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We compare several static structure factors for light scattering from fractal aggregates. The variation 
between these structure factors is a result of different cutoff functions for the cluster density correlation 
function. Light scattering data obtained from soot aggregates in a premixed CHdO2 flame are fit with 
three representative structure factors. Fractal dimensions determined from these fits under the assumptions 
of a monodisperse size distribution are all unsatisfactory. Inclusion of a scaling cluster size distribution 
yields good fits to structure factors derived from correlation functions with cutoffs faster than exponential, 
the exponential structure factor yielding a poor fit. A Gaussian cutoff was found to work the best. 

Introduction 
The technique of in situ optical particle size measure- 

ment has a long and useful history. As with any technique, 
certain assumptions are usually made regarding the 
properties of the system being probed. Common to many 
early particle sizing efforts was an assumption regarding 
the shape of the particles, t y p i d y  being taken as spherical. 
This assumption breaks down, however, if aggregation 
occurs because for solid particles aggregates are ramified, 
nondense clusters. The problem of description of such 
clusters has been, in the last decade, surmounted by the 
demonstration that these clusters are usually describable 
by the fractal A fractal is a self-similar object 
at  various length scales with ita degree of ramification 
describable by the fractal dimension, D < 3. Thus new 
vistas have opened for optical measurements which may 
now more accurately measure effective length scales and 
the fractal dimension for clusters of particles. 

In order to take full advantage of our new knowledge 
regarding the fractility of clusters, we must have an 
accurate description of the static structure factor. The 
structure factor describes the intensity of radiation, for 
our purposes light, scattered from the aggregate or 
ensemble of aggregates all of equivalent size as a function 
of the scattering wave vector (see below). For the early 
pioneering efforts in this area, it was sufficient to know 
that for small wave vectors q such that the product qR, 
<< 1, where R, is the radius of gyration of the cluster, the 
structure factor S(qR,) was a constant; while for qR, >> 
1, S(qR,) - (qR,)-D. Now, as we refine this technique, a 
detailed form for S(qR,) is required. To obtain this the 
exact form for the density autocorrelation function of the 
cluster is necessary since S(qR,) is the spatial Fourier 
transform of this function. The form for this correlation 
function is 

g(r)  = A p - 3 h ( r / [ )  (1) 
for three-dimensionalspace ( A  is a constant). The function 
h(rl€),  where E -  R, is some characteristic length, describes 
the manner in which the power law correlation, rD-3, 
characteristic of a fractal object, is cut off a t  the perimeter 
of the cluster. 

It is here where current uncertainty arises. Although 
a few forms for the cutoff function h(r l t )  have been 

(1) Forrest, S. R.; Witten, T. A. J. Phys. A 1979, 12, L109. 
(2) Family, F., Landau, D. P., Eds. Kinetics of Aggregation and Ce- 

(3) Stanley, H. E., Ostrowsky, N., Eds. On Growth and Form; Nijhoff 
lation; North Holland: Amsterdam, 1984. 

Boston, MA, 1986. 

proposed, there is no universal agreement as to which, if 
any, of these functions is the correct one and no studies 
regarding ita possible universality, i.e., whether it is de- 
pendent upon the nature of the aggregation process which 
yields the fractal cluster or not. One approach to this 
problem is to test the various cutoffs against scattering 
data through comparison of the data to the derived S(qR,). 
It is the primary purpose of this paper to describe such 
a test using in situ measurements on soot particles in a 
flame. When we do this, we find considerable diversity 
in the infered fractal dimension occurs depending on which 
form for the cutoff, hence which structure factor, is used. 
This occurs because the sizes of soot clusters are typically 
less than a couple hundred nanometers, hence qR, 5 5. 
This is not sufficiently large to obtain the asymptotic 
regime where S(qR,) - (qR,)-D, which would allow an 
accurate measurement of D .  Hence a proper analysis of 
the structure factor is particularly important for small 
clusters. 

Unfortunately, such a test is not possible without some 
complications. In the problem of light scattering from 
soot aggregates in a flame, the most important complication 
is the polydispersity of the aggregates. Polydispersity will, 
of course, exist in any system undergoing aggregation, and 
hence its confrontation can be a valuable exercise. Indeed, 
in the work to be described, we show that a monodisperse 
assumption leads to an erroneous conclusion regarding 
S(qR,) and hence h(r / [ ) .  Inclusion of a “propern size 
distribution is necessary to draw an accurate conclusion 
regarding h ( r / [ )  and S(qR,). 

Theoretical Review 
The static structure factor for light scattered from a 

monodisperse ensemble of fractal aggregates has been 
calculated by several research groups using a few different 
cutoff functions. The most used and the least abrupt of 
these cutoffs is the exponential cutoff 

h ( r / t )  = e-r1t (2a) 
where 

Freltoft et  al.: Berry and Percival: and Teixeira6 have all 
calculated S(qR,) using eqs 2 and have arrived at  equivalent 

(4) Freltoft, T.; Kjems, J. K.; Sinha, S. K. Phys. Reu. B 1986,33,269. 
(5 )  Berry, M. V.; Percival, I. C. Opt.  Acta 1986, 33, 577. 
(6) Teixeira, J. Reference 3. 
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results. The result is 

S(0) sin [ ( D  - 1) tan-' (q[)I 
S ( q 8  = (3) 

( D  - l)q[(l + q2[2)(D-1)'2 
The exponential cutoff structure factor can be approxi- 
mated by the so-called Fisher-Burford form,'S(q) = (1 + 2q2R,2/3D)-D/2. In fact the comparison is exact at  D = 
2. The difference becomes significant in fits to data when 
D cy 1.7, a typical fractal dimension, so we will not use this 
form in our analysis. 

In the first in situ optical measurement involving a frac- 
tal analysis for an aerosol, Hurd and Flowera proposed a 
cutoff derived from the overlap volume of the clusters. 
They found 
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where 

(D  + 2 )  (D + 5 )  
= 2D(D + 1) R,2 

This cutoff is sharper than the exponential. 
Mountain and Mulhollandg performed computer sim- 

ulations to create clusters. Their simulation was made to 
approximate the conditions typically found in a flame 
wherein the mean free path of the gas molecules is larger 
than the monomer size, by roughly a factor of 20 in their 
simulations. Both the density autocorrelation function 
and the structure factor, calculated directly using elec- 
tromagnetic wave theory for scattering from the cluster, 
were calculated. The simulated S(qR,) agreed poorly with 
the Fisher-Burford form and hence one would infer the 
exponential cutoff would not apply to their clusters. This 
was shown to be true since they found from direct analysis 
of g ( r )  that the cutoff was best described by 

h(r/R,) = e-c(r/R~)2'5 (5) 
The exponent in this modified exponential was described 
as somewhere between 2 and 3. When this exponent is 
2.5, c = 0.2. One can show numerical Fourier transforms 
of eq 1 with eq 5 agree well with the S(qR,) calculated 
directly by Mountain and Mulholland. 

We are also aware of two instances in which structure 
factors have been synthesized without recourse to the 
density correlation function. Dobbins and Megaridislo 
used the pragmatic concept that S(qR,) should obey the 
universal Guinier form for small qR, and then go as (qR,)-D 
thereafter. The two regimes are connected by forcing 
continuity in both S(qR,) and its qR, derivative at  the 
junction of the two regime. Thus 

(6a) 

= c (qR,)-D, larger qR, (6b) 
where C and the exact boundary between small and large 
qR, was chosen to obtain continuity. 

Lin et d.ll have also simulated particles and directly 
determined the structure factor. For colloidal diffusion 
limited cluster aggregation they found a best fit polynomial 

S ( X )  = e-(qRc)2/3, small q ~ ,  

(7) Schaefer, D. W.; Martin, J. E.; Wiltzius, P.; Cannell, D.S. Phys. 
Rev. Let t .  1984, 52, 2371. 

(8) Hurd, A. J.; Flower, W. L. J.  Colloid Interface Sci. 1988,122,178. 
(9) Mountain, R. D.; Mulholland, G. W. Langmuir 1988, 4, 1321. 
(10) Dobbins, R. A.; Megaridis, C. M. Appl .  Opt .  1991,30,4747. 
(11) Lin, M. Y.; Klein, R.; Lindsay, H. M.; Weitz, D. A.; Ball, R. C.; 

Meakin, P. J .  Colloid Interface Sci. 1990, 137, 263. 
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Figure 1. Comparison of various theoretical forms for the 
structure factor S(qR,): upper section shows the structure factors, 
lower section shows the normalized deviation from the Gaussian 
structure factor (6s = S - SC). Key: E = exponential; HF = 
Hurd and Flower; G = Gaussian; L = Lin et al.; DM = Dobbins 
and Megaridis; MM = Mountain and Mulholland. 

to their numerical results as 
4 

(7) 
s=1 

with C1 = 8 / 3 0 ,  Cz = 2.50, C3 = -1.52, and Cq = 1.02. 
We begin our critique of these structure factors with 

the work of Nelson12 who compared Berry and Percival's 
structure factor derived using an exponential cutoff to 
simulated data. The comparison was not good. Nelson 
found that if a Gaussian was used instead in the Berry and 
Percival calculation, significant improvement was ob- 
tained. 

To obtain the structure factor for a Gaussian cutoff 

h(r / [ )  = e-('/[)* (8)  
one can analytically Fourier transform eq 1 with eq 8. The 
result is 

where IF' is the confluent hypergeometric series and 

(10) 

We now wish to compare all these structure factors 
graphically. Figure 1 plots the S(qR,) for the exponential 
cutoff (eq 3), Gaussian (eq 9), Mountain and Mulholland's 
modified exponential (Fourier transform of eq 1 with eq 
5), Hurd and Flower (Fourier transform of eq 1 with eq 
4), Dobbins and Megaridis (eq 6), and Lin et al. (eq 7) all 
for D = 1.75. The upper part of Figure 1 shows S(qR,) vs 
qR,, the lower part shows the deviation from the Gaussian 
cutoff 

(12) Nelson, J. J .  Mod. Opt .  1989, 36, 1031. 
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S(qR,). We somewhat arbitrarily chose this as a reference 
because Nelson found reasonable agreement with simu- 
lated data. 

Figure 1 shows the exponential cutoff leads to a structure 
factor which stands much greater than any of the rest in 
the qR, > 1 regime. At the other extreme lies the Mountain 
and Mulholland structure factor, and then fairly much 
clustered within 10-15% of each other between these 
extremes lay the others. Similar results, with some 
shifting, are found for D = 1.5 and 2.0. The Mountain and 
Mulholland and Lin et al. S(qR,) are empirically derived 
from computer simulations and hence one would hope 
that they would agree better. However, these simulations 
represent different coagulation regimes: that of Mountain 
and Mulholland in a regime where the gas molecule mean 
free path is significantly larger than the monomer size 
while the Lin et al. result is the inverse of this, monomer 
size is much greater than the mean free path. Hence the 
difference is not surprising.13 Regardless of this disparity, 
we conclude the exponential cutoff does not accurately 
represent the simulated data. 

We now turn to experiment to see if it can help us decide 
between these different structure factors. 

Sorensen et al. 

Experimental Method 
Our experimental setup was the same as used in previously 

reported work.14J5 The flame was supported on a cooled porous 
frit burner obtained from McKenna Products. The premixed 
gases paseed through a frit 6 cm in diameter. This frit was 
surrounded by an annular sheath region 0.5 cm wide through 
which nitrogen was passed. A steel stagnation plate 15 cm in 
diameter was placed above the burner surface to stabilize the 
flame. The burner was mounted on a translation stage for 
adjustment. 

The gases used were methane and oxygen premixed before the 
burner. Their flows were controlled by critical orifices. The 
cold gas velocity, uniform across the frit, of the mixture was 6 
cm/s. The nitrogen sheath flow was also critical orifice controlled 
to a velocity of 5 cm/s. This arrangement yielded a quasi-one- 
dimensional flame with the only major variable being the height 
above the burner h, i.e., the flame was'flat". The fuel-to-oxidizer 
ratio of these flames ia described by the ratio of carbon atoms 
to oxygen atoms (C/O) in the gas mixture. We used C/O = 0.75. 

Our light-scattering apparatus used an argon-ion laser oper- 
ating at  X = 488 nm as a source. The vertically polarized light 
was focused by a 50-cm focal length lens into the flame. The 
burner was mounted on an ryz-translation stage over the pivot 
of our goniometer which was carefully aligned as described earlier. 
An optical rail 1 m long rotated above the pivot on a flat optical 
table. Mounted on the rail was a 10-cm focal length collection 
lens that imaged the incident beam onto an iris diaphragm with 
unity magnification. This gave us a scattering volume 1 mm 
long at  90°. Light passing through this iris diaphragm then passed 
through a 488-nm notch filter to eliminate the blackbody light 
from the hot soot. Detection was made with an ITT FW130 
photomultiplier tube. Ita analog output was converted to a digital 
signal, which was read by a personal computer. Values of the 
scattered light were sampled once per second with l-s integration 
times. The variation between samples was usually <1% . El- 
even scattering angles, which ranged between 10 and l l O o  (0.087 
I sin 0/2 I O . 8 4 ) ,  were used in these experiments. The intensity 
as a function of 0 was measured sequentially through the 11 angles. 
This took -1 min and was repeated 3 times. The values of the 
intensity were then averaged and corrected for the change in 
scattering volume as 0 varied by multiplying by sin 0. The 

(13) Weitz, D. A., private communication. Also note that Figure 2 of 
Lin et al., ref 11, ia in error. The MM result does not agree with the Lin 
et al. reault and the structure factor for the exponential cutoff is mis- 
plotted. 

(14) Gangopadhyay, S.; Elminyawi, I.; Sorensen, C. M. Appl. Opt. 1991, 
30, 4859. 

(15) Sorensen, C. M.; Cai, J.; Lu, N. Appl. Opt. in press. 

apparent random error of the intensities at  any given angle was 
usually - 1 % . 

Earlier work14 on this flame has shown that the scattered light 
intensity vs q is fairly featureless, indicating small R,, until we 
are high in the flame. Hence our data were taken at  a height of 
20 mm above the burner surface when the stagnation plate was 
30 mm above the surface. This yielded R, = 134 nm; hence a 
maximum qR, = 2.9. This stagnation plate height and run are 
identical to some of our earlier w0rk.1~J6 To obtain an even larger 
R,, we raised the stagnation plate to 40 mm, as far as we could 
and still keep the flame stable, and scattered light at  30 mm 
above the flame. This yielded R, = 188 nm for a maximum qR, 
= 4.1. These data, referred to as run 1 and 2, respectively, were 
used in our analysis below. 

Results 
To begin our analysis we determine the cluster radius 

of gyration R, for our two runs by a method which is 
independent of the form of the structure factor. For small 
qR,, one has for the scattered light intensity 

where (R,2) is an average radius of gyration averaged over 
the cluster size distribution and the scattered light 
intensity from a single cluster.15 In the small qR, regime, 
one can show that (R,2) - M Z + ~ I D / M ~ , ' ~  where Mi is the 
ith moment of the distribution. We have shown how a 
graph of l/I(q) vs q2, which by eq 11 has a slope of (R,2)/ 
31(0) and an intercept of F1(0), can be used to determine 
both the root mean square value of R, (hereafter referred 
to as R,) and I(0).14 We used this analysis here as well and 
found R, values of 134 and 188 nm for runs 1 and 2, 
respectively. 

With R, and I(0) determined independent of the exact 
form of the structure factor, and hence the cutoff function, 
we can now use D as the sole variable and fit our data to 
various structure factors and test their efficacy. We do 
this in two stages: with an assumed monodisperse cluster 
size distribution, and then with a scaling distribution. We 
used three different structure factors: the exponential 
structure factor (E), eq 3; the Mountain and Mulholland 
structure factor (MM), representing MM simulation and 
the modified exponential cutoff, eq 5; and the Gaussian 
structure factor (GI, eq 9, representing the Gaussian cutoff 
and to some extent similar to the Hurd and Flower, Lin 
et al., and Dobbins and Megaridis structure factors. The 
fits are shown in Figures 2-4 for run 2. All the fits are 
fairly good, although a similar systematic deviation is seen 
for the MM and G fits, and their quality cannot be used 
as a definitive guide for choosing the best S(qR,). A similar 
conclusion can be made for run 1. Values for the fractal 
dimensions obtained for the fits for both runs are given 
in Table I. Similar results are obtained for each run, and 
we see average fractal dimensions are D(E) E 2.1, D(MM) 
N 1.2 and D(G) H 1.2. None of these values is consistent 
with those expected from a growing wealth of data now 
available which suggest D should be in the range 1.6 5 D 
;5 1.9. Previous measurements by us on this flame under 
conditions identical to run 1 yielded D = 1.79 f 0.10 via 
a completely different, although somewhat novel, optical 
method.15 This method determined D by comparing radius 
of gyration and volume equivalent sphere measurements. 
Close examination of Figures 3 and 4 show the data falling 
off faster than the fit at  large qR, suggesting the fractal 
dimensions for the MM and G fits are too small. Because 
of these reasons, we are suspicious of all these attempts 
to describe the data with a monodisperse size distribution. 

A form for the size distribution must be picked. The 
previously most common choices, the log normal and zero 
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Figure 2. Fit of the exponential structure factor with mono- 
disperse cluster size to the scattered intensity data for run 2.61 
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Figure 3. Fit of the Mountain and Mulholland structure factor 
with monodisperse clueter size to the scattered intensity data for 
run 2. 

order log normal, are not suitable. By comparison to exact 
self-preserving solutions, we have shown the momenta of 
the distribution obtained from the self-preserving distri- 
butions and the LN or ZOLD do not agree for momenta 
of higher order than the second.15 This is important in 
our work eince as described above the measured radius of 
gyration is related to M ~ + ~ / D I M ~ ,  where Mi is the ith 
moment. Because of thie, we use the Scaling ansatz16 to 
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Figure 4. Fit of the Gaussian structure factor with monodis- 
perse cluster size to the scattered intensity data for run 2. 

Various Structure Factors to the Data with either a 
Monodiswrse or Scaling Size Distribution 

Table I. Fractal Dimensions D Obtained from Fitting 

~~~ 

exponential MM Gaussian 
scaling scaling scaling 

run mono r = O  r = 2 / 3  mono s = O  ~ = 2 / ~  mono 7 1 0  ~ = 2 / ~  

1 2.11 2.51 2.61 1.18 1.52 1.59 1.19 1.71 1.82 
2 2.04 2.38 2.48 1.20 1.51 1.59 1.26 1.68 1.78 

describe the size distribution n ( N ,  where N is the number 
of monomers per aggregate 

n ( N  = M, q2 W) (12a) 

x = NJsI (12b) 

81 = Mi/M, (12c) 

and 

+ ( x )  = Ax-Te-ax W d )  
where A = aUr-l(a), a = 1 - T ,  and r is the gamma function. 

In recent work15 we used the scaling distribution in ita 
simplest form with T = 0. This was motivated by the fact 
that momenta calculated from this distribution agreed 
well with those calculated from the size distribution 
determined from numerical computation by Graham and 
Robinson1' for coalescing particles in the free molecular 
regime. Our particles are not coalescing but Mulholland 
et al.%imulated noncoalescing, free molecular aggregation 
and showed the resultant size distribution was quite similar 
to that obtained with coalescence. Thus the T = 0 scaling 
distribution appears to be a good approximation for our 
soot system, certainly better than the log-normal distri- 
butions, and we shall use it here. 

(16) van Dongen, P. G.; Ernst, M. E. Phys. Rev. Lett .  1985,54, 139. 
(17) Graham, S. C.; Robinson, A. J. Aerosol Sci. 1976, 7,  261. 
(18) Mulholland, G. W.; Samson, R. J.; Mountain, R. D.; Ernst, M. H. 

Energy Fuels 1988,2, 481. 
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Figure 6. Fit of the exponential structure factor with a scaling 
cluster size distribution with T = 2/3 to the scattered intensity 
data for run 2. 

We also want to use the scaling distribution for nonzero 
T because this may be more reasonable for noncoalescing, 
fractal aggregates in the free molecular regime. Mulhol- 
land et al. have shown how T is a function of D. There is 
some ambiguity near D = 2 which has not been worked 
out theoretically, but a reasonable estimate of T = 2/3 for 
D in the range 1.7 < D < 2 can still be obtained from their 
work. It is our opinion that theory indicates the T = 2/3 
may be a better estimate than T = 0 for free-molecular, 
noncoalescing aggregation. 

(R; )  = a2k;2/D s12/' a-2/D r ( a  + 2 + 2/D)/r(a+2) (13) 

In eq 13 a is the monomer particle radius, k, is defined by 
N = k,(R,/a)D, and r is the gamma function. This allows 
us to measure R, and use this value to determine s1 
necessary for the description of the size distribution. 

With eq 12, one can show 

The data are now fit to 

I(@ = A@ n(N) S W , )  CUV (14) 

This equation uses N = k, (RJaID and is normalized to 
the experimental I(0) so the values of a and k, need not 
be known. Since R,, hence 81, is determined from the 
small qR, behavior, the only fit parameter is D, as in the 
monodisperse case. We again perform fits using the E, 
MM, and G structure factors for both T = 0 and T = 2/3. 
The resulta for T = 2/3 are shown in Figures 5-7 for run 
2. 
All fits are good with comparable x2 values and no 

systematics, in contrast to the monodisperse fits. The 
values of D, however, vary systematically with the cutoff; 
for T = 2/3 D(E) = 2.48, D(MM) = 1.59, and D(G) = 1.78. 

Table I tabulates these results for both runs and both 
T values. Similar resulta are seen for each run. The average 
fractal dimension for the exponential cutoff fit, D(E) N 

2.5, is unrealistically large comparedto other resulta. Both 
the Gaussian and modified exponential cutoffs (MM) yield 
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Figure 6. Fit of the Mountain and Mulholland structure factor 
with a scaling cluter size distribution with 7 = 2/3 to the scattered 
intensity data for run 2. 
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Figure 7. Fit of the Gaussian structure factor with a scaling 
cluster size distribution with T = 213 to the scattered intensity 
data for run 2. 

reasonable values for D, significantly improved from the 
monodisperse case. The Gaussian fit yields the best value, 
D 1.7-1.8 when compared to earlier work on this flame 
using a different optical method to measure D. Variation 
with T from zero to 2/3 is only about 5%. 

Discussion and Conclusion 
If the clusters are assumed to be monodisperse in size, 

none of the structure factors can fit the data to yield a 
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reasonable value of D. Certainly the value obtained from 
the exponential fit is not very bad but still beyond the 
range expected and previously measured. Of course the 
monodispersity assumption is a bad one given the sta- 
tistical nature of aggregation and the great body of previous 
knowledge concerning the cluster size distribution. Hence 
we eliminate these fits. 

Our results indicate that the effects of polydispersity 
must be included in a fit of the theoretical structure factors 
to our soot data. However, inclusion of polydispersity in 
the exponential structure factor fit leads to poor values of 
D. Hence this structure factor is eliminated. Without 
polydispersity, systematic deviation of the fits for MM 
and G occur near qR, - 2. Lin et al. made a similar 
conclusion. They showed that inclusion of polydispersity 
broadened the bend in S(qR,) in the region of qR, - 2 and 
this was necessary to fit their colloidal data. Whether 
this behavior near the bend in the structure factor could 
be used to obtain information regarding the nature of the 
size distribution is a worthwhile topic which we intend to 
pursue in the future. 

Our results also indicate that a structure factor corre- 
sponding to a cluster density correlation function with a 
cutoff sharper than exponential is necessary to describe 
our soot data. Both the structure factors derived from 
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the Gaussian and the modified exponential cutoff of 
Mountain and Mulholland do an adequate job of fitting 
our data when polydispersity is included, although the 
fractal dimension determined from the Gaussian fit is 
closer to the value expected and the value determined 
from previous measurements on this flame (run 1, D = 
1.82 vs 1.79). We would expect from Figure 1 that the 
Hurd and Flower, Lin et al., and Dobbins and Megaridis 
structure factors would do an equally satisfactory job of 
fitting the data with a reasonable D. Of course, all three 
"exponential" cutoffs belong to the same family of h(x)  - 
exp[-xa] where a(E) = 1, a(G) = 2, and a(MM) = 2.5. 
Here again we recall Mountain and Mulholland claimed 
that their precision implied the range 2 1  CY 1 3, which is 
consistent with our results. Future work will include 
comparisons of light scattering to visually analyzed TEM 
micrographs of collected soot particles. However, even 
barring perturbations incurred by soot particle collection 
from flames, we are uncertain how much more precision 
can be developed for our current conclusion that, for soot 
particles, (Y N- 2. 
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