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Abstract—This paper presents light scattering measurements of the aggregation rate for an aerosol
of fractal aggregates in a rarefied gas. A premixed ethylene/oxygen flame was used to create a hot,
fractal aggregate aerosol of carbonaceous soot. Static light scattering involving absolute scattering,
extinction, and optical structure factor measurements was used to measure the soot clusier mor-
phological parameters, cluster radius of gyration, fractal dimension, monomers per aggregate and
monomet size, all as a function of height above burner. Laser Doppler velocimetry was used to
convert height to time. Above a height of 7 mm, it was established that aggregation was the
dominant growth mechanism. The aggregation cluster growth kinetics are compared to the
Smoluchowski equation prediction using an aggregation kernel that accounts for the fractal nature
of the aggregates. The kinetics of this system ranged from the free molecular to the Epstein regime.
Comparison of experiment to theory shows the theory to be from 15 to 100% too low which may be
compared to an experimental uncertainty of a factor of two due largely to soot particle refractive
index uncertainty. The discrepancy could be due to attractive dispersive forces between aerosol
particles. These discrepancies are small, however, compared to the range of the aggregation kernel.
Hence this work establishes the validity of the theoretical form of the kernel for fractal aggregates in
rarefied gases. © 1997 Elsevier Science Ltd.

INTRODUCTION

Aggregation is the mechanism by which finely divided matter seeks to become whole. The
aggregation mechanism occurs in a wide variety of colloidal and aerosol systems with either
liquid or solid particles. This wide variety leads to a richness of phenomena. As the
suspending fluid rarefies, the aggregation kinetics pass through three different regimes, two
involving two types of diffusional motion and one involving ballistic (straight line) motion
of the particles (Seinfeld, 1986). Convoluted with these regimes are differences in agglomer-
ate morphology. The morphology can be dense, due to coalescence of liquid-like drops to
form larger drops, or nondense, which occurs when solid particles aggregate. In this latter
case it is now well established that the aggregates are describable as fractals (Forrest and
Witten, 1979; Weitz and Oliveria, 1984; Schaefer et al., 1984; Family and Landau, 1984,
Samson et al, 1987, Dobbins and Megaridis, 1987, Zhang et al., 1988). These fractal
aggregates are quantified by their fractal dimension D, less than the spatial dimension, such
that the number of monomers (primary particles) per aggregate scales with the overall
aggregate radius as N ~ R It is valuable to quantify this relationship as (Sorensen et al.,
1992a)

N = ko(Ry/a)? )

where k, is a prefactor, R, is the cluster radius of gyration, and a is the monomer radius. For
aerosols and most colloids Dy =~ 1.8 which is consistent with the concept of Diffusion
Limited Cluster Aggregation (DLCA) developed from computer simulations. Recently it
has been determined that ky = 1.3 + 0.1 for these DIL.CA aggregates in three dimensions
(Cai et al., 1995; Sorensen and Roberts, 1997; Oh and Sorensen, 1997).

Due to the importance of this phenomenon, aggregation has seen considerable previous
work (Mercer, 1976; Bunz, 1990) which has been a mix of the possible kinetics and aggregate
morphology described above. The majority of this work has been in the continuum regime,

937



938 C. Oh and C. M. Sorensen

where the ratio of the suspending fluid molecule mean free path to particle radius, the
Knudsen number, Kn, is small, because of its accessibility, e.g. all colloids are in this regime
as well as room temperature aerosols of large particles. With the advent of the fractal
concept, much work in the physics literature has been concerned with scaling behavior of
the colloidal aggregate growth, i.e. the power law dependencies with time, and has taken
account of the fractal nature of the aggregates in the scaling (Martin and Schaefer, 1984,
Weitz et al., 1984; Olivier and Sorensen, 1990). However, these studies have not made
absolute measurements of the aggregation rate. On the other hand, there have been careful
quantitative studies of the aggregation rate in both liquid drop (nonfractal) and solid
particle (presumably fractal) aerosol systems in both the continuum (Kn = 0) and transition
regimes (Kn ~ 1) (Fuchs and Sutugin, 1965; Wagner and Kerker, 1977, Okuyama et al.,
1984, 1986; Kim and Liu, 1984; Szymanski et al., 1989, Olivier et al,, 1992). These studies
have shown good agreement (10% to a factor of two) between experiment and theory for
these regimes, To our knowledge the only studies of aggregation at large Knudsen numbers
(K.n 3 1) are those invelving soot aerosols in flames (Prado et al., 1981; Purni et al., 1993;
Felderman et al, 1994; Jander et al, 1995). Flames allow this possibility because the
elevated temperature increases the gas molecule mean free path by a factor of ca. six over
room temperature. The previous pioneering efforts have shown qualitative agreement
between theory and experiment for the aggregation rate. Lacking in all these previous
works, however, is one or more of either proper usc of aggregate light scattering principles,
comparison to the complete aggregation kernel involving cross over from free molecular to
Epstein rather than solely the free molecular kernel, or use of the simple Smoluchowski
equation {equation (B10)) rather than the complete equation (equation (2)) with pelydispers-
ity. Building on the past we have attempted to perform a complete experiment for fractal
aggregation in this large Kn regime.

The purpose of this paper is to describe work in which the absolute value of the
aggregation rate for an aerosol near the free molecular regime was measured with light
scattering and full account of the fractal nature of the particles was made in the light
scattering analysis. Moreover, once analyzed, the results are compared to aggregation
theory which also attempts to account for the fractal aggregate nature. The measurements
are obtained from a soot aerosol in a flame, hence the high temperature puts the kinetics at
the boundary between the free molecular and Epstein regimes. The comparison between
theory and experiment is good although considerable uncertainties exist both in the data,
due largely to the uncertainty in the soot particle refractive index, and in the theory due to
uncertainties in the effective radius for cluster mobility and collisional and particle absorp-
tion cross sections. Despite these uncertainities, this work experimentally establishes the
validity of the aggregation kinetics for fractal aggregates in rarefied gases.

Given the broad range of subjects necessary to complete this study and the density of the
material in each subject, a heuristic overview is worthwhile. We start by discussing the
Smoluchowski equation which describes the temporal evolution of the cluster size distribu-
tion. We use self-preserving solutions to this equation to study the evolution of the moments
of the distribution. It is the moments that any measurement measures hence they are key
variables. We then show how the aggregation kernel can be determined from the moment
evolution.

Next we discuss the theoretical form of the aggregation kernel which will be compared to
the experiment. As mentioned above the kernel is rich in its functionality which is depen-
dent upon how the clusters move. This in turn is dependent upon the cluster radius which,
given the irregular cluster outline, is ambiguous. We spend some effort discussing this
ambiguity.

Next we describe our light scattering technique which was developed in our laborat-
ory. By combining structure factor measurements (scattered intensity versus angle,
analogous to Bragg scattering) and absolute scattering and extinction measurements,
complete morphological and number density information can be obtained for the soot
clusters, All the data are obtained via light scattering, thus there is no perturbation to the
soot aerosol.
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Finally, analysis and measurement are combined to yield the experimental aggregation
kernel as a function of cluster size for comparison to the theory.

THEORETICAL BACKGROUND

Irreversible aggregation dynamics is described by the Smoluchowski equation (Drake,
1972)

onv,g 1 J " Ko — w0 (o — u, ) n(u, ) du — n(o, &) j T Kewnwode Q)
ot 2 o ]

In equation (2) n(v, f) is the number density of aggregates of “size” v at time ¢, and K{v, u) is
the aggregation {collision) kernel which describes the rate at which aggregates of size v and
# combine to form new aggregates of size v + u. Size may be measured in terms of cluster
mass, volume, or number of monomers per cluster. An important property of the kernel is that
for most physical situations the kernel is a homogeneous function of its variables, that is

K(av, au) = a* K (v, w). (3)

The homogeneity constant of the kernel is 4, and this variable is important in the kinetics of
growth and the resulting size distribution.

At sufficiently long times, the homogeneity condition (3) allows so-called scaling (van
Dongen and Ernst, 1985) or self-preserving (Friedlander and Wang, 1966; Lai et al., 1972;
Friedlander, 1977) solutions to the Smoluchowski equation (2) of the form

n(o, 1) = Mys; *$(x). (4)
In equation (4) x is the normalized or reduced size
X = ufs, (5)
and s, is one of a class of mean sizes indexed by p and defined by
$p(t) = Mp/M, (6)

where the unnormalized ith moment of the size distribution is given by

M(t) = J‘w v n{y, ) dv. )]

0

Also in equation (4) is the reduced size distribution function ¢(x) given by
P(x) = A4 x* 7 (8)

for large x. The shape of ¢(x) is not a function of time, hence the distribution is “self-
preserving”. The time dependence resides solely in the mean size s,(¢). The large x regime is
all we need to be concerned with in our study because light is scattered predominantly from
the large size part of the cluster distribution. Moreover, the nature of the aggregation kernel
in all three kinetic regimes is such that “bell shaped” distributions result characterized by
exponentially decreasing cluster populations with decreasing size (van Dongen and Ernst,
1985). The parameters A and « in equation (8) are determined by normalization of the size
distribution and the definition of the mean size s, through p. Some detail is given in
Appendix A. Our work involves light scattering, which essentially dictates that we use
p = 2. This results because in the Rayleigh scattering regime, accessible for any particle or
cluster at small enough scattering angle (see below), the scattered intensity goes as
v? (Sorensen, 1997). Hence the mean size is s, = M,/M,, the so-called z-average size. Then,
as shown in Appendix A,

«=2--1 ©
A =a*/T(x). (10

where I' is the Gamma function.
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A colligative measurement such as light scattering measures a moment of the distribu-
tion, M;, not the distribution itself, n(v). Thus we must understand the time evolution of the
moments. This can be done by multiplying the Smoluchowski equation (2} by ' and
integrating over v to obtain

= o0
M) = %-[ J‘ [v+w) — v —u'] K(v, W) n(v, t) n(u, t} do du (11)
o Jo

where the overdot means time derivative. From equation (I1) M,(t) =0, as expected
physically since M, represents the total number of primary particles in the system, which
does not change due to aggregation (i.e. mass conservation). Again, our light scattering
experiment will be concerned with the second moment, so we consider it here. (Appendix
B also discusses the behavior of the zeroth moment which represents the number of
aggregates and is an important case as well.} Also in Appendix B we show how equation (11)
is modified under the assumption of kernel homogeneity and size distribution scaling. The
results for i =2 are

My(ty=s%1, (122)

where

I = j " f "~ v K(x, ) n(x) nfy) dx dy. (120)
Q 0

Since our goal is to determine the aggregation kernel K from a measurement of M, (z), we
follow Appendix B and rewrite equation (12a) as -

K(s2,52) = M1 ? My(2)/ P, (13a)
where
P, =1,/K(1,1). (13b)

In fact, with light scattering, we do not measure M, but rather a quantity we shall call the
cluster number density n, = M /M,. From equation (13a) one finds

K(sz,s2)=P51d%(;12-). (13¢)
Equations (13) show that by measuring the cluster number density optically as a function of
time the aggregation kernel for a mean size s, can be determined. This analysis can be
accomnplished graphically by plotting inverse n; versus time, the slope yielding P; K(s;, 52).
This requires calculation of the polydispersity factor P, which in turn requires knowledge of
the functional form of the kernel K(x, y). Thus the situation is somewhat circular but not
completely s0 because the all important magnitude of the kernel is not involved in P;. [It is
in I, and K(l, 1} but these cancel in equation (13b).] In Appendix B we describe how we
calculate P, and give numerical values. Also in Appendix B we show how this analysis is
related to simpler and more often used but not as accurate analyses that asseme a monodis-
perse distribution.

THE AGGREGATION KERNEL

The aggregation kernel describes the rate at which two aggregates combine to form
a larger aggregate. Its properties are determined by the properties of the embedding fluid,
the sizes and morphology of the clusters, and the manner in which the clusters move in the
fluid. In what follows we describe the aggregation kernel first qualitatively, to gain physical
insight, and then quantitatively, necessary for our data analysis. The qualitative nature of
the aggregation kernel is illustrated in Fig. 1. The cluster motion depends on cluster
morphology and the ratio of the mean free path (mfp) of the fluid molecules to the cluster
radius, the Knudsen number Kn = mfp/R, and, in more rarefied fluids, the ratio of the
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Fig. 1. Schematic diagram of the aggregation kernel for same size clusters as a function of size. Solid
line is the complete kernel, long dashed line is the free molecular limit, dot dashed line is the Epstein
limit, and short dashed line is the continuum limit.

cluster mean free path, or persistence length, to the cluster radius, the so-called diffusion
Knudsen number Knp. These two length scale comparisons divide the aggregation kernel
functional dependence on size into three major regimes: diffusional motion with
a Stokes—Einstein diffusion coefficient, diffusional motion with an Epstein diffusion coeffic-
ient, and ballistic motion. In dense fluids and/or for large clusters so that Knp ~ 0, the first
two regimes are governed by diffusion of the clusters. Solution of the diffusion equation for
one cluster of radius R diffusing relative to another yields an aggregation kernel with
a general behavior of K ~ DR, where D is the cluster diffusion coefficient. These two
diffusional regimes are differentiated by the Knudsen number Kn since for Kn ~ (),
D ~R™! via the Stokes-FEinstein equation, whereas for Kn>» 1, D ~ R™? via the
Epstein equation. The crossover between these regimes, the transition regime, is
described by the Cunningham correction to the Stokes—Einstein equation. In highly
rarefied fluids (gases) such that Knp > 1 the clusters travel in straight lines between
collisions (ballistic aggregation) hence diffusional motion is lost. In this so-called free
molecular regime the general behavior of the kernel is given by K ~ ¢4 where ¢ is the
average relative speed of the clusters, determined by equipartition, and A is the cluster
collisional cross section. These three regimes impart aggregation phenomena with a wealth
of interesting detail.

We consider a cluster of monomer particles, thus the number of monomers per cluster, N,
is a proper measure of size. For aggregates that coalesce to dense spherical particles, e.g.
liquid droplets, the relation N ~ R? can be used to find the kernel’s functional dependency
on size N for the three regimes. These dependencies are: K.~ N? Ky~ N"1/3
and K, ~ N'/¢ for the continuum, Epstein (also called the transition regime), and free
molecular regimes, respectively. For fractal aggregates, however, the problem is not as
straightforward because, although the simple relation N ~ R® holds, both the diffusion
coefficients and the nature of the collisional radius or cross sectional area must be
generalized from their well known spherical particle values to forms that apply to fractal
aggregates. These generalizations have been studied previously and applied to computer
simulations of aggregation (Mulholland et al,, 1988; Rogak and Flagan, 1992; Wu and
Friedlander, 1993). We describe the current state of knowledge and our opinion of these
issues below.
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In the continuum regime diffusion is governed by the Stokes—FEinstein equation

ke T

SE = m (14)

where kg is Boltzmann’s constant, T the temperature, # the fluid shear viscosity and R the
spherical particle radius. For aggrepates this equation can be simply generalized by
replacing R with R, the mobility radius of the aggregate. The most direct experimental test
of this was given by Wiltzius (1987) who studied colloidal gold fractal aggregates in water
over a size range of 60-800 nm. These aggrepates had a fractal dimension of D; = 2.1. He
found the Stokes—FEinstein equation to hold. A reanalysis of his data to account for the
effects of cluster polydispersity on this analysis (Chen et al., 1987; Pusey et al., 1987) vielded
a mobility radius of

R, =¢Ry (15)

with & = 0.97. In their review of the Wiltzius result, other less direct data, and computer
simulations (Chen, et al, 1984, 1988; Meakin et al., 1985), Rogak and Flagan (1992)
concluded that ¢ = 0.77 for Dy = 1.8,

When Kn > 0, the Cunningham correction formula can be used to transform the
Stokes—Einstein equation into the Epstein equation, equation (18), as Kn increases (Sein-
feld, 1986). Thus

D = D C(Kn), (16)

C(Kn) = 1 + 1.257 Kn + 0.4 exp( — 1.1/Kn), , (17)
3 kB Tm 12

£ 8pR?S ( 2n ) ‘ 18

In equation (18) p is the fluid mass density, m the fluid molecular mass, and § = (1 + na/%)
where 0 €a <1 is the accommodation coefficient. We shall use o = 0.91 since then
equations {16) and (17) yield equation (18) exactly in the Kn — oo limit. As with the
Stokes—Einstein equation, the Epstein equation is for spherical particles of radius R. For
clusters it is reasonable to once again replace R with a mobility radius R, and ask in what
manner R, depends on the cluster morphology. In previous work from this laboratory (Cai
and Sorensen, 1994) soot fractal aggregates with Dy = 1.8 were studied with both static light
scattering, which measures R, a, and N, and dynamic light scattering, which measures D, to
determined R, for the Epstein equation. We found

R, = ta N* (19)

with g = 0.99 + 0.08 and x = 0.43 + 0.4. This result was interpreted as physically due to the
effective cluster cross section seen by a gas molecule impinging on the cluster, ie., a “projec-
ted” cross section. It is in good agreement with projected cross sections of Meakin et al,
{1989) who examined computer simulated clusters and is also in good accord with the
estimate made by Rogak and Flagan (1992) for R, (their Fig. 3). Note, however, the
dependency of equation (19) on N is different than the radius of gyration which is
R, = 116 aN°** for Dy = 1.8. Cai and Sorensen (1994) found that the ratio R,,/R, varied
from 1.1 to 0.7 as the clusters increased from 3 to 30 monomers per cluster. All these results
imply that for small clusters R, = R, is a reasonable approximation, but a more exact
treatment would require the use of equation (19) in equation (18).

Next there is the problem of what to use for the effective absorbing sphere radius R,, the
boundary to which the clusters diffuse during aggregation. Again, the answer is obvious for
spherical, compact clusters, since R,y, is that cluster’s radius. For fractal clusters others have
assumed this absorption radius to be R,, i.e., Ry, = R,. This, however, is certainly wrong
for spheres since then R, = J3_/5 R. Rogak and Flagan (1992) argued that the absorption
radius is bounded by the mobility radius at the lower limit and the outer, or perimeter,
radius at the upper limit. We regard this latter radius as poorly defined due to the
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nonspherical symmetry of the cluster and its indefinite cutline. They showed that for
D = 1.8 comparison to simulated clusters of Meakin et al. (1989) was best at the lower limit,
mobility radius Ry, although at most 30% larger. Recall R, ~ 0.77 to 0.97 R, in the
continuum regime and the Cai and Sorensen (1994) experiment for which R, ~ 0.7 to 1.1
R, for clusters of size 30 > N > 3 in the Epstein regime. Hence a reasenable and simple
conclusion is R, = R, for fractal aggregates.

Transition into the free molecular regime means the cluster move ballistically rather than
diffusionally and the generic behavior of the kernel is K ~ cA. Equipartition will stifl hold
for fractal clusters as it does for dense spheres so the kinetic theory result for the speed term
should still hold. Thus

+
mﬂ m“

Kiv,u) = ( (20)

SnkgT  8nkg T)m A

The mass is given by m = Np,4na®/3 where p, is the monomer mass density.
As above, the problem of how to generalize the spherical particle resuit to fractal

aggregates leads to uncertainty for the form of the collision cross section A. The simplest

generalization, used previously by others (Mulholland et al,, 1988), is that

Auu =7 (Rg.v + Rg,u)z’ (21)

i.e. the spherical dense cluster radius is replaced by the fractal cluster radius of gyration, R,.
‘We have already noted above that this approximation has the wrong spherical particle limit

since R, = \/éﬁ R, however, a lot changes as D; evolves from 3 to 1.8. Given our ignorance
and the simplicity of equation (21) we have no recourse other than to use equation (21) for
fractal aggregates.

It has been argued (Mulholland et al., 1988) that equation (21) is satisfactory when Dy = 2
because then the clusters are projectionally dense, i.e. a small particle on a straight line path
toward the clusters could not pass through it. If D < 2, it is proposed that

Aw=7(Ry, + Ry ™. (22)

This form accounts for the nondense nature of the two-dimensional projection of a given
cluster that another cluster would see as it approaches during an impending collision. It also
saves the kernel from a nonphysical dependency on size when one cluster is vastly greater
than the other. There are disadvantages to using equation (22) as well. It causes a discon-
tinuity in the dependency of the polydispersity exponent A in the scaling equation (equation
(8)) for the size distribution at D; = 2. Furthermore, the arguments regarding projection
density are based on asympiotically large clusters. The simulations of Meakin et al.
(1989} have shown that finite sized clusters (V¥ £2500) with D; ~ 1.8 are projectionally
dense (i.e. monomer—-monomer screening occurs). The Cai and Sorensen {1994) work on
diffusion of soot clusters showed that whereas Dy = 1.8 the projectional area which deter-
mined the mobility radius was dense and had an effective fractal dimension of
(0.43)7 ! = 2.3. Thus we believe equation (21) is more correct than equation (22) and shall
use it in our analysis.

In summary, consideration of cluster mobility and size involved in all three regimes of
aggregation shows that the radius of gyration is to a factor of unity an accurate measure for
both mobility and size, and, although imperfect, it is the best measure available so far. Thus
we shall use R, in place of the spherical particle radius R in the equations for the
aggregation kernel.

We are now ready to write the complete aggregation kernel and its limits. The complete
form is (Seinfeld, 1986)

K(v, u) = 47D, R, B. (23)

In (23) D,,= D, + D, where D, is the diffusion coefficient for clusters of size v, and
R,,= R, + R, where R, is the absorbing radius for clusters of size v. The diffusion
coefficient is given most generally by equation (16) with limits at Kn = 0 of Stokes—Einstein,
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equation (14), and at Kn » 1 of Epstein, equation (18). These are referred to as the
continuum and transition regimes, respectively. Recall from the argument immediately
above that all radii will be the cluster radius of gyration R,.

Also in equation (23) is the factor B which transforms the diffusive aggregation to ballistic
aggregation. Two forms, one due to Fuchs (1964) the other Dahneke (1983), are available for
B and they agree with each other to within 4%. We choose the Dahneke form due to its
simplicity:

1+ Kng
= . 24
ﬁ 1+ 2KI]D(]. + KHD) ( )
The diffusive Knudsen number is
2D
Knp = - 2
nD CUI.( Rvu { 5)
where c,, is the mean relative speed between clusters of size v and u given by
1/2
o = (M) (i + mi 29
™

For small Knp, =1 and the aggregation is diffusive K ~ DR; however, for large Kny,,
B=(2Knp)™ ! =C,.R./4D,, and this limit replaces diffusive motion with straight line,
ballistic motion so that K ~ cRZ, Table 1 summarizes the aggregation kernel and its three
regimes.

Table 1. The aggregation kernel

General form
Ky, u)y=4n D, R,.f {23)
Dp=D,+ D,
Ru=R,+ R,
= o ClKa) (16
C(Kn} =1+ 1257 Kn + 04 exp( — 1.1/Kn) (17
Kn = mifp/R
1+ Kn,
b= K:D(l e 24)
Knp = 2D, /c Ry (25}
Cow= Bl T/m)"* (7t +mo 1) (26)
Limits
1. Continuum, Kn =0, Knp =0 /Pl

Ky, u)= (stT/;ﬁ {Ry'+ Ry (R, + R}
If fractal clusters K(v, w) = (2ksT/3) (0™ 10 4w~ 10} (17D 4 4 2iln)
2. Transition, Kn » 1, Knp =0

n (kyTm
K(v,u) = —
(v 1) 2p5( 2n

1/2
) (R, + R, *)R,+ R,).
If fractal clusters
n
K1) = —
(v, 1) 298 (
3, Free molecular, Kn » 1, Knp » 1

Ko, w) = (8nkaT )" (m, " + mJ*)*? (R, + R.)?

kBTm
2n

12
) a~ lko— 1/De (U—L’Df + u—lmf)[v—un, + ullDr)

1f fractal clusters
= {6kgT/p)/2 a¥/2k 520 (5= 4 u~1)2 (u3/Dr L g UDNT |
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LIGHT SCATTERING

Our light scattering measurements and analysis take full account of the fractal nature of
the soot clusters. An optical structure factor technique (Gangopadhyay et al., 1991), which
yields ctuster radius of gyration and fractal dimension, and the classic scattering/extinction
method (D’Alessio et al., 1975; D'Alessio, 1981), which yields a volume equivalent sphere
and cluster number density, when combined also yields the average number of monomers
per cluster and the monomer size (Sorensen et al., 1992a). This method has been firmly
established by comparison to electron microscope analysis of soot thermophoretically
sampled from a flame (Cai et al., 1993).

In the limit of small monomers compared to the wavelength of light, e.g. monomers that
are Rayleigh scatterers, the relation between monomer and cluster scattering and absorp-
tion cross sections is quite simple (Berry and Percival, 1986; Sorensen, 1997). The differential
scattering cross section, o§(6), of the cluster is

05ea(8) = N? 023" S(gR,) 27
and the cluster absorption cross section is
o = Nohm . (28)

In the above N is the number of monomers per cluster, the superscripis ¢ and mon refer to
cluster and monomer, respectively, # is the scattering angle, ¢ = 4nA~'sin6/2 is the
scattering wave vector, and S(gR,) is the static structure factor which obeys

S{gRy) =1 for gR; €1, {(292)
S(gRy) ~ 1 —¢g*R}/3 for gR, <1, (29b)
S(gR,) ~q™™ for gR, > 1. {(29¢)

The exact form of the structure factor is dependent on the manner in which the density
correlation function of the cluster cuts off at its perimeter. We have found (Sorensen et al.,
1992b; Cai et al., 1995) that this is well approximated by a Gaussian which leads to
a structure factor given by

S(x) = e 1F1(3/2 — D¢/2, 3/2; x*/Dy) (30)

where | F, is the confluent hypergeometric series. For the monomeric Rayleigh scatterers the
cross sections are (Kerker, 1969)

omet = k*a®F(m), (3L
o7t = dnka’E(m) (32)

where F(m) = [(m* — 1)/{(m” + 2)| and E(m)= — Imag{(m® — 1)/(m® + 2)} with m the
complex refractive index of the particles. Also k = 2r/4 and a is the monomer radius. Proper
use of equations (27)—32) allows for a complete characterization of the soot cluster
morphology as described below.

The cluster radius of gyration can be obtained from the structure factor which in the
Guinier regime, where gR2 < 1, obeys equation (29b). A graph of ™! vs g2 for the data in
this regime yields linearity with a slope of R2/3 (Gangopadhyay et al., 1991). The soot
aerosol is polydisperse hence any measurement involves a measurement of size distribution
moments. The radius of gyration is measured in the small angle regime where the cluster
scattering goes as N2, i.e. the Rayleigh regime of the cluster. This acts as a weighting factor
in calculating the average of R? which by equation (1) equals a®ky 2™ N3/®, Thus the
R, measurement involves the 2 4+ 2/D; moment normalized by the second moment as

2 g0 Moo (33)
2

2
Rg,meas =4a
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Scattering/extinction measurements are best performed in the small angle regime such
that gR; < 1 so that S(gR,) = 1. Then the optical power P, scattered from a beam of
incident intensity I, measured by the detector is obtained from equations (27), (29) and (31)
to be

P, = IoconN?k*aSF(m) (monodisperse) (34a)
= IocoMk*a®F(m) (polydisperse) (34b)

where ¢, is a calibration constant involving the solid angle of detection and the efficiency of
the detector. Its value is determined by scattering from gases of known Rayleigh Ratio. Also
in equation (34} is n the cluster number density, a moment ratio yet to be defined.

The extinction measurement is performed by comparing the incident and transmitted
light after it passes through a length ¢ of the flame

IT=IQekr{- (35)

The turbidity 7 is related to both the absorption and total scattering cross section and the
scot cluster number density » by '

T= n(a:bs + U:cz)- (36)

Usually the approximation 6,,, > 6, 1S made, but we will forego this since we have
found this makes as much as a 30% error for our largest clusters. To calculate the total
scattering cross section o, we use an integration over all solid angle

a:ca = J.o-:ca (8) dQ. (37)

To perform this integration analytically we use the so-called Fisher—Burford form for the
structure factor, S(x) = (1 + 2x%/3D,)"P/2, This makes the integration casy to perform
analytically. This form results from a fractal cluster with a density correlation function with
an exponential cutoff. We have shown such a function to be inaccurate for angular
scattering studies, but this inaccuracy does not significantly propagaie into the total
scattering calculation. For incident light polarized perpendicular to the scattering plane
which embeds # equation (37) yields

g 4§?R 2\~ D2
o-gca = _;E (l + 3ng) (383)

= 4ng. (38b)

A combination of the scattering and extinction measurements can yield the cluster
number density and a volume equivalent sphere radius. The number density so measured
nis in fact equal to a ratio of first and second moments of the distribution because scattering
goes as N*? and absorption as N (equations (27) and (28), respectively). By the logic in
Appendix B, equation (B7), we shall hence forth call this number density n, = M,/s,. From
equations (34b), (36) and (38) one finds

Mi ( k )2 F (z — 4ngP,/14co)

"EM, \an) B2 Plyce

(39)

and

M, 4nE P /Isc
RI=—g322 0= _ -s/70%0 40
sE =4 M, k®Ft—d4ngP,/lxco “0)
We call the volume equivalent sphere radius Rgg, the scattering/extinction radius. Measure-
ment of P,, Iy, ¢o and t with knowledge of the soot refractive index to calculate E and
F allows n and Rgg to be determined.
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Rgg contains the important mean size s, = M,;/M, . If the monomer radius a is known, the
mean size can be extracted directly from Rgg. The monomer radius can be determined by
either collecting the soot from the flame and inspecting it with electron microscopy or via in
situ optical measurements. Although there is always concern about perturbing the flame, we
have shown these two measurements to be consistent {Cai et al, 1993). The optical
technique that we have used to determine a, hence mean size s,, also yields the fractal
dimension. This is the method we use here.

Our analysis (Sorensen et al, 1992a) is to view equations (1) and (40) as two equations
with two unknowns, the monomer radius a and the mean size N =s5;,=
M,/M;. Rsg and R, are measured with light scattering. However, equation (33) shows that
the measured R, n..s is not equal to the R, defined in equation (1} because light scattering
weights the cluster size distribution in a particular manner. Thus to use the two equations
two unknowns concept the moments involved in Ry jeass M4 2;5/M 3, must be related to
the mean size.

To achieve this conversion to mean size the general expression for the ith moment given
in Appendix A is used. To calculate the moments we assume the well established scaling
distribution. In the past (Sorensen et al., 1992a) we have stressed that the usuvally used log
normal distribution would fail here. The reason for this is that the log normal distribution is
an approximation to the exact scaling distributions, and it begins to give grossly erroneous
results for moments higher than the second. R, involves M, , 5;p, ~ M, hence scaling must
be used. Needed next is the kernel homogeneity which determines the distribution width,
A in equation (8). Here a self-consistent argument is made. Our final results are in a regime
for which the kernel is not a strong function of size hence A ~ Q, so this value will be used to
calculate the moments. This calculation yields .

M2+2Df - r(3 + 2/Df) 2D,

M,  21F%D S5 {41)

Now equation (41) substituted into equations (33) and (40) represent two equations and
two unknowns with solutions

k- 33-B) r(3+2/Df) 3D:/2(3—Dy) Rg 3D,/(3-Dy)
82 Y 21+2/D; b

R (42)
91+ 2/D; D23 =D /3 \1UGB-D)
= LA3-D) A3E .
4="o [m ¥ 2/1)0] (R;" (43)

Note that if a is constant, equation (43) implies that Rgg oc R ..., and this can

be used to determine D;. Below (Fig. 6) we shall see that the experimentally
determined a is constant over a region large enough to allow for an accurate measurement
of D;.

EXPERIMENTAL METHODS

The flame and light scattering techniques were similar to those used previously in our
laboratory (Sorensen et al., 1992a,b; Cat et al. 1993). The soot aerosol was created by
a premixed ethylene and oxygen flame. This flame was supported on a McKenna Products
burner with a 6 cm diameter porous frit. This frit was surrounded by an annular sheath
0.5 cm wide through which nitrogen flowed. A 15 cm diameter steel stagnation plate was
placed 3.0 cm above the burner surface to stabilize the flame. The C/O ratio for the mixture
was 0.77, and the cold gas flow velocity was 4.7 cms™!. This arrangement yields a quasi-
one-dimensional flame with the only major variable being the height above burner.
Temperature measurements were made with an optical pyrometer calibrated at our laser
wavelength of 488 nm. The emissivity of the flame was the absorptivity of the flame as
measured by laser extinction.
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Light scattering used an argon ion laser with A = 488 nm as a light source. Scattered light
was measured at a variety of angles between 10 and 110° to yield the static structure factor.
A Guinier analysis yields cluster radius of gyration via equation (29b). Absolute scattering
measurements were performed at angles such that gR, < 1, typically = 20°; so that the
scattering was in the Rayleigh regime, equations (27) and (29a). Calibration was made by
scattering from gaseous N,, O,, CH, and C,H, whose Rayleigh Ratios are known. Laser
extinction was measured by comparing incident and transmitted intensites for the flame.
The optical path in the flame was measured as a function of height above burner.

Laser Doppler velocimetry {LDV) was used to determine the residence time of the soot
clusters in the flame. LDV measures the soot cluster velocity as a function of height above
burner. This measurement can be integrated over height to yield the time. In our LDV
measurement the A = 488 nm beam was split into two equal intensity parallel beams with
a mirror and beam-splitter arrangement. These two beams passed through a lens which
focussed and crossed the beams at a half angle of y = 3.7°. This caused a sinusoidal fringe
pattern in a Gaussian envelope (the laser was in the TEMOO mode). The scattered intensity
from this fringe pattern in the flame was analyzed with an ALV 5000 correlator. The
intensity autocorrelation function of the scattered light was fit to

C(t) ~ cos(wt) e~ % (44)
where d is a fit parameter irrelevant to the analysis. The speed is given by
wl
"~ 4msiny’ (45)

Lastly the time at height h relative to zero time at an arbitrary by is given by
hodh
t=| ——. 46
J‘ho V(h) ( )

DATA ANALYSIS AND RESULTS

Figure 2 shows the measured radius of gyration, Ry n..s, determined from the Guinier
regime of the optical structure factor equation (29b) as a function of the height above burner
k. The flame front was determined to be at h = 2.0 + 0.5 mm by visual inspection which
agrees with the height where R, extrapolates to zero, which was 3.0 mm. One can see over
an order of magnitude growth from essentially monomeric particles to large clusters.

Figure 2 also shows the scattering extinction radius R determined using equation (40) as
a function of h. Recall this is the volume equivalent radius. We include both “uncorrected,”
i.e. under the assumption that scattering does not contribute to extinction, equation (40)
with g = 0, and “corrected,” i.e. the correct fact that extinction is due to both scattering and
absorption, equation (40) with g given by equation (38), results. One can see that significant
error can result for large clusters if scattering is not included.

Figure 3 gives the cluster number density n, = M3/M, determined using equation (39) as
a function of h both uncorrected and corrected for scattering effects in extinction. Again,
significant error would occur if scattering effects were ignored. For both Rgg and n, the soot
refractive index was assumed to be the Dalzell and Sarofim (1969} value of m = 1.57-0.56i.
Later in our analysis of the aggregation kernel a range of refractive indices will be
considered.

Figure 4 plots R versus R, which on a log-log plot should have a stope of D; according
to equation (43). As will be seen below, the monomer radius a is changing for the first three
poiats. Ignoring these, the relation is quite linear and yields Dy = 1.89 + 0.1, in reasonable
agreement with previous work and that expected, D; = 1.8, for DLCA clusters.

Figures 5 and 6 show the number of monomers per aggregate N == s, = M,/M, and
monomer radius a versus A both uncorrected and corrected for scattering effects in
extinction. These are obtained from the analysis that yields equations (42) and (43), which
include the effects of scattering on extinction. These plots are for mean values accounting for
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the effects of polydispersity on the light scattering measurement. The size distribution
assumed is scaling with 4 = 0 in equation (8) which will be justified in our analysis of the
aggregation kernel below. Figure 5 shows that the monomer grows at low heights, but this
growth quickly levels off by k ~ 7 to 8 mm. The monomer size is in accord with that usually
found (Dobbins and Megaridis, 1987; Koylu and Faeth, 1992; Cai et al., 1993). The quickly
saturated growth is reasonable given the chemical surface growth of soot early in the flame.
The independence of monomer size above h ~ 7 to 8 mm implies surface growth of soot is
no longer significant at larger & hence aggregation is the main growth mechanism. This is
what we want for our study.
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To obtain the aggregation kernel the inverse cluster number density n; is plotted versus
time in Fig. 7. In accordance with equation (13c) the slope yields the product of the
polydispersity factor and the kernel. The value of the polydispersity factor P, is taken from
the Table B2 in Appendix B as an average of the Epstein and free molecular values, the
range over which the data lie, and then the kernel is extracted from the slope. Also the mean
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size s, = N of Fig. 6 is determined as a function of time by converting h to t. Then with both
the kernel and the mean size as functions of time, they can be matched to yield the kernel as

a function of mean size. This is our long sought result, and it is given in Fig. 8.

Our results are strongly influenced by the soot refractive index value used in the light
scattering analysis. Values available in the literature vary widely, and this variation is
independent of fuel type (Colbeck et al., 1989; Vaglieco et al,, 1990; Koylu and Faeth,
1996). The range of possible refractive indices yields a range of experimental aggregation
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(solid line}. The Knudsen numbers for the experimental points range from 25 to 1.7

coefficients derived from our light scattering analysis. Over this broad range the Dal-
zeli-Sarofim value of m = 1.57-0.56i yields the largest aggregation coefficient values. On
the other hand the refractive index of Vaglieco et al. (1990) m = 1.9-0.55i yields the lowest
aggregation coefficient values, a factor of two smaller than that derived from the Dal-
zell-Sarofim value. Thus this spread in uncertainty of the experimental K(s;, s;) due to the
uncertainty in soot refractive index is about a factor of two.

To compare the experimental results to theory we calculate the aggregation kernel
according to the summary in Table 1. We calculate the kernel for equal sized clusters
K(s,, s;). The equations require R and this, as described above, is equal to R;; hence via
equation (1), R, = a kg P53 . We use ko = 1.3 and the experimental values for a, s, and
D; = 1.89. Temperature is that measured by pyrometry shown in Fig. 9. The mean free path
of the gas molecules was taken to be 410 nm and the viscosity of the gas 610 pP. These are
values for air at 1700 K, roughly the average flame temperature. These values are not
critical in our analysis since, as seen in Fig. 8, the kinetics are far from the continuum and
Epstein regime where these values play a role. The cluster masses were determined from
a carbon density of p, = 1.89 gcm 3, the monomer radius and the number of monomers
per cluster s, as described below equation (20). All this detail feeds into equation (22) to
allow K(s,, s») to be calculated and this calculation is shown in Fig. 8.

Comparison of theory and experiment shows the theory to be approximately a factor 1.15
to 2 too low, Changes in either theory or experiment due to uncertainties in the host of
variables other than the refractive index lead to changes as large as 40%. Thus by far the
major uncertainty is due to soot refractive index.

The data fall near the top of the “hump” in the curve of K{s,, s;) versus s, as the free
molecular regime transforms into the Epstein regime. Using the cluster radius of gyration
the data lie in the Knudsen number range of 25 to 1.7. The data have very little size
dependence consistent with theory in this crossover regime, Thus the A = 0 approximation
used above is justified. The data for small s, suffer somewhat from the fact that the fractal
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description must breakdown as s, — 1. At large size the data appear to be following the
maximum in the theoretical curve. Certainly, the uncertainties induced by our much
discussed concerns involving the proper R values for fractal aggregates above are not large
enough to rectify the theory—experiment disparity nor are they large compared to the
refractive index uncertainty. In light of the uncertainties and the broad range of the possible
kernel values, the comparison in Fig. 8 establishes the validity of the theory for fractal
aggregates in rarefied gases. The overall deviation could be ascribed to dispersion forces
(Marlow, 1980a,b, 1981) that cause cluster—cluster attraction hence a larger aggregation
kernel than that predicted by equation (23). The magnitude of a dispersion force effect is
similar to the discrepancy in Fig. 8, but is difficult to quantify.

CONCLUSIONS

We find the aggregation kernel as described by the equations in Table 1 to yield a good
description of the aggregation rate for a fractal aggregate soot aerosol in the crossover
regime from the free molecular to Epstein regimes. The measurements were made in situ
with static light scattering that took proper account of the fractal nature of the aggregate.
The targest uncertainty was due to the poorly known value of the soot refractive index
which caused a factor of two variation in the experimental aggregation kernel. The
theoretical curve lies at the lower limit of this spread. The enhanced aggregation rate over
theory could possibly be due to attractive dispersive forces between clusters.
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APPENDIX A
The large size limit of the scaling distribution is
n(p, t) = M5,  ¢(x), {Al)
with normahized size
X =v/sy, (A2
mean size
5,0) = My/Mo s, (A3)
and moments
M) = J.: v'a(, £) dv. {Ad)

The reduced size distribution or scaling function is
d(x) = Axte (AS)

where 1 is the kernel homogeneity (Class II kernels) and 4 and « are constants determined below.
Substitute equations (A1) and (A2) into equation (A4) to find

M= Msi'm (A6)

where m is the ith moment of the scaling function
m; = Jx‘qﬁ(x] dx. (AT

Subsitute equation (A5) into equation (A7) to find
m=Ag" T+ 1—14) (A8)

where I'(x) is the Gamma function.

The choice of the mean size s, is arbitrary and hence can be made in accord with experimental convenience.
Ouce a value of p is chosen for s, the value of a in equation {AS5) is determined as follows. Substitute equation (A6}
into equation (A3) to find

m,=m,_ (Ag)
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when the mean size is defined as s,. Use equation {A8) in equation (A9) to find
a=p-—A. (A10)

The constant 4 is found from the normalization condition for the size distribution to the total mass (or volume
or number of monomers) M,. For i = 1, equation (A6) yields

m = 1. (Al1)
From this and equation (A8) one obtains
A=a"4T(2 - A). (A12)

Next we find a relationship between the various mean sizes. Consider the ratio s;, ; /s;. From equations (A3), (A6)
and (A7) this equals m; . m;_; m{ %, Then equation {(A8) yields (i + 1 — A)/i — 1) which leads to

n—4
Sy = 5y m (A13)

In summary, the scaling distribution is given by equations (A1), (A2) and (AS5). The constant o and A4 in equation
{A5) are determined by the choice of which mean size to use in equation (A1), i.e. what value of p, and normalization
to the total mass, and are given by equations {A10) and (A12), respectively. We conclude with two simple cases,
both of which have 1 = 0.

Ifp=1,

Ifp=2,

APPENDIX B
The ith moment of the cluster size distribution evolving in accord with the Smoluchowski equation has a time
derivative given by
. 1= (= .
Mt = EJ‘ .[ [(r + u) —v' — '] K(v,u) nly, ) n(u, ) do du. (B1)
o Jo
Now substituting the scaling form for the size distributions with x = vfs and y = u/s and by taking advantage of
the homogeneity of the kernel we obtain
My =54 ML, (B2)
where we define
1= [= C
L =5J f [x + ¥ — X' — T K(x, ) 60) $0) dx dy ®3)
0 a

For reasons described below it is useful to modify equation (B2) by multiplying it by s™* K (s, s)yK(!, 1) which
equals unity to obtain (for the moment we leave the mean size arbitrary with no subscript p)

Mit) = s 2 M2 P, K(s,5) (B4)
where
P =I/K(1, 1) (B5)

Comparison of equation (B3) with equation {B5) shows that the material dependent parameters in the aggregation
kernel cancel in equation (B5) s¢ that P, is dependent only on the functional form of K(x, y}. Now consider two
special cases.

Case i = 0: When i = 0, equation (B4) becomes

Mot} = sT*MIP,K(s, ). (B6}

Now recognize that the average number of clusters is the total number of monomers (or total mass or
total volume) divided by the mean cluster size (in terms of monomers, mass or volume). Since there are
an infinite number of ways to define the average size, s, = M,/M,_;, there are an infinite number of cluster
number densities

n,=M,/s,. (BT)
If we pick p = 1 to define the mean size, s, = M /M, then the cluster number density is simply

n = Mo. (B%)
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Then equation (B6} can be written as
i (8) = nfPoK(sy,s,). (B9

Note that Py < ¢ which ensures the monotonic decrease of n, (t) through aggregation. The value of equation (B9)
is that it has the same form as the simple approximation to the Smoluchowski equation made under the
assumption of a constant kernel and a monodisperse size distribution. Then

h= —4Kn?, (B10)

where K is the aggregation constant. The often found usefulness of the simple equation (B10) is due to
its similarity to the exact result of equation (B9). If the kernel homogeneity is zero, K(sy, 5) is a constant
equal to K. The factor P, is a polydispersity factor with absolute value equal to 0.5 for a monodisperse
cluster distribution, but in general |[Py|z 0.5, If the kernel homogeneity is not zero, then K is not
constant, but for small intervals of s {or n) equation (B9} implies that equation (B10) would still be a gseful
approximation.

Case i = 2: When i = 2, equation (B4) becomes

My(H) = MEP,K(s, 3). (B11)

This situation applies to light scattering measurements because at small angles the scattering per cluster is
proportional to the square of the number of monomers per cluster. Hence we pick for the mean size in the scaling
equation s, = M,/M,. By equation (B7) n, = M /s, = M3/M,. The time derivative of n, is

fip = — Mi/MIM, (B12)
= —niP,K(s;, 52). (B13)

Once again we have an exact result (B13) similar to the simple Smoluchowski equation (B10). The
factor P; = 1 is the appropriate polydispersity factor when mean size and cluster number density are defined by
p=2

In this work n; is measured directly with light scattering, P, must be calculated using an assumed functional
form for the kernel. One does not need the magnitude of the kernel for this calculation; it is this magnitude we
aspire to measure experimentally. Measurement of n; and s, and calculation of P, allows the kernel K(s,, 5;) to be
measured as ¢ function of s;.

The values of P, and P, were calculated numerically for the three regimes continuum, Epstein and free
molecular using equations (B3) and (B5). To find the size distribution n(u, £) and hence the scaling function ¢ (s}, the
Smoluchowski equation was solved using a fourth-order Runge—Kutta method using the aggregation kernels
given in Table 1 untii scaling was achieved. The results are given in Tabie Bi.

Table Bl. Polydispersity factors for the three limiting aggregation

regimes.
Polydispersity factor  Continuum Epstein Free molecular
Py — 059 - 073 —0.67

P, 1.10 1.36 114




