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Diffusion limited cluster aggregate (DLCA ) morphology is stud-
ied as a function of monomeric particle overlap for finite sized
clusters. The morphology is parameterized by both the fractal
dimension D and the prefactor k,. For clusters created on a three-
dimensional cubic lattice we find D = 1.80 = 0.03 and k, = 1.30
+ 0.07 when the spherical monomers are in point contact. Both
these values increase as overlap increases. Also presented is an
analysis of the two-dimensional projecticn of these clusters in or-
der to facilitate electron micrograph images of real clusters. Quan-
titative relations between actual three-dimensional cluster parame-
ters such as cluster radius of gyration, fractal dimension and num-
ber of monomers per aggregate, and measurable two-dimensional
quantities such as longest lengths and projected area are given as
a function of monomer overlap. Relationships between lengths can
be explained only by use of the proper density correlation function
and accounting for cluster anisotropy. Finally, we make an unsuc-
cessful attempt to find the source of recent experimental discrepan-
cies in the prefactor k, in terms of a possible unknown degree of
overlap. © 1997 Academic Press

I. INTRODUCTION

It is well established that random aggregation of fine parti-
cles leads to clusters with fractal morphology if particle
coalescence does not occur (1-6). Most commonly, colloi-
dal or aerocolloidal systems aggregate via the process of
diffusion limited cluster aggregation (DLCA ) which yields
clusters with a fractal dimension of D =~ 1.78. It is conve-
nient to describe this structure with the equation

N = ko(&) , (1]

where N is the number of monomers in a cluster, R, is the
cluster radius of gyration, e is the monomer radius, and kg
is a prefactor of order unity (7). The structure is parameter-
ized by both the fractal dimension D and the prefactor k.
A considerable body of previous work has found D = 1.78
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for a variety of colloidal and aerocolloidal aggregates includ-
ing soot. Until recently, however, the prefactor has been
ignored. Its accepted importance has been increasing because
of its relation to cluster mass, transport, and light scattering
properties. Wu and Friedlander (8) reviewed a variety of
simulation and real system data to find that £, was of order
unity. Work from this laboratory has measured ko, = 1.23 =
0.07 (9) and 1.66 + 0.4 (6) for soot from two different
flames and our DLCA simulations have found k; = 1.2 *
0.15 (10). In contrast, Samson ef al. (4) found D = 1.44
and k, == 3.4 using stereo views of 3d aggregates. Using the
data of Samson et al., Puri et al. (11) also found D = 1.40
and k, =~ 3.5. Independently, Koylu et al. (12) found D =
1.64 and k, = 2.4 using stereo views of 3d aggregates and
have supported this value of k, with subsequent studies (13—
15). Considering the role of D and k, in describing light
scattering from fractal aggregates it is important to rectify
the discrepancies among the experimental values.

With this motivation and given the simulation result of
ko = 1.2 we ask, how could the morphology of soot differ
from flame to flame and especially from ideal aggregates as
some of the results above imply? Perhaps the answer to this
question lies in the *‘necking” or overlap between mono-
mers often observed in soot clusters. By “‘necking’’ we mean
nonpoint contacts between adjoining monomers which are
approximately spherical. In this paper we described simu-
lated clusters with a variable amount of monomer overlap
and compute the effects of this overlap on k, and D. This
study is not only relevant to the morphological description
of soot through Eq. [1], but it is also valuable for the mor-
phological description of aggregates of many materials at
various stages of sintering (16, 17). This is so because a
simple description of the extent of sintering is the degree to
which adjacent monomers merge. Thus the first task of this
paper is to find how k, and D depend on monomer overlap.

Very often the morphology of clusters must be determined
from their projected two-dimensional images. Thus there has
been previous work, both analytic and simulation, which
has attempted to determine how the true, three-dimensional
parameters N, R,, and D are related to measurable two-
dimensional parameters such as the projected cluster area,
projected radius of gyration, and projected longest length
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18 OH AND SORENSEN

(4, 6,7, 12, 18-20). We do this again here with this back-
ground as a guide and establish how to proceed from pro-
jected to true values. We also do this for clusters with vari-
able monomer overlap since this is relevant to the prefactor
discrepancy described above and for future work on sintered

aggregates.
In summary, the work here has value in three areas:

1. We describe how ky and D depend on the degree of
monomer overlap in a cluster.

2. We establish how to use two-dimensional projected
cluster data to determine true three-dimensional cluster pa-
rameters for clusters with monomers of arbitrary overlap
(including point contacts).

3. We apply these first two abilities to attempt to under-
stand the prefactor discrepancies.

II. COMPUTER SIMULATION

The DLCA simulation was performed on a L X L X
L cubic lattice with periodic boundary conditions (3, 21).
Initially, 7, monomers were randomly placed (avoiding mul-
tiple occupancy and nearest neighbor contact) on L? lattice
sites, which yields the monomer density p = no/L>. There-
fore at the beginning of the simulation there were n, ‘‘clus-
ters’’ each with a single monomer. Then at each step of the
simulation, one cluster was randomly selected with equal
probability and moved by one lattice step in one of the six
possible directions (% x, +y, *+z) chosen randomly. While
moving, if two or more clusters came into contact with each
other, they were joined permanently to form a larger cluster.
A contact was considered to be made if a monomer of one
cluster occupied a lattice site adjacent to a monomer of
another cluster. The process was repeated for a prescribed
number of steps. The simulation was performed twice with
p = 0.001 and once with p = 0.002. In our simulations we
used L = 100. The product of the three simulations was 186
clusters of size ranging from N = 2 to 580. Monomers still
left at the end of the simulations were discarded because
they have no bearing on the current problem.

III. DATA ANALYSIS AND RESULTS

When two monomers overlap it means that the distance
between them is not equal to the sum of the two radii. To
quantify the overlap between monomers an overlap parame-
ter § is defined as

522
£

[2]

where a is the monomer radius and £ is the lattice spacing

as shown in Fig. 1. Here we assume a monodisperse mono-
mer size distribution. If § = 1, the monomers are in point
contact. If § is larger than 1, there is overlap between mono-
mers. If § is less than 1, then the monomers are not in contact
with each other, something like dew drops hanging on a
spider web. Even though this latter situation may not, as yet,
have any practical importance, it still poses an interesting
theoretical question.

To study the effect of the overlap, we need to obtain the
three-dimensional information of a cluster. This was done
by putting a spherical monomer of radius a at each monomer
position of a cluster. The cluster was then digitized with a
finer lattice (I" space) with the lattice spacing y = €/8.

11 6and R,

The radius of gyration R, was calculated in I'" space as

1
R} = - Z (r; — Tew)?. (31

Here r., is the position of the center of mass of a cluster,
r; is a position of a lattice point within the cluster, and n is
the number of lattice points within the cluster in I space;
i.e., n is the volume of a cluster. R, calculated in I space
was appropriately normalized with the monomer radius a.
As a result, we obtained R,/a dependent only on § = 2a/¥,
but not on .

Since we have the true N and, from Eq. [3], the true R,,
we can determine D and k, through Eq. [1]. Figure 2 shows
log(R,/a) vs log N for § = 1 and 2. Note the linearity of
the 6 = 2 plot. On a log—log plot this linearity implies that
Eq. [1] still provides an accurate description of the cluster
despite the large overlap. Hence from this perspective the
cluster is still a fractal. By fitting the data to Eq. {1] for ¥
= 5 to 580, we obtain D and k, as a function of §. The
results are summarized in Fig. 3. For § = 1 we have D =
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FIG. 1. A pair of overlapping monomers digitized with a resolution ¥
= {/8. Dots represent the occupied sites in I" space. a is the monomer
radius and £ is the lattice spacing in real space (in which the DLCA
simulation was performed).
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FIG. 2. Cluster radius of gyration nortnalized by the monomer radius
versus number of monomers per cluster for two different overlap parame-
ters, § = 1 (point contacts) and & = 2.

1.80 = 0.03 and ky = 1.30 * 0.07. These values are in
excellent agreement with the known values of D from a
large body of previous work and with the value of &y =
1.26 x 0.15 from previous on-lattice simulations from our
laboratory (10). For our largest overlap, 6 = 2, we find, for
these finite sized clusters, D = 2.01 £ 0.03 and k; = 3.0 =
0.08; thus, overlap thickens or densifies the clusters. By
extrapolating the curves in Fig. 3to 6 = 0, we find D ~
1.75 and k¢ = 0.

The behavior of D and kg as a function of 6 in Fig. 3 can
be explained as follows. Let ko(6), R;(6), and D(9) be the
prefactor, the radius of gyration, and the fractal dimension
of a cluster, respectively, for an arbitrary overlap é. Then
for § = 1 we have

_ R (1))0(1)
N ka(l)(—;-——-“fl2 .

(4]
By comparing Eq. [4] with Eq. {1], we get the prefactor for
an arbitrary 4:

aP®  (R,(1)/€/2)PD

ko(8) = ko(1) (8/2)5(6) (Rs(5)/€f2)0(5) :

(51

Now let R, auice be the radius of gyration of a cluster made
of point monomers. If the monomers are finite sized but do
not overlap, the cluster radius of gyration is given by R} =
Rlice + Rlmonomer. If the monomers are spherical,
R monomer = 3a*/5. Then for an arbitrary 6, R (8) can be
approximated as

3 1/2
Rs(é) o [Ré.lattice + g az:l . [6]

For 6 = 1 Eq. [6] is exact; for 2 > 6 > 1 it is a good

approximation. If a <€ R, .. and using Eq. [2], we have

3 €2 \?
8) = Rypavice] 1} + — 82 .
Rg( ) g.lanti [ IO (Rs'hmu) ]

(7]

- Since €/2 Ry jauice = 0 for N = 0, R, ($) becomes independent

of & and

Rg(é) &= Rg.lattioe [8]
for large N. Furthermore, due to self-similarity as ¥ — oo,
D(5) becomes independent of §; i.e., D(6) == D. So in the
limit N~ « Eq. [5] yields the asymptotic form of %,
kow(8) = k0(1)5D= [9]
where ky{8) is the value of k, for N — oo for an arbitrary 4.
The dotted line in Fig. 3 shows ko.(6) with ko(1) = 1.30
and D = 1.80 and a reasonable agreement is seen for § < 1.
According to Eq. [7], if 6§ < 1, Ry(8)/Ryjunice does not
change much since this ratio is unity plus a factor propor-
tional to 6. This insensitivity of R;(8) on & is responsible
for the apparent insensitivity of D(&) on § shown in Fig. 3
for § = 1. Since the monomers do not touch each other for
6 < 1, it may be natural that D(§) does not depend strongly
on §. The constancy of D(8) aids the good agreement be-
tween ko.(5) of Eq. [9] and &, from simulation for § = 1.
For § > 1 monomers start to overlap, and the clusters become
more compact. As a result, the apparent D (6) increases rap-
idly with &. According to Eq. [7] for a finite size cluster
Ry (8) Ry aice increases above unity with an additive factor
proportional to §2. According to Eq. [5] increasing D(§)
and R,(6) means that k, should become smaller and hence
a deviation from k,.(8) as seen.
Finally we remark that for asymptotically large clusters,
N — o, D should be independent of overlap as long as the
monomer radius is much less than the cluster radius. Thus
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FIG. 3. Fractal dimension D and prefactor &, for DLCA clusters as a
function of overlap parameter é. Dashed line is calculated k, by Eq. [9].
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in this limit only k, is sensitive to overlap. Note that the
anticorrelation between D and k, implied by Eq. [1] also
accounts for the discrepancy between the simulated k, and
the predicted k;.(8) since if D = 1.8 for § > 1, smaller
than the simulated values plotted in Fig. 3, then ko, would
be larger hence closer to the predicted value.

II1.2. The Number of Monomers and the Projected Area

For a self-similar fractal cluster the number of monomers
should scale with any characteristic length with the same
fractal dimension. So if R, is half of the largest length of
the projected image and a is the monomer radius, then in
analogy to Eq. [1] we expect

R D
N - kz(_z) ,
a

where D is the fractal dimension and k; is a prefactor of
order 1. If the fractal dimension of the projected image is
D,, then we expect the cluster projected area A, to be related

to R, as
A, R\%
f-o(2)"
4, a

where f3 is another prefactor of order 1, and A, is the pro-
jected area of the monomer. By combining Egs. [10] and
[11}, we find the relation between the number of monomers
and the projected area to be

)
Ay

where k, = k,/37'" is a constant of order unity and a =
D/D, is the ratio between the fractal dimensions of the
cluster and its projected image. We have found this result
previcusly by another argument and have shown its reason-
ableness (6). It has been argueed that for D < 2, D, = D
but this can only strictly apply when N — . For typical

(10]

[11]

[12]

FIG. 4. Random projection of a three-dimensional DLCA aggregate
onto a plane with overlap parameter § = I; Le., the monomers do not
overlap but have point contacts. Note, however, the apparent overlap due
to the projection.
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FIG, 5. The ratio of the cluster projected area to the monomer projected
area as a function of the number of monomers per cluster for two different
overlap parameters § = 1 (point contacts) and § = 2.

soot clusters (N ~ 100) one finds D, to be about 10%
smaller than D (4, 6). Consequently, the value of « is about
1.1. Indeed, this is the value found empirically for Eq. [12]
dating back to the original work by Medalia and Heckman
(18). Equation [12] has played a major role in the TEM
analysis of aggregates. It also provides an imiportant clue
to the understanding of the diffusive transport of fractal
aggregates (22, 23}.

We tested Eq. {12] with our simulated clusters with the
overlap between monomers as a variable. To calculate A,
the clusters were rotated by random angles around three
orthogonal axes. Then the clusters were projected onto three
orthogonal planes and the projected areas were averaged.
Figure 4 shows a projected image of a cluster for § = 1,
i.e., monomers in point contact. Even for § = 1 the projected
image looks as if there is some degree of overlap between
monomers. This fact clearly demonstrates the difficulty of
determining § from a TEM picture.

Figure 3 illustrates the relation between A./A, and N for
6 = 1 and 2 obtained with our simulated clusters. By fitting
the data to Eq. [12] for N = 5 to 580, we find k, = 1.17 %=
0.02 and ¢ = 1.07 = 0.005 for § = 1. These values show
reasonable agreement with the result of Koyhi er al. (12},
who found &, = 1.15 % 0.18 and @ = 1.09 * 0.02 from a
TEM analysis of soot particles. For § = 2 we find &k, = 1.81
+ 0.03 and « = 1.19 * 0.01.

This increase in k, and « with § can be explained as
follows. As ¢ increases from §, to §,, A, increases as

5 2
&;=(§)Au.

However, A. is not going to increase as much because of
the overlap between monomers; i.e.,

8, \?
A, < (2} A.,.
o< (2)a

[13]

(14]
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So as & increases, the ratio of the projected images A./A,
decreases. According to Eq. [12] for constant N if A./A,
decreases with increasing &8, « and/or k, should increase to
keep N the same.

Figure 5 shows that the difference in N for a given A./A,
could be as much as a factor of 2 when & changes from 1
to 2. Consequently, the estimation of N from A /A, is sensi-
tive to the value of §. Moreover, the difference seems to be
increasing with N. Although it is not clearly visible in Fig.
5, the slope of A./A, vs N curve changes as N increases. So
the estimation of V is also sensitive to the range of N. This
point is very well illustrated in Fig. 6 which shows three
sets of (a, k,) plotted as a function of 4. They correspond
to different starting points (5, 10, 20) of the curve fit, like
the one shown in Fig. 5. In the point particle limit, i.e., & =
0, there should not be any screening during projection; thus
N = A_/A, for § = 0. This puint is correctly represented in
Fig. 6 with k, = & ~ 1 at § = 0. For a fixed 6, k, becomes
bigger as the cluster size gets bigger while o gets smaller
and approaches 1. Meakin (21) reported a similar behavior
of a. This trend implies that in the limit of N — oo the fractal
dimension of a projected image is the same as that of the
cluster if D < 2. This does not mean that the monomer—
monomer screening is unimportant for large clusters; rather
the fact that &, > 1 means that a finite fraction of monomers
are screened during projection.

In summary, in order to estimate N correctly from a TEM
picture it is necessary to know 6 and the range of N before
use of Eq. [12]. If § > 1 in a real cluster, an analysis
assuming 6 = 1 would yield N too small.

113 6 and R,

In a TEM analysis of clusters it is often useful to define
a longest length of the cluster in either three or the projected
two dimensions. Half of this length will be designated as R,
with L = 2 or 3 for the two-dimensional projection or the
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FIG. 6. The parameters o and k, of Eq. [12] versus overlap parameter
for three different fit ranges in N, the number of monomers per cluster,
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FIG, 7. The ratio of half the cluster longest length in three or two
dimensions, R; or R;, respectively, to the monomer radins versus the number
of monomers per clusters. The overlap parameter is § = 1, point contacts.

real, three-dimensional cluster, respectively. Then in analogy
to Eq. [1] one may write

D,
N = k]_(&) L.
o

If the cluster is self-similar, then Dy = Dfor N >« R, is
commonly used because it is easy to obtain from a TEM
analysis.

Figure 7 shows R,/a and Rs;/a vs N for 6 = 1. The fractal
dimensions obtained by fitting the data to Eq. [15] for N = 5-
580 are D, = 1.77 + 0.03 and D; = 1.77 2 0.03. These values
agree with D = 1.80 x 0.03 obtained using R, within the
statistical uncertainty and hence are consistent with self-similar-
ity. Figure 8 shows the behavior of D, and D, as a function of
&. The figure shows that the Dy s are pretty good approximations
of the true D for 6 = 1. This means that we can use R, or R,

[15]
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FIG. 8. Fractal dimensions versus overlap parameter. D is determined
from the radius of gyration, D, from half the longest cluster length in three
dimensions, and D, from half the longest cluster length when projected into
two dimensions.
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FIG. 9. Various ratios of cluster lengths versus N. The overlap parame-
ter is § = 1, point contacts.

instead of R, to obtain the fractal dimension of a cluster. How-
ever, for § < 1 D3 become much smaller than D as § decreases.
This behavior can be explained as follows. Let Ry .(a) be R at
a finite @. Then Ry.(a) is related to R (0) as

Riu(a) = R.(0) + a. [16]
Thus as §, and consequently a, increases the fractional in-
crease in Ry (a) is bigger for small N clusters. This depen-
dence of R, (a) on § makes a log—log plot of N vs R, increase
its slope as é increases, and the slope is the fractal dimension.
Note that this effect is much smaller for R, because, by Eq.
[71, a contributes to the total R, by a quadratic additive factor
rather than the linear additive factor in Eq. [16].

Light scattering measures R, , whereas TEM pictures yield
R,. The relation between R, and R, is not trivial and as a
consequence different anthors have different opinions about
the relation (15, 22, 24). Here we will consider these rela-
tions and test themn with our simulation. Figure 9 shows the
ratio ®, = R,/Ry vs N for § = 1. The average values are
{®) = 0.61 + 0.03 and (R} = 0.69 + 0.03 for N = 10.
A.s were calculated for other 8s, too. The results were rather
insensitive to &, except for small N(N =< 10). Also shown
in the figure is the ratio R;/R, for 6§ = 1. The average of
R,/R, was 0.89 * (0.03. The ratio was also insensitive to &
except for small ¥.

One approach to understanding these ratios is simply to
consider a DLCA cluster as a spherically isotropic cluster
of radius R; and the density p(r) ~ r°? (15, 19). Then
through a simple integration one can show that

R3. [17]

For D = 1.8 Eq. [1] yields R,/R; = 0.688.
This value is about 10% larger than the result of our
simulation. If we assume that the projected image is defined

with the similar density function for 4 = 2 dimensional
space, i.e., p ~ R??, and with R, = R; because of the
spherical symmetry, then we find

D

RZ
D+2 7

2 _
Rg.z -

(18]

where R, is the radius of gyration of the projected image.
This is the same as Eq. [17]. Equation (18] also yields R, ./
R, = 0.688 for D = 1.80 which is in excellent agreement
with our simulation. This excellent agreement, however,
must be considered fortuitous because the assumptions that
lead to Eq. [18] do not hold. First, it is not clear whether
the three-dimensional density p ~ r°? will be ~1°~2 when
projected. Second, as discussed above, there is good evi-
dence, at least for small clusters, that projection alters the
fractal dimension of the cluster to D, = D/a, where a is
the exponent in Eq. [12]. Third, R, ; is the radius of gyration
of the projected clusters, undoubtedly different than the true,
three-dimensional radius of gyration. Fourth, a DLCA clus-
ter is not spherically isotropic (24). Although it may look
isotropic when rotationally averaged, the largest length of
the projected image, R,, is smaller than the largest length
of the cluster in three-dimensional space, R;. 'I"herefore, the
use of R, = R, is wrong. Below we present a proper deriva-
tion of the relationship between R;, R;, and R,.

A self-similar fractal should be defined with a power law
density correlation function g(r), instead of a power law
density p(r), expressed as

()
gn=r €

where h({r/£) is a cut-off function and £ is a characteristic
length of the cluster. Once g(r) is known, R} can be calcu-
lated from the small g expansion of the total scattered inten-
sity I(g) (25):

[19]

I{g) = f e Vg (r)d’r. [20]

Using a sphere-like cut-off function (23) one can show
that

,__2DD+1) o,
ET (D + 2)(D + 5) Rs. (211

For D = 1.8 Eq. [21] yields R,/R; = 0.625. This value
agrees well with our simulation result. Therefore, we prefer
Eq. [21] over Eq. [17] to define the relation between R, and
R; of a DLCA cluster embedded in three-dimensions.
From a TEM picture one obtains R, instead of R;. To find
the relation between R; and R; we need to know the shape
of a cluster. Botet and Jullien (25) described the anisotropic
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nature of simulated DLCA clusters using the radius of gyra-
tion tensor

1
R1‘2J = E Z Yailais [22]

a8

where (i,j)=1,2,3and (a, 8} =1, ..., N.

By diagonalizing the tensor, they showed that a DLCA
cluster has three different principal radii of gyration. This
implies that DLCA clusters are better represented by an
ellipsoid (rather than by a sphere) defined by

x2 2 z 2
E+%+?=ﬁ’ [23]
where
a=%_o0me
R,
b=2=05
R,
c=1 [24}

and R; is half of the largest length of the cluster in three
dimensions. Here we used Botet and Jullien’s definition of
R., R,, and R, to obtain a, b, and c.

Now consider the relation between R, and K;. When an
ellipsoid is projected onto a plane, the longest axis is most
important in determining the length of the projected image,
the second Jongest axis is next important, and the shortest
axis is least important. Therefore, for the simplicity of the
calculation let us assume that the second longest and the
shortest axes are the same; i.e.,

a=5b=05. [25]
Suppose the ellipsoid is projected along an arbitrary direction
£ onto xy plane perpendicular to Z. Now put the y axis on
the plane defined by Z and the direction of the long axis of
the ellipsoid as shown in Fig. 10. Then the projected image
will have its maximum length along the y axis. After a simple
calculation, we find

== = [b%cos’® + cZsin?G]?, {26]

where # is the angle between 7 and the long axis as shown
in Fig. 10. After averaging over the orientation, we obtain

Rz _l 2 __ 2512 2 _ 1/2 a_2 H —ll
<—R3>—2(c 5%y (a DN+ e E
[27]

a x b H

| R,

_me'_lmage

e—— Plane
Ry

FIG. 10. Diagram of ellipsoids and their two-dimensional projection.
{a) Three-dimensional ellipsoid with its semimajor axis R; in the yz plane.
(b) The ellipsoid along the x axis. Micrograph imaging is represented by
a projection along the z axis onto TEM image plane which is paraliel to
the xy plane. R; is half the longest length of the projected image.

where a? = ¢2/(¢? -~ b*). For b = 0.5 and ¢ = 1 we obtain

<£-2-> = 0.87.
R;
This value agrees well with the result of our simulation

shown in Fig. 9. By putting Eqs. {21] and {28] together we
obtain the relation between R, and R,,

<&>*[ 2D(D+ 1) 1 &>
R,] |(D+2(D+5) R,

= 0.718,

(28]

[29]

for D = 1.80. This value shows good agreement with the
ratio {?®,) obtained in our simulation. We believe this agree-
ment is another evidence that DLCA clusters should be con-
sidered as an ellipsoid.

Given that the relations between R, and the Ry s are estab-
lished, the relations between k, and ks can be determined.
Assuming that R, and R scale with the same D and using
Eqs. [1] and [15] we have

kL(8) = ko(8)(RL)°. [30]
The various prefactors obtained in our analysis of the
simulated clusters are plotted in Fig. 11. For 6 = 1, we
find &, = 0.7 and k; = 0.6, values significantly less than
unity (15, 22).

HI4. Ry.pp and N,

In a TEM analysis Eqs. [12] and [29] may be used to
obtain the number of monomers in a cluster and the radius
of gyration of the cluster. Here we determine what error in
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D and k, would be incurred if, in fact, § # 1 yet the analysis
proceeded under the § = 1 assumption. For § = 1 Eq. [12]

becomes
Ac 1.07
New = 1.15(—) ,
A

[31]

where N,,, is the experimental value of N, and Eq. [36]
with the simulation numerical value yields the experimental
value of R,,

Riexp = 0.609R,;. 132]
By combining Eqs. [31] and {32] we obtain
R D:x
chp — kexp( S.cxp) p, [33]
a

where k., and D,,, are the experimental values of ko and
D, respectively.

In order to test the validity of this analysis we applied
Egs. [31]1-[33] to our simulated clusters. k.., and De,, ob-
tained from the analysis are plotted in Fig. 12 along with &,
and D obtained from the true N vs the true R, plots. For 6
= | the experimental values agree well with the true values.
However, for § > 1 the agreement is not good. Interestingly,
ke and D,,, show very little dependence on é. The implica-
tion is that the é = 1 analysis applied to § > I clusters
would not see the effects of the overlap on the cluster mor-
phology as described by ky and D. In fact, these values
would look much like the values for a & = 1 cluster. For
example, for a large overlap of § = 2 the true values from
a three-dimensional analysis (Fig. 3) are k;, = 3.0 and D
= 2.01, whereas the projected clusters analyzed under the
assumption of 6§ = 1, Egs. [31]-[33], yield k., = 1.8 and
D = 1.78. So the error incurred is significant. On the other
hand, note that these ‘‘experimental’’ values are close to the
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FIG. 11. Various prefactors versus overlap parameter,
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FIG.12. Actual prefactor and fractal dimension, ko and D, respectively,
of the three-dimensional cluster, and experimental prefactor and fractal
dimension, k., and D, respectively, versus overlap parameter. The experi-
ment values were determined by the analysis of Egs. {31]--[33] which
assume § = 1.

true values when there is no monomer overlap, k, = 1.30
and D = 1.80; in fact the fractal dimension is essentially
the same. This implies that if real clusters have overlap but
are analyzed assuming no overlap, their ko and D values will
be similar to clusters with no overlap. Instead the fractal
dimensions obtained in the stereo analysis were smaller than
the accepted value. We therefore conclude that monomer
overlap does not explain the large experimental values of &,
relative to simulation.

IV. CONCLUSIONS

The fractal dimension and prefactor have been studied as a
function of monomer overlap for finite sized, DLCA clusters
simulated on a three-dimensional cubic lattice. Also, in order
to facilitate a TEM image analysis of the three-dimensional
clusters when projected onto a two-dimensional plane, we
have studied the relationships between the cluster projected
area and the number of monomers per aggregate and the
relations between the three-dimensional and projected, two-
dimensional lengths and the true cluster radius of gyration,
Some important numerical results are summarized in Table
1. We find that DLCA aggregates retain a fractal morphol-

TABLE 1
Summary of Numerical Results for DLCA Aggregates
Simulated on a Three-Dimensional Cubic Lattice

Fractal dimension and prefactor
= 1 (monomer point contact)
D= 180 = 0.03, k = 1.30 = 0.07
§=12
D =201 £003 k = 3.0+ 008
Length ratios
RJR, = 061 £ 0.03
R/R, = 0.69 = 003
RJ/R; = 0.89 = 0.03
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ogy, as defined by Eq. [1], as the degree of overlap between
the monomers, i.e., primary particles, varies. Both the fractal
dimension and the prefactor increase with the degree of over-
lap indicative of the densification of the cluster. The area
versus number of monomers relationship is strongly affected
by monomer overlap as depicted in Fig. 5. For point contact
monomer clusters the length ratios determined from the sim-
ulations are best described by accounting for the anisotropic
nature of the aggregates and use of a density correlation
function that is cut off in a manner similar to that of a hard
sphere.

Attempts to explain experimental discrepancies of the pre-
factor measured from real soot clusters, which otherwise are
well described as DLCA aggregates with D =~ 1.8, as due
to cluster overlap were unsuccessful. In our simulation as
the degree of overlap increases we find that both D and &,
increase, while in some experiments the increase in ko was
accompanied by the decrease in D. Hence the discrepancy
among the experimental values of X, remains unsolved.
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