
in the de� nition of Kn = k / R. Now, however,
use of Equations (1)–(3) forces use of the mo-
bility radius Rm de� ned as the radius of a solid
sphere that has the same diffusion coef� cient as
the nonspherical particle or aggregate. Then to
proceed with the derivation from Equation (3)
to Equations (6) and (7) one must use

Kn = k / Rm . (12)

In the past we have used Kn = k / Rg , where Rg

is the aggregate radius of gyration for fractal ag-
gregates (Wang and Sorensen 1999a) but in light
of the argument above, we believe Equation (12)
is better.

This work was supported by NSF Grant CTS9709764 .

References
Allen, M. D., and Raabe, O. G. (1982). Re-Evaluation

of Millikan’s Oil Drop Data for the Motion of
Small Particles in Air, J. Aerosol Sci. 13:537–547.

Buckley, R. L., and Loyolka, S. K. (1989). Cunning-
ham Correction Factor and Accommodation Coef-
� cient: Interpretation of Millikan’s Data, J. Aerosol
Sci. 20:347–349.

Cai, J., and Sorensen, C. M. (1994). Diffusion of
Fractal Aggregates in the Free Molecular Regime,
Phys. Rev. E50:3397–3401.

Cunningham, E. (1910). On the Velocity of Steady
Fall of Spherical Particles through Fluid Medium,
Proc. R. Soc. London 83:357–365.

Friedlander, S. K. (1977). Smoke, Dust and Haze,
Wiley, New York.



D
ow

nl
oa

de
d 

B
y:

 [K
an

sa
s 

S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
rie

s]
 A

t: 
21

:5
1 

27
 J

un
e 

20
07

 

356 C. M. Sorensen and G. M. Wang Aerosol Science and Technology
33:4 October 2000

Kennard, E. H. (1938). Kinetic Theory of Gases,
McGraw–Hill, New York.

Knudsen, M., and Weber, S. (1911). Luftwiderstand
gegen die langsame Bewegung kleiner Kugeln,
Ann. Phys. 36:981–994.

Millikan, R. A. (1923a). Coef� cients of Slip in Gases
and the Law of Re� ection of Molecules from the
Surfaces of Solids and Liquids, Phys. Rev. 21:217–

238.
Millikan, R. A. (1923b). The General Law of Fall

of a Small Spherical Body through a Gas and its
Bearing Upon the Nature of Molecular Re� ection
from Surfaces, Phys. Rev. 22:1–23.

Olivier, B. J., Taylor, T. W., and Sorensen, C. M.
(1992). Scaling Dynamics of Aerosol Coagulation,
Phys. Rev. A45:5614–5623.

van Dongen, P. G. J., and Ernst, M. H. (1985). Dy-
namic Scaling in Kinetics of Clustering, Phys. Rev.
Lett. 54:1396 –1399.

Wang, G. M., and Sorensen, C. M. (1999a). Diffu-
sive Mobility of Fractal Aggregates over the Entire
Knudsen Number Range, Phys. Rev. E 60:3036 –

3044.
Wang, G. M., and Sorensen, C. M. (1999b). Aggre-

gation Kernel Homogeneity for Fractal Aggregate
Aerosols in the Slip Regime, Aerosol Sci. Tech.
(accepted for publication).

Received June 14, 1999; accepted January 3, 2000.




