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We present a method which uses the behavior of the scattered
light intensity as a function of the scattering wave vector in the
Guinier to power law crossover regime to determine the width of
the size distribution of fractal cluster aggregates. A graphical anal-
ysis is presented and data for soot aggregates is used to illustrate
the method. This analysis relies upon knowledge of the fractal
cluster dimension and correlation function cutoff, and we discuss
how uncertainties in these parameters lead to uncertainties in the
size distribution width. © 1995 Academic Press, Inc.
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I. INTRODUCTION

Optical particle sizing is a valuable technique for in situ,
noninvasive diagnostics of particulate systems. The desired
information is a complete description of the particle size
distribution, but this can be very difficult to obtain. Practi-
cally, we are satisfied with accurate mean size information
and some degree of knowledge regarding the nature of the
distribution, usually its widih. In this paper we describe a
graphical method to obtain the size distribution width of
fractal aggregates via light scattering measurements which
we have found useful in our studies of soot aerosols.

The scattering of light, or any other wave, from particles
or clusters can be divided into three regimes (1-3) based
on the magnitude of gR, where R, is the particle or cluster
radius of gyration and g = 4wh~'sin #/2, where X is the
radiation wavelength and € is the scattering angle, is the
scattering wave vector. These regimes are the Rayleigh re-
gime where gR, < 1, in which the scattered intensity is
constant, independent of the scattering angle; the Guinier
regime where gR, < 1, in which a small angle dependence
is seen due to the overall size of the particle; and, typically,
a power law regime for gR;, > 1, in which the intensity
angular dependence contains information regarding the parti-
cle's or cluster’s structure.

The particle or cluster mean size can be obtained in the
Guinier regime where
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1(q) = 1{0)(1 — ¢*R}/3) {1]

for gR, < 1. In Eq. {11, I(gq) is the scattered intensity at
wave vector g. Equation {1] holds regardless of refractive
index or morphology and hence is very useful for determin-
ing cluster or particle size through R,. It has seen wide
spread application (1-6).

We have used Eq. [1] to determine R, values for soot
acrosols (4-6). We found it conceptually useful to plot the
inverse, normalized scattered intensity, 1(0)/I(g), versus ¢*
because such graphs should be linear with a slope of
R3/3 and remain quite linear even when @R, > 1. This plot
is similar to a Zimm plot (7, 8) except that no cluster concen-
tration extrapolation is carried out since our soot clusters are
near zero concentration. The linearity for gR; > 1 puzzled
us because Eq. [1] should only hold for gR, < 1 and plots
of the complete structure factor begin to curve severely for
gR; > 1. Further numerical analysis showed that inclusion
of polydispersity lessened this curvature and that the transi-
tion from the Guinier to the power law regime, i.e., as gR,
passed throungh unity, was sensitive 10 a2 number of details
regarding the morphology of the individual clusters and,
most importantly for our purposes here, the cluster size dis-
tribution. A subsequent review of the literature showed that
this knowledge was not new. Shull and Roess (9) used
graphical methods, different than those we will present here,
to show for a system of spheroidal particles how the Guinier
to power law, which for sphercids is a g ™ Porod law, transi-
tion is sensitive to the size distribution of spheroidal parti-
cles. Schmidt and co-workers (10, 11) showed how Fourier
inversion of small angle X-ray scattering data in this regime
could yield the particle size distribution. A disadvantage was
that the shape of the particles, e.g., eccentricity, also affected
scattering in this regime and hence could confuse the size
distribution determination. All of this work was for uniform
density, spheroidal particles, i.e., no aggregates. Thus, the
usefulness of this crossover regime for size distribution mea-
surements for fractal aggregate clusters remains to be ex-
plored. That is the purpose of this paper. We will show that if
the morphology of the aggregate is well known, an effective
measurement of the size distribution width can be made.
Uncertainty in the morphology, however, can serionsly limit
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the accuracy of this measurement. Our method will be a
graphical analysis of the shape of curves plotted in accord
with Eq. [1].

II. ANALYSIS

A. Scattering and the gR, << I Regime

We consider a noninteracting ensemble of clusters with
monomers small enough to be Rayleigh scatterers. For such
a system, intracluster multiple scattering is not a significant
fraction of the scattering (12, 13). We assume the cluster
number density is small enough so that there is no interclus-
ter multiple scattering. These conditions are commonly satis-
fied for many colloidal and aerocolloidal systems. In general,
the scattered light intensity from an ensemble of clusters
with various numbers of monomers per cluster N and size
distribution n(N) is

I{q)=c j n(N)N?S(gR;)dN. (2]

In Eq. [ 2], ¢ is a constant including functions of the refrac-
tive index, collection solid angle, detector efficiency, etc.
S(gR,) is the static structure factor of the cluster. For fractal
clusters, N ~ R2* where D, is the fractal dimension. Since
S(gR,) = 1 as gR; — 0, one may eliminate ¢ to obtain

I n(N)N*S(qR,)dN

1(g)/I(0) =
J n(N)N2 N

[3}

In the Guinier regime, gR; < 1, the structure factor is
given by S(gR;) = 1 — g*R%/3, and this may be substituted
into [ 3]. We define the moments of the size distribution by

M, = f N'n(N)dN. [4]

Then Eq. [ 3] becomes (5)

I(g)I0) =1 - (1/3)g%a*kg V' P Masaip, /M2, [5]
In Eq. [5] we have used N = ky(R,/a)®r where a is the
monomer radius and Xk is a constant. Equation [ 5] shows
that a measurement of R, obtained by studying the g depen-
dence of the light scattered in the Guinier regime yields an
average radius of gyration related to the moments of the
distribution by

(Ré) = azko_z"D'Mznm,/Mz- [6]
The functional dependence of the Guinier formula may

be used to find average R, values. A convenient graphical
method is to plot the inverse of the scattered intensity, I((3)/
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FIG, 1. Nommalized inverse scattering intensity versus wave vector

squared for lLight scattered from soot aggregates in a premixed CH,/ O,
flame. The parameter # is the height above the burner surface from which
the data were obtained. Linearity is in accord with the Guinier approxima-
tion, Eq. [1], and the slopes are {R2)}/3.

I(g), versus g”. Then the slope is 1/3 {R}}. We used in-
verse I(q) because /™' (g) is not bounded whereas I(g} is,
hence I '(g) versus ¢* tends to be more linear and easier
to analyze. An example for a soot aerosol is shown in Fig.
1, which has been used to yield accurate R, values (4).

A close look at Fig. 1 shows that we have nsed data for
which gR, > 1, beyond the Guinier regime, yet I7'(q) ver-
sus g* is still surprisingly linear. Linearity is expected only
for gR; < 1. This curious fact and our desire to understand
the effect of n(N) on these plots led us to realize that the
gR, = 1 region of these graphs is very sensitive to the
functions that go into Eq. [2], the functions n(N) and
S(qRy).

B. The gR, = I Regime

Two major parameters determine the form of S(gR;) for
a cluster. They are the fractal dimension D, and the cutoff
function of the cluster density —density correlation function.
The fractal dimension essentially determines the limiting
slope as S(gR,) ~ {qR,) " °r for gR, ® 1 regardless of the
cutoff function. For diffusion limited cluster aggregates
(DLCA) D; ~ 1.7 to 1.8. The fractal dimension is readily
measured if gR, # 1 data are available, and it is still measur-
able if not, provided one knows about the cutoff function
and the size distribution (6).
The density correlation function g(r) may be written as
(6, 14)
g(r) ~ r’n(ri §), [7]
where d is the spatial dimension. The cutoff function is A (r/
£) where £ is a characteristic cluster size related to R,. It
describes the manner in which the density of the cluster
terminates at the perimeter. It is important because S(¢R;)
is the Fourier transform of g(r). Regardless of k(r/¢),
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S(gR,) will have the same Rayleigh and Guinier (gR, << 1)
and power law (gR, # 1) limits. It is the shape of the Guinier
to power law crossover regime gR, = 1 that is affected by
h{rl ).

The problem is, what is A(r/£)? Most earlier workers
used an exponential A(r/ &) = exp[ —r/ €] (15, 16). Moun-
tain and Mulholland (17) created simulated clusters and
found h(r/£) = exp{ — (r/€)?] with § = 2.5 = 0.5. A
reasonable physical mechanism for the cutoff can be ob-
tained by considering two overlapping spheres, which yields
R(ri &) = (1 + r/4€)(1 — rf26)?, r < 2¢, otherwise zero
(2, 18).

‘We have studied A(r/£) in two different ways. First, we
compared measured structure factors from soot to various
structure factors derivable from the different cutoffs (6).
We found the most reasonable fits were obtained for a struc-
ture factor derivable from a Gaussian cutoff, A(r/£) =
expl — (#/ £)*]. Second, we captured soot particles on elec-
tron micrograph grids, photographed them with the electron
moicroscope, computer digitized their images, and then calcu-
lated g (r) from which A(r/ &) was determined directly (14).
We found both the Gaussian cutoff and the overlapping
spheres cutoff described the data accurately. These two cut-
offs are nearly identical in the range h(r/£) = 0.01. Given
our empirical evidence for a Gaussian cutoff and the physical
reasoning that leads to the overlapping sphere cutoff and
their essential equivalence, we shall use a structure factor
derivable from the Gaussian cutoff (the overlapping sphere
cutoff does not allow for an analytic expression for S(gR,})
which is

+ 3

2
3_Df _%.(Q'R:))‘ [8]
2 2 Dy

S(gR,) = e‘“’%’z“’nFl(

where | F| is the confluent hypergeometric series.

The other functionality in Eq. [ 3] is the size distribution,
n(N). Since our method will not yield n(¥) directly, the
best to which we can aspire is to measure an effective width.
Thus a functional form for n{/N) must be assumed which
will have a width parameter. In this work we have used two
different size distribution functional forms: the Zeroth Order
Log Normmal (ZOLD) (1, 19) and the scaling distribu-
tion (20).

The functional form for the normalized ZOLD is

n(N) = (V2 Noln oyexp[+1/2 Inay]) !

1.2
x cxp{—lwﬂg}. [9]

2 In*oy

N, is the most probable ‘“‘size,”’ number of monomers per
aggregate, and oy is the geometric width in N-space. Note
that conversion to radius space requires ¢ = o}/ ’c. We will
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show that the curvature of our /(0)/I(g) versus ¢° graphs
is dependent on oy, hence it can be measured.
The normalized scaling distribution is given by

n(N) = Mis ®(x) [10a}
(x) = a T Ha)x e ™ [10b}
x = Nls. [10¢]

In Eqs. [10], s = M,/Myamean size, & = 1 — X, and I is
the Gamma function. The effective width parameter is X,
and the bigger A the broader the distribution. Equations [10]
are good only for the large x tail of the distribution (x =
1). This is all we need for light scattering, however, since
the scattering weights the large x tail. This is seen in Eq.
[3] and is due to the N? term. In fact it’s all we can get
from light scattering which is blind to the small x part of
the distribution.

Both these distributions have various attributes. The
ZOLD is intuitively reasonable and is popular in the engi-
neering community. It can be used to describe nearly any
ensemble of particles or clusters. It can also do a good job
of approximating the self preserving size distribotions that
result from aggregation. The scaling distribution is an exact
description of the self preserving size distributions and A is
the aggregation kernel homogeneity. The apparent disadvan-
tage of having the wrong small size limit is unimportant
since essentially all of the mass or, in our case, all of the
light scattered is due to the large size part. This approach is
popular in the physics literature. We have preferred the scal-
ing distribution because it accurately describes moments
higher than the second which become important for interpre-
ting light scattering measurements (5), for example Eq. [ 6]
shows (RZ) ~ M,/ M, for D ~ 2. In describing self preserv-
ing distributions, the two distributions yield identical first
and second moments when

(2 - \)/(1 = A) = expllntayl, [11}

for A < 1. This rough equivalence will be seen in our results
below.

ITI. RESULTS

Equation [ 3] was used to calculate the normalized scat-
tered intensities from an ensemble of clusters with fractal
dimension D; = 1.75, typical of DLCA clusters. The single
cluster structure factor was that due to a Gaussian cutoff,
Eq. [8]. Both the ZOLD and the scaling distributions were
used with a series of different width parameters, oy and A,
respectively. The intensity was inverted to I(0)/I(q),
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FIG. 2. Nommalized inverse scattering intensity versus the product of
the wave vector and the cluster radius of gyration guantity squared for
various values of the scaling distribution width parameter, D, = 1.75, and
a structure factor derived from a Gaussian cutoff correlation function.
Curves were calculated from Eq. [ 3]. Data points are for a premixed CH,/
0O, flame at height above bumer: (O) A = 12 mm; (+ )} A = 18 mm.

plotted versus (gR,)* and the results are shown in Figs. 2
and 3.

Figures 2 and 3 readily show that the curvature (or lack
of it) in these graphs is a function of the distribution width
when gR, > 1. Note how inclusion of a finite width drasti-
cally lessens the curvature compared to the monodisperse
case (Fig. 2). Data for scattering from a soot aerosol at two

1{0)/1(q)

(qRg P

FIG. 3. Normalized inverse scattering intensity versus the product of
the wave vector and the cluster radius of gyration quantity squared for
various values of the ZOLD width parameter, D; = 1.75, and a structure
factor derived from a Gaussian cutoff correlation function. Data peints are
for a premixed CH,/O; flame at height above bumer: {(O) & = 12 mm;
(+)h =18 mm.
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different heights above the burner of a C/ O = 0.75 premixed
CH,/ 0O, flame are also shown in these figures and one can
see a measurement of the width as either A = 0.2 = 03 or
gy = 2.3 = 0.3. These two values roughly fit with Eq. [11].
When gR, << 1, all the curves lie together as expected for
the Guinier regime.

Thus we propose the following method for measurement
of mean size and size distribution width for an aerosol or
colloid. Relative intensity is measured as a function of wave
factor g at several g values, most conveniently by changing
the scattering angle. The fractal dimension is either deter-
mined from the large gR; power law behavior (5}, other
more esoteric means (3), or assumed from the possibly
known aggregation kinetics, Plot I(g) ™" versus g*; the lim-
iting ¢ — 0 slope yields 1/3 (R}} via the Guinier equation,
and the data can be accurately extrapolated to g = 0 to yield
I(0). Replot as I(0)/I(g) versus (qR,)* and compare the
data to the curves in Figs. 2 and 3 as easily calculated by Eq.
[ 3]1. Read off the value of the width parameter. Appendix A
describes the mathematical detail in calculating Eq. [ 3] for
a given R;.

Perhaps the greatest asset of this method is its simplicity.
Problems arise, however, in the sensitivity of these curves
to other factors in the single cluster structure factor, the
fractal dimension D and the cutoff function. These problems
are analogous to spheroid shape effects for noncluster parti-
cles in the earlier work (9-11). We illustrate these sensitivi-
ties next.

Figure 4 shows I{0)/I(gq) versus (ng)2 for a scaling
distribution with A = 0 and a Gaussian cutoff structure factor
with various D¢. We see the curvature in these graphs is
sensitive to D ;. Fortunately, D is readily measurable. Com-
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FIG. 4. Normalized inverse scattering intensity versus the product of
the wave vector and the cluster radius of gyration quantity squared for a
scaling distribution with width parameter A = 0, a structure factor derived
from a Gaussian cutoff correlation function, and vaous values of the fractal
dimension.
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FIG. 5. Normalized inverse scattering intensity versus the product of
the wave vector and the cluster radius of gyration guantity squared for a
scaling distribution with width parameter A = 0, a structure factor derived
from a correlation function with various values of # for the cwtoff function,
and a fractal dimension of Dy = 1.75.

parison of Figs. 2 and 4 suggests that an uncertainty of +0.05
in Dy, a typical value, leads to an uncertainty of *+0.3 in the
X inferred via our procedure.

We may represent the density correlation cutoff function
as a generalized exponential

h(rl€) = exp[ — (r/€)°]. [12]

The parameter S is the stretching parameter and 8 = 2 for
a Gaussian. In Fig. 5 we plot 1(0)/[(q) versus (gR,)* for
a scaling distribution with A = 0 and a structure factor with
D; = 1.75 and cutoff given by Eq. [12] for various §. We
see the curvature of these graphs is sensitive to 8. Unfortu-
nately this parameter is not readily measured. We feel, how-
ever, that our value of § = 2.0 is quite good given our past
work on this parameter and its similarity with the exact
overlapping sphere calculation.

IV. CONCLUSIONS

We have shown for fractal clusters that scattering in the
crossover region from the Guinier {o power law regimes is
sensitive to the width of the cluster size distribution. We
have shown how this can be used to measure this width. We
have also shown that since this crossover is sensitive to
individual cluster morphological parameters through the
cluster structure factor, these parameters must be well known
to allow an accurate measurement of the width. Our work
here is an extension of carlier work involving nonaggregated
particles.
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APPENDIX A
The slope of 1(0)/1{q) versus ¢ is {(R})/3 where (R2)
is given by Eq. [ 5]. The moment ratio in [ 5] is related to
the mean sizes of the scaling distribution to yield

(R2) = s¥Pig%ky¥Pg 205

Ma +2+2/D )T (e + 2). [Al
Similarly for the ZOLD distribution,
<R§> — Nﬁmfazko_zwfez(m””Df_zlnzaN. [A2]

Thus the mean size s or most probable size N, can be found
from the R, measurement.

To calculate the curves in Figs. 25, either Eq. [ Al] or
[ A2] is inverted to obtain s or Ny. Then Eq. [3] is used
with the dimensionless variable x = N/ s or N/N,. Upon this
substitution all the constants in Eqs. { Al] and [ A2], such
as a, ko, o, and D¢, cancel out. The structure factor becomes
the function S(gv(RZ2)x''?t), where (R}) was from the Gui-
nier measurement. The result from [ 3] is thus not dependent
upon the various unknown constants and can be plotted ver-

sus gv{R2), nominally “‘gR,’’ in Figs. 2~5.
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