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The Prefactor of Fractal Aggregates

CHRISTOPHER M. SORENSEN' AND GREGORY C. ROBERTS

Department of Physics, Kansas State University, Manhattan, Kansas 66506

Received June 21, 1996; accepted October 28, 1996

The prefactor k, of the fractal aggregate scaling relationship
N = ko(R,/a)"+ is determined for both Diffusion Limited and
Diffusion Limited Cluster Aggregation processes in spatial dimen-
sions of 2, 3, 4, and 5. For the physically relevant case of DLCA
aggregates in three dimensions we find k; = 1.19 * 0.1 when
D= 1.82 x 0.04. Comparison of all aggregation types shows that
the prefactor k, displays uniform trends with the fractal dimension
Dy;. Attempts to explain these trends are made based on either a
common small N limit for all clusters or the packing of spheres
in space. © 1997 Academic Press
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1. INTRODUCTION

Since the initial discovery by Forrest and Witten (1), it
has become well established that random aggregates of parti-
cles formed during aggregation in colloidal or aerocolloidal
systems are describable as fractals (2, 3). A consequence
of this fractal morphology is that the number of monomer
or primary particles N in an aggregate of size R scales as N
o RPs where Dy is the fractal dimension. Initially this propor-
tionality was sufficient to define an aggregate or ensemble
of aggregates as fractals, and it laid the foundation for this
new descriptive ability. More recently it has been useful to
define the size quantitatively usually as the radius of gyration
R, and to replace the proportionality with

N = ko(Rg/a)°r (1]

where @ is the monomer radius used to normalize R,, and
the proportionality constant k, is the prefactor of the fractal
scaling relationship. Subsequent to the realization of the im-
portance of I);, there has been an increasing awareness that
kp is also important for a quantitative description of aggre-
gates (4—11). This has arisen from optical studies which
show that knowledge of k, is important for nonintrusive
light scattering measurements of soot clusters in flames and
for describing their radiative properties.

The original motivation for this work was to determine
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ko for simulated, three-dimensional, DLCA aggregates
which are relevant to aggregates found in nature. This has
been accomplished, and we report this result, which agrees
well with our experimental work (7). However, comparison
of aggregates simulated by various aggregation algorithms
representing different physical situations has led us to de-
velop the idea that k, has more than practical value. As sure
as the fractal concept and the quantifiable fractal dimension
are fundamental descriptions of the aggregate morphology,
so too, we believe, is the prefactor ky. Here we present the
evidence by which we have developed this belief, We have
computer synthesized random aggregates using both the Dif-
fusion Limited Aggregation (DLA) and Diffusion Limited
Cluster Aggregation (DLCA ) methods in a variety of spatial
dimensions. Ensembles of these clusters have been fit to Eq.
[t] to yield D, and k,. We observe empirical correlations
between k, and D; which we are able to describe in two
different ways. The first way is to consider the small N limit
of the ensemble; the second, which we believe is of greater
fundamental significance, is to view k, as related to a pack-
ing fraction in Dy dimensional space. Our approach is empiri-
cal, and although we offer speculations concerning the mean-
ing and implications of the observed correlations, we cannot
at this time offer the fundamental reasons why these correla-
tions work.

. COMPUTATIONAL METHODS

Clusters were created on the computer for spatial dimen-
sions of d = 2, 3, 4, and 5 for both DLA, particle-cluster,
and DL.CA (except d = 5), cluster-cluster, aggregation. In
many cases we also simulated aggregation both off and on
a square lattice and used different algorithms to create an
isotropic aggregation. For the most part the number of mono-
mers per cluster was kept in the range 10 < N < 100 because
our initial motivation was to create clusters similar to soot
clusters which typically lie in this range (4, 5, 9-11). Al-
though this allows the creation of fractal aggregates, our
aggregates did not yield asymptotic (N — «) values for D
especially when d = 4 and 5.

The clusters were generated on an IBM PC 486 personal
computer. The algorithms were written following the de-
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scriptions in the literature (12, 13). All aggregation runs
began with a list of N' monomers. Monomers during lattice
simulations were considered joined when they occupied ad-
jacent square lattice points 2a apart. During off lattice simu-
lations, monomers joined when they were 2a apart. The
sticking probability was 100%.

For DLA, one monomer was placed fixed at the center of
the #-dimensional sphere and the other monomers were then
introduced one by one at the starting radius at a random
angular position. The starting radius was five lattice units
beyond the perimeter of the central cluster. The monomer
was allowed to random walk until it either joined the cluster
at the center or went out of the stopping radius. The stopping
radins was three times the starting radius.

For DLCA, two monomers were initially chosen from the
list of N’. One monomer was fixed at the center, and the
other was introduced on the starting radius as previously.
The monomer then random walked until it joined the mono-
mer at the center or went beyond the stopping radius. If the
two monomers joined, the new cluster was placed back in
the list which, after the first iteration, was N' — 1 long. If
the monomer went out of the stopping radius, the attempt
was aborted, and the process was repeated. Subsequent itera-
tions involve picking two clusters at random from the list
and performing the random walk again. We explored both
stopping this process at some arbitrary point, *‘stop list,”
and then using the clusters so created for analysis with Eq.
f1], and allowing the process to continue until only one
cluster remained, ‘‘forced.”” No significant differences in Dy
and k, where observed between these two methods.

For any given ‘‘type’” of aggregation described by 4
(DLA or DLCA, stop list or forced, on or off lattice), we
made 10 runs in which usually 90 clusters in the range 10
= N =< 100 were created. R, was calculated for each cluster
and N versus R, was fit to Eq. [1]. An example of N versus
R, for one of the many cases is given in Fig. 1.

ITI. RESULTS

For a given aggregation type the different ensembles of
particles yielded different values of k, and D, when fit to
Eq. [1]. These different values of k, and D, are just the
statistical uncertainties or fluctuations from the average, and
they are anticorrelated due to the nature of Eg. [1]. An
example is given in Fig. 2. The source of this anticorrelation
is readily apparent in Eq. [1]. For a given value of N and
R,/a, ko is a function of D,. The behavior in Fig. 2 can
be simply understood and quantified if one uses geometric
averages of N and R,/a for this ensemble which are (N) =
32 and (R,/a} = 6.1. Use of Eq. [1] with these values yields
the differential equation dky = —2.2 dD,for the small region
in k¢ — D space near the average ky = 1.27 and D, = 1.80
of Fig. 2. This quantitatively describes the anticorrelation
seen in Fig. 2.
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FIG. 1. An example of N versus R, for an ensemble of clusters created
by a three-dimensional DLCA simulation. The units of R, are such that the
monomer tadius is a = 3. The solid line is a best fit to Eq. [1} with fit
parameters given in the figure.

The results of the simulations are given in Table 1 where
averages of Dy and k, are given. Also given are average Dy
values from previous work (13-16) for asymptotically
large, N — o, aggregates. Disagreement between our Dy
values and these literature values for 4 = 4 and 5 is due to
the nonasymptotic, finite size nature of our ensembles. De-
spite this, two empirical observations can be made. First,
in general, k, is anticorrelated with D; as one compares
aggregation types similar to, but of different origin than,
the anticorrelation among ensembles within one aggregation
type discussed previcusly. Second, on and off lattice aggre-
gation yields slightly different morphologies as identified by
both Dy and k,. This different morphology as identified by
Dy only has been previously observed (13), and, given the
simple anticorrelation between ko and Dy as seen in Fig. 2,
it is pot surprising that k, differs as well. However, the
difference in k, for on lattice and k, for off lattice is greater
than that which can be calculated from Eq. [1] using the
geometric averages of N and R,/a as described previously
for the ensembles involved. That is, if one Dy value was
forced to be equal to the other, the corresponding &, value
change prescribed by this anticorrelation would not be
enough to cause the two k, values to be equal. Thus k,
depends on lattice type and is not a universal quantity. This
is an indication that k4 is describing something in the mor-
phology of the cluster beyond that describable by D,

IV, THE MEANING OF k,

Figure 3 plots the results in Table 1 as k, versus Dy. An
anticorrelation between k, and I is shown as the type of
aggregation changes. This anticorrelation is weaker than that
observed among ensembles of one aggregation type, shown



FRACTAL AGGREGATE PREFACTOR

™ T T T
o
o
1.6~ & .
o ® Average
o
1.4 4
008°
= o
v
o 0.8
1.2 4 o i
go ©
1 ® °
.0 .
J ° )
T T T o T
1.7 1.8 19 20

FIG. 2. The peefactor k, versus fractal dimension I, for 24 different
ensembles of clusters all created by a three-dimensional DLCA simulation.

in Fig. 2, and has, we believe, a different explanation. It is
interesting that DLA and DLCA almost lie on the same
general trend and in this context do not appear as different
as they are usually described. This trend is our empirical
result. Next we propose two ways of explaining the trend
in ko versus Dy, and with these attempts begin to divine the
meaning of k;.

A. Small N Limit

Fractals are clusters of many monomers but consideration
of plots such as Fig. 1 begs the question, what happens as
N — 17 Here we will argue that Eq. [1] should have the
“‘correct’’ small N limit and attempt to determine what is
meant by “‘correct.’” We are not trying to determine how
Eq. [1] behaves at small N, which would involve corrections
to the scaling of Eq. [1], but rather whether the large N
behavior for all aggregation types can be governed by the
same small N extrapolation. To do this we calculate R, for
clusters of small N and known geometry, use Eq. [1] to
calculate k,, and then compare to the resuits in Fig. 3.

Solve Eq. [1] for kq and then consider N = 1, 2, 3, and
4 in turn, The radius of gyration of a single d-dimensional
sphere of radius « is

R, = (dld + 2)"a. (2]
Thus for N = 1, Egs. [1] and {2] yield
d + 2\°r"?

ko(l1) = ( ) . [3]
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For N = 2, R, of the cluster is related to R, of the single,
d-dimension spheres and the R, of their center points via

;,cluster = Rf:,ccmers + R:.sphnn:‘ [4]
For N = 2 each sphere center is its radius a from the center
of mass of the dimer (the point of contact) thus R} ceners =
a’. Then Eqgs. [1], {2], and [4] yield

d 2 D72
+ )f. i5]

ko(2) = 2(24 2

For N = 3 there are two limiting arrangements, a linear rod
and an equilateral triangle for which similar arguments yield

3d + 6 \%"?
ko(3, rod) = 3| ——m— . 6
o(3, rod) (11d+ 16) [61
3d + 6\°/"?
kqo(3, tri = 7
of angle) 3(7d+ 8) (7]

For N = 4 many configurations are possible so we consider
only a simple, linear rod

d+2 \r"?
ko(4, rod) = 4 —— =) "
o(4, rod) (6d+10)

These small N limits are piotted with the data in Fig. 3.
The N = 1 limit does not describe the data in either magni-
tude or the anticorrelation. The N = 2 Jimit misses in magni-
tude, The N = 3 tiangle (not shown in Fig. 3) yields %,
too big, and the N = 4 rod yields kg too small. The N = 3
rod, however, does an adequate job of correlating the data,

[8]

TABLE 1
Average Values of the Fractal Dimension Dy and Prefactor k,
for the Different Types of Aggregations Simulated in This Work

Aggregation Asymptotic Symmetrized

d method Dy D, ko ko
2  DLCA on lattice 1.42 = 003 1.47 145 1.82
2 DLCA off lattice 1.46 = .04 1.48 1.33 1.67
2 DLA on lattice 1.66 1.18

2 DLA off lattice 1.7 1.66 1.08

3  DLCA on lattice 1.78 = 0.05 1.80 1.27 1.88
3 DLCA off lattice 1.82 = 0.10 1.84 1.10 1.63
3 DLA on lattice 2.22 0.80

3  DLA off lattice 2.50 229 (.68

4  DLCA on lattice 202 + 0.06 213 092

4 DLA on lattice 340 2.78 0.54

5  DLA on lattice 324 0.39

Uncertainties in Dy and &, are 3% and 12%, respectively. 4 is the spatial
dimension. Asymptotic D, values were obtained from (13-16).
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FIG, 3. The prefactor k, versus the fractal dimension Dy for the various aggregation types of Table 1 which are: circle, d = 2 DLCA; diamond,
d = 2 DLA, triangle, d = 3 DLCA,; square, d = 3 DLA; plus, d = 4 DLCA; plus/cross, d = 4 DLA; bar, d = 5 DLA; open symbols, on-lattice; solid

symbols, off-lattice; d

spatial dimension. The labeled lines are calculated from small cluster limits described in the text as monomers,

& = 1 limit, Eq. [3]: dimers, ¥ = 2 limit, Eq. [5]; 3 rod, ¥ = 3 linear rod limit, Eq. [6]; 4 rod, N = 4 linear rod limit, Eq. [8].

especially the DLA data. Thus one might conciude that the
ky of fractal clusters has a value so that Eq. [1] has the
correct N = 3 limit and that limit is a linear arrangement of
three monomers. Perhaps other small & configurations could
yield a comparison to the data as good as the N = 3 rod,
but the uniqueness of this configuration is not important. The
important point is that all the data, including two different
aggregation schemes and four different spatial dimensions,
are related in a manner that suggests that k, and [, are
anticorrelated through the small N limit.

The N = 3, linear arrangement correlation establishes a
useful reference line. The DLA data tend to fall along it,
whereas the DLCA data are slightly above but form a trend
parallel to it. Thus from this purely empirical point of view,
we have a new means of distinguishing DLA and DLCA,
which is that for a given Dy, k, (DLCA) > ko (DLA). This
combined with Eq. [1] implies a larger N in DLCA clusters
than in DLA clusters of the same size, R,/a, and same fractal
dimension Dy. Later we will show that the asymmetry of
DLCA clusters makes kq low, and a correction will be made
to find a symmetrized k, which is larger yet.) From this
perspective, for a given Dy, DLCA clusters are denser! This
is contrary to the usual view of these two classes which
concludes DLCA is the less dense because D, is smaller for
given d. Both views are correct; its a matter of perspective.

B. Comparison to Compact Clusters

We can use ko as defined in Eq. [1] and calculate its
value for systems of spheres packed into clusters of integer

dimension. If R is the radius of the d-dimensional, spheri-
cally symmetric cluster of monomers of radins a, then

N = p(d)(R/a)?, [9]
where p(d) is the sphere packing fraction which is a function
of d and the type of packing. Combining Egs. [1] and [2]

yields
) di2

At this time we have no a priori method to generalize
Eq. {10] to fractal clusters of noninteger dimension Dy, but
some reasonable guesses can be made and compared to the
data. Equation [2] is correct for fractal clusters if 4 is re-
placed by D,. Equation [9] can be generalized to

d+2
d

ko =P(d)( [10]

N = p(d)(Rfa)":. (11]
This accounts for the characteristic fractal behavior N ~
RPr but retains the concept that the monomers are packed
in real space of integer dimension 4. Combining Egs. [1],
[2] with d = Dy, and [11] yields

)fo'l

D, +2
Dy

ko = P(d)( (12]
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The packing fraction depends on lattice type, and three
common types will be considered here:

di2

. .. K3
simple cubic, p(d) = m; [13]
dn\*"? 2
bod t bic, p(d) = | — ——; [14
ody center cubic, p(d) (16) Tl + d/%) [14]
hexagonal close pack, p(d) = n/ \[6_d ,
ford=2o0r3. [15]

In the above I' is the Gamma function. Under these assump-
tions kg can now be calculated. Note that kg is a function of
both the spatial dimension d and the fractal dimension Dy as
well as the type of packing. For any given d and packing,
Eq. [12] yields a ko which increases with Dy. This is not the
trend in the data of Table 1, displayed in Fig. 3, so we will
try something else.

Equation [12] can be modified to work quite well by
generalizing the concept of packing to noninteger dimension.
That is, in an ad hoc manner, replace p{(d) with p(Dy) and
rewrite Eq. [12] as

D,/2
Df+2)f ‘ [16]

ko = p(Df)(
T

For the three lattice types of Eqgs. [13]1-[15], Eq. [16] yields
the empirical anticorrelation between kg, and D, found in the
data. Furthermore, a reasonable comparison to the data can
be obtained if the results in Table 1 are symmetrized.

The need to consider symmetry arises because Eq. [16]
was derived under the assumption of a spherically symmetric
cluster, whereas real clusters, especially DCLA clusters, in-
cluding those formed on the computer, may be anisotropic.
Qualitative consideration of Eq. [1] indicates that for fixed
N, R, would increase with increasing anisotropy (recall that
R, is a root mean square of monomer positions relative to
the center of mass). Thus k, decreases with increasing an-
isotropy. To compare the data to Eq. [16] we must account
for cluster anisotropy.

We assume that the perimeter of fractal cluster can be
described by an ellipsoid. Let R;, i = 1, 2, ..., d, be the
axes of the ellipsoid, and R, ; the principal radii of gyration.
Then one can show

d
R?; = Z R;,i

i=1

{17]

1 d
= 2 RE (18]
d+ 2.

The eccentricities are defined by
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é; = R,‘/Rl = Rg,i/Rg,l- [19]
Note that ¢, = 1. Finally the volume is proportional to the
product of the axes

[20]

The problem is, given &, and the eccentricities e; of a fractal
cluster, what is &, for a symmetric cluster of the same volume
(i.e., same N)? To answer this, use Eqs. [18] and [19] 1o
write

R &
+2E‘i é-

R = [21]

d

Now find R, of the same volume symmetric sphere as

Riopm = f R, [22]
where
d
Ri.=]IR {23}
i=1 ,
=R{]]e [24]
i=1

By Eq. [1], the ratio of (R,/R, )" is equal to the ratio
kosym/ ko, thus using [21], [22], and {24] we find

d
2o &

foz
Kosm = k”[d(n:-zl e,-)”“] '

Given the e, , Eq. [25] can be used to symmetrize k, values
for anisotropic clusters.

Botet and Jullien (17} have measured the eccentricities
of d = 2 and 3 DLCA clusters. Using their values, we
calculate the correction factor in Eq. [25] to be 1.26 and
1.48 for d = 2 and 3, respectively. The kg values are
included in Table 1 and plotted in Fig. 4. Also graphed in
Fig. 4 are k; values caiculated for symmetric clusters with
the three packing fractions, simple cubic (sc), body centered
cubic (bce), and hexagonal close packed (hep) using Eqgs.
[13]-[16].

The comparison shows that the analysis does a nice job
of describing the limited data, An unabashed conclusion is
that DILCA clusters in = 2 and 3 space pack as either
body centered cubic when formed off lattice or hexagonal
closed packed when formed on lattice. Furthermore, the
packing densities are for noninteger dimensions Dy, Such a
conclusion is tempting but needs more work to make firm.

[25]
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FIG. 4. The prefactor k, versus the fractal dimension Dy calculated as
described in the text for three lattice types in a I dimension space. The
hep curve is dashed because it could only be calculated at D, = 1, 2, and
3. Also shown are the symmetrized cluster k, values for DLCA clusters.

Also, it is surprising that it is the off lattice aggregation that
leads to bee packing not the on lattice; this is a surprise for
which we have no explanation.

We have not determined the asymmetries of the DLA
clusters. Off lattice, asymptotic DLA clusters are expected
to be symmetric. Our DLA clusters are not asymptotically
large; hence, a small anisotropy might exist, and this when
corrected for would increase kg slightly. It appears, however,
that this correction would not be large enough to allow Eq.
[i6] to agree with the data for DLA clusters,

IV. CONCLUSIONS

For d = 3, DLCA-simulated aggregates, we obtain Dy
= 1.82 + 0.04 and ky, = 1.19 * 0.1 when averaging our
on and off lattice simulations. This is in excellent agree-
ment with our measurements on soot for which we ob-
tained Dy = 1.74 = 0.04 and k, = 1.23 % 0.07 (7), espe-
cially in light of the anticorrelation between kq and Dy
These values agree with the qualitative conclusions of
Wu and Friedlander (6) but are significantly smaller than
values on the order of ky = 2.0 to 2.4 1eported by Koylu,
Faeth, and coworkers (9-11).

SORENSEN AND ROBERTS

The prefactor &, displays a uniform trend with the fractal
dimension D for clusters created by either DLA or DLCA
processes in a variety of spatial dimensions. The simplest
explanation of this trend is that all types of clusters appear
to have essentially the same small N limit regardless of
aggregation type. This is reasonable since when N is small
(e.g., N = 3), the ways in which the monomers can assemble
is limited and hence is not influenced by aggregation scheme
or spatial dimension.

Evidence that k,, is related to packing of spheres into space
was also presented with modest success. More work needs
to be done here including creation of larger, more asymptotic
clusters and calculation of anisotropies. Also the parameter
R, is imperfect here because it is not only related to the
volume, hence packing fraction, of the cluster but also the
distribution of monomers within the cluster. Future work
will be applied in this direction.

- ACKNOWLEDGMENTS

We have benefited from discussion Dr. C. Oh. This work was supported
by NSF Grant CT59408153.

REFERENCES

. Forrest, $. R., and Witten, T. A,, J. Phys. A 12, L109 (1979).
. *Kinetics of Aggregation and Gelation’” (F. Family and D. P. Landau,
Eds.). North Holland, Amsterdam, 1984.

3. “‘On Growth and Form’’ (N. Ostrowski and H. E. Stanley, Eds.). Nij-
hoff, Boston, 1986.

4. Sorensen, C. M., Cai, J., and Lu, N, Appl. Opt. 31, 6547 (1992).

5. Sorensen, C. M., Cai, J., and Lu, N., Langmuir 9, 2861 {1993).

6. Wu, M. K., and Friedlander, S. K., J. Colloid Interface Sci. 1589, 246
(1993).

7. Cai, I, Lu, N, and Sorensen, C. M., J. Colloid Interface Sci. 171, 470
(1995}

8. Nyeki, 8., and Colbeck, L., J. Aerosol Sci. 285, 5403 (1994).

9. Koylu, U. O., and Faeth, G. M., Comb. Flame 89, 140 (1992).

10. Koylu, U. O., Faeth, G. M., Farias, T. L., and Carvalho, M. G., Comb.
Flame 100, 621 {1995).

11. Koylu, Q. U,, and Faeth, G. M., J. Heat Transfer 116, 152 (1994).

12. Meakin, P., J. Collvid Interface Sci. 102, 491 (1984).

13, Meakin, P., Phys. Ler. A 107, 269 {1985).

14, Jullien, R., Kolb, M., and Botet, R., J. Physique Lett. 45,1.211 (1984).

15. Jullien, R., Contemp. Phys. 28, 477 (1987).

16. Meakin, P., in “‘Random Fluctuations and Patten Growth’ (H. E.
Stanley and N. Ostrowski, Eds.). Kluwer, Dordrecht, 1977,

17. Botet, R., and Jullien, R, J. Phys. A 19, L907 (1986).

[ I



