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We numerically solved the Smoluchowski rate equation for different combinations of fragmentation
and aggregation kernels. The average cluster size, number of clusters, and cluster size distribution were
calculated as functions of time and found to reach equilibrinm values, Scaling and functional form of
the cluster size distribution have been obtained. Detailed comparison with previously reported analytical
predictions was made and satisfactory agreement was found. @ 1991 Academic Press, Inc.

I. INTRODUCTION

The process of irreversible aggregation of
small particles to form larger entities is behind
many physical phenomena in broadly diverse
areas of physics, chemistry, astronomy, and
biology. The study of such phenomena has
experienced a rebirth in the past decade largely
due to the realization that the resulting aggre-
gates of such processes may be described as
fractals and that the cluster size distributions
display universal scaling behavior (1, 2).

A more general point of view would include
the possibility that an aggregate breaks apart
or fragments as well as aggregates. Then irre-
versible aggregation would be a special case
when the fragmentation rate is zero. Many real
systems would involve both processes occur-
ring simultaneously to lead to an equilibrium
with constant size distribution, mean size, etc.,
and, in fact, this is of considerable importance
in polymerization, gelation, and colloid sci-
ence in general (3-11).

The general, mean field rate equation which
describes the evolution of the cluster size dis-
tribution is the Smoluchowski equation
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This equation describes the rate of change of
the concentration, n,, of clusters with k
monomers per cluster (k-mers). K(i, j) is the
aggregation kernel describing the aggregation
reaction rate of an i-mer plus a j-mer, and
F(i, J)is the fragmentation kernel describing
the fragmentation of an (i + j)}-mer into an i-
mer and a j-mer. Perhaps the most important
consequence of this equation compared to the
pure aggregation case when F = ( is that it
can lead to stable equilibrium solutions for
the cluster mean size and size distribution,
The first work on aggregation—fragmenta-
tion systems was that of Blatz and Tobolsky
(3) who desired to model polymerization-de-
polymerization reactions. They solved Eq. [i]
for the special case where both kernels were
constant. They found an equilibrium depen-
dent on the relative magnitudes of the constant
K and F. Family et al. (7) assumed that the
scaling ansatz known to hold for pure aggre-
gation also held in the steady state and showed
the existence of a critical exponent describing

315

Journal of Colfoid and Interface Science. Yal. 144, No. 2, July 1991

0021-9797/91 $3.00
Copyright © 19%1 by Academic Press, Inc.
All rights of reproduction in any form reserved.



316

the equilibrium cluster-size distribution. So-
rensen et al. (8) extended the use of the ag-
gregation scaling ansatz to all time and man-
aged to derive expressions for the equilibrium
mean size and characteristic time to reach
equilibrium in terms of the relative strengths
of the kernels and the monomer concentra-
tion. They also derived conditions for stability
of the equilibrium, an exponent relation be-
tween the aggregation, fragmentation, and
equilibrium regimes, and showed that for
small deviations from equilibrium the relax-
ation is exponential. Their derivation was
criticized, however, by Vigil and Ziff (9) who
showed that certain parameters used by So-
rensen gt al. as constants were in fact not con-
stants, More recently, Meakin and Ernst ( 10)
extended the concept of scaling of the cluster-
size distribution to show that scaling early in
the growth process, when aggregation domi-
nated, was described by well-known “‘conven-
tional” concepts; but later as the system ap-
proached equilibrium, the scaling transformed
into another form. Thus the simple scaling as-
sumption used by Sorensen et al. does not hold
and one must question their results. Finally,
Vigil and Ziff (11) have presented a study of
certain special cases of the kernels in Eq. [1]
and found that a stability criterion equivalent

1/,

FiG. 1. Reduced size vs. reduced time to demonstrate
the evolution of the mean size for a variety of sum kernel
combinations, K(/, j} = (i + /)* and F({, /) = (i + j)*.
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time (arb. units)

FiG. 2. m(t) vs. time for a variety of k values. The
initial distribution was n,{0) = 1000 8,,. Kernels used
were K(i, /) = (i + ) and F(i, /) = (i + j3*' which
yields 5, = 63.3.

to that developed by Sorensen er al. held. We
see a number of very interesting phenomena
arising from Eq. [1}: equilibrium, stability/
instability, critical exponents and relations,
and new scaling concepts. A question remains,
however, concerning the validity of the results
of Sorensen et al. derived from their simple
scaling assumption. Thus it seems the clear
light of experiment would be helpful, and it is
the purpose of this paper to report numerical
experiments involving Eq. [1] to visualize and
test these various predictions. We find that, to
a degree, everyone is correct. Qur numerical
results support the work of Vigil and Ziff (9)
and Meakin and Ernst ( 10) yet show that the
approximations inherent in the analysis of So-
rensen et al. (8) are not severe, hence their
theoretical predictions have useful accuracy.

II. THEORETICAL REVIEW

Sorensen et al. began with the Smolu-
chowskt equation including both aggregation
and fragmentation, Eq. {1], to study the mean
cluster size evolution. They assumed the clus-
ter size distribution was described by the scal-
ing ansatz

(1) = Mis(8) 7 p(x). (2]

In Eq. [2], M, is the first moment of the size
distribution, \_vhere the moments are defined
by M; = 2y k'ng, s(t) is the mean size defined
as
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s(6) = My/ M, (3]

and ¢(x) is the scaling function with x = k/
5. The kernels were assumed to be homoge-
necous functions of their arguments, i.e., K{ci,
¢j) = ¢*K(i, jy and F(ci, ¢j) = ¢*F(i, j).
Furthermore, following Family et af, the
strengths of the kernels, k. and ky, were defined
by K(i,j) = k¥(i,j)and F(i, ) = ke ®(1, ),
where ¥(1, 1) =$1,1)= 1.

They then found the rate of change of the
second moment, hence that of s as well, using
Eq. [1] in integral form. This led to a differ-
ential equation for s,

§= ﬂllﬂk‘-;sJk - bkf5a+2. [4]

In Eq. [4] @ and b were taken to be constants
given by

a=f ﬂf dyxy¥(x, Y)$(x)d(y) [5]
[ 0
and

b=f0 dxfo dyxy®(x, y)¢(x + y). [6]

It is these parameters that Vigil and Ziff (9)
showed were dependent on the order of the
moment used in deriving Eq. [4] and hence
could not be rigorously constant. Thus at best
a and b are only approximately constant and
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FiG. 3. Demonstration of the exponential approach with
time to equilibrium for the mean size. The optimized
equilibrium size s, was picked from the most linear curve.
The decay constant is yty. The kernel combination for this
example is K(i, /) = (i + )% and F(i,j) = 1.
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it is one of the purposes of this paper to eval-
uate the consequences of this approximation.

Given this approximation, that 2 and b are
constants, Eq. [4] yields equilibrium solutions.
The long-time equilibrium size, Sy, and the
characteristic time to reach equilibrium, ¢,
were found to be

$o = (Miak./bks)” 71
and

sg~t - _
to = 3y = (Miake) (k) (8]
where

y=(a—A+2)". 19]

This last relation is the exponent found by
Family et a/. Furthermore, Eq. [4] allowed
stable solutions when y > 0 and unstable when
y < 0. The total number of clusters is given
by the zeroth moment, M, and if its equilib-
rium value is called Ny, they found that

Ny = M sg! J; o(x)dx. [10]
Since growth when t < ¢, is characterized by
s~ t*with z = (1 — A)™!, and breakup when
t < tyis characterized by s ~ t* withz' = —(«a
+ 1)7!, an exponent relation exists between
the exponents describing growth, breakup, and
equilibrium,

t/y=1/z+1/z. (1]

Finally, it was shown that for smalfl deviations
from equilibrium, é = |s — 5[/5 < 1, the
system relaxes back to equilibrium exponen-
tially as

5 — §g ~ eV, [12]

Meakin and Ernst developed the important
result that the scaling distribution has two dif-
ferent forms in an aggregation-fragmentation
system. The first form appears early in the sys-
tem evolution in the aggregation dominated
regime and is identicat to the usual scaling an-
satz found for pure aggregation systems, Eq.
[2}. The second form appears late in the sys-
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tem evolution as the system approaches equi-
librium and has the same form as Eq. [2] but
the function ¢(x) is different. A characteristic
time dividing these two regimes was found to
obey

T(k) ~ k™. [13]

In Eq. [13], k£ measures the relative strength
of the fragmentation and aggregation kernels,
presumably k = k¢/k. in our notation, and
the “new™ exponent is x = yfz = (1 — A)y
{not to be confused with the variable x = k/
5 in Eq. [2]). They were then critical of the
use by Sorensen et al. of the scaling ansatz in
Eq. [2] since this should not apply at all time.
It 1s noteworthy, however, that despite the
approximation incurred by Sorensen et al. by
use of the scaling ansatz Eq. [2] for all time,
the characteristic time separating the evolving
and equilibrium regimes is obtained correctly.
In fact, the characteristic time (k) is our fg
in Eq. {8] above. Furthermore, the exponent
x is not new, it is the exponent for ky also in
Eq. [8]). If k = k¢/k., then Eq. [8] suggests
that the Meakin and Ernst result, Eq. [13], is
incomplete, and there are two exponents, one
for ks and one for k., needed to describe the
scaling of the characteristic time (k) = fp.
To see this we redo the scaling argument
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used by Meakin and Ernst to obtain Eq. [13].
Now, however, we pass from a fragmentation
dominated regime, obtained by starting with
a mean size much greater than equilibrium,
to the equilibrium regime. Then, following
Meakin and Ernst we assume a characteristic
time r( k. ) which increases as r(k;) ~ k=* for
k. -» 0. For ¢t » 7(k_.) the process is at equilib-
rium, for ¢ € 7(k.) the process is essentially
irreversible fragmentation, This implies the
following scaling form for the mean cluster
size:

s(t, ko) ~ KLU(TY; T = t)7(ke) = th'. [14]

To match the behavior of irreversible frag-
mentation as k. — 0, the function  must de-
crease algebraically, Yy(T) ~ T where z’
= —(a + 1}, and must be independent of
k., implying y = z'x'. Thus x’ = y/z' = ~(a
+ 1)y which is the exponent given in Eq. [8].
Thus it seems the complete picture involves
three regimes, aggregation and equilibrium
dominated regimes, as told by Meakin and
Ernst, and a fragmentation dominated regime
as well. The theory shows explicitly that
whereas sy is symmetric in k. and kg, ie., is
only a function of their ratio, ¢, is not sym-
metric, but rather has different dependencies

TABLE 1

Comparison between Numertcal Calculation and Analytical Theory

S lo

Errar Error

K(1py i f) ¥ Numerical Theory {®} Numerical Theory {%}

1 1 2 63.5 63.25 0.4 0.0663 0.0633 5

1 4 2 31.7 316 0.3 0.0332 0.0316 5
0.25 1 2 32.0 31.6 1.3 0.136 0.126 8
i+ n™ 1 1.9 80.6 81.6 —1.2 0.054 0.049 10
(i + p°? I 1.7 141.4 148.6 —4.8 0.030 0.027 11
(i + 1 15 288 317.5 -9.3 0.0136 0.0126 8
1 G+ 2.1 51. 50.2 1.6 0.055 0.050 10

1 (i + p* 2.3 35.4 33.6 5.4 0.044 0.034 30
i+ ™ i+ p™ 2 63.3 63.25 0.08 0.043 0.039 10
G+ G+ 2 63.25 63.25 0 — — —
(i3 1 1.7 121.3 121.3 0 — — —
(if)0s ] 1.4 307 310.3 ~1.1 — — —
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on k. and k¢, contrary to the Meakin and Ernst
assumption.

The central problem with the work of So-
rensen et al. is the use of the scaling ansatz,
Eq. [2]. The work of Meakin and Ernst dem-
onstrated that the concepts of scaling must be
modified and Eq. [2] does not hold throughout
the process as it evolves from either aggrega-
tion or fragmentation dominated to the equi-
librium regime. Vigil and Ziff’s {9) accurate
comment that the parameters g and b are not
constants, as is necessary for the rigorous ap-
plication of Eq. [4], is no doubt a consequence
of this scaling ansatz. Yet Eq. [4] works to
yield the proper exponents for the character-
istic size and time and to give the correct sta-
bility regimes. It is then relevant to ask how
well the other analytic predictions hold. To
answer this question we have used numerical
methods to solve Eq. [1]. We find the predic-
tions of Sorensen et @l work very well. We
then suggest why this is so.

III. NUMERICAL METHOD

Equation [1] is an infinite set of coupled,
nonlinear first-order differential equations. We
approached the solution to this equation in
two ways. The first was to follow the evolution
of the population and the mean size with time

10 N K{i,j]=(i+i)a!

o Kiij)={ij)*
o Klij)= i)™

M,

FIG. 4. Mean equilibrium size versus the first moment
for three kernel combinations. Dashed lines are a first ap-
proximation theoretical fit and solid lines are a second
(and better) approximation theoretical fit to Eq. [7] as
described in the text.
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FIG. 5. Equilibrium mean size, g5 (O), equilibrium
number of clusters, Ny (X}, and their product {[1) as a
function of the exponent y = (a — A +2) for K{i, )
={i+ /) and F({, j} = 1. Dashed line is a first approxi-
mation theoretical to Eq. { 7] as described in the text.

by integrating the system of equations. The
second was to solve directly for the equilibrium
state which the system would reach after long
evolution time.

Equation [1] was cut to a finite number of
equations by setting a limit to the maximum
value k can have in the sums of Eq. [1]. This
Konax was usually 1000 but when sq 2 knae/ 3,
as it was for larger A, we found this truncation
caused errors in sp and increased k., until no
variation in Sp was seen,

In most cases we watched the temporal evo-
lution of the size distribution a,(¢) with a
starting distribution of 1000 monomers. We
also solved the case of F = K = (i + j)*' start-
ing from a broad seminormal distribution
{truncated for k < 0), and the case of K = 1,
F = 4 starting with twenty-five 40-mers, The
last two cases were 10 observe the approach to
equilibrium from a fragmentation dominated
regime.

Our numerical method was to integrate Eq.
{1] using both the central difference and the
fourth order Runge-Kutta method with vari-
able time step (12). The time step was varied
to ensure that we calculated in a regime with
results independent of the time step. We re-
corded the size distribution m(¢) for 1 < k

Journal of Cotloid and Interface Science. Vol. 144, No. 2, July 1994



320

< koax as a function of time. We also calcu-
lated and recorded the time dependencies of
the zeroth, first, and second moments of the
size distribution, My, M, and M;. M, should
be a constant and this constancy was a check
of our calculations. We pushed the integration
procedure until the mean size, s = M/ M,
approached equilibrium. Qur step size was
quite small at the beginning of integration,
then it increased gradually to accelerate the
procedure.

Another program was written to deal di-
rectly with the equilibrium situation. After
long evolution time, a steady state should be
obtained, thus the left hand side of the Smo-
luchowski Equation {1] is zero for all k, i.e.,
n, = 0. This enabled us to express any given
n, as a function of all the other n,’s. With any
reasonable initial distribution, we could al-
gebraically iterate and update the population
until we reached convergence, i.e., the mean
size and the population did not substantially
change. Although we could not watch the
temporal evolution of 7,(¢) and its moments
with this method, it was a fast routine that
could be used to jump directly to equilibrium.

IV. RESULTS AND DISCUSSION
A. General Equilibrium

Figure 1 displays the evolution of the mean
size versus time in reduced vanables s/s; and
/1y as determined from our numerical solu-
tion of Eq. [1]. One can qualitatively see the
aggregation dominated and equilibrium re-
gimes for t/tg < 1 and > 1, respectively. The
increasing curvature with increasing A at small
times is the result of s ~ t*with z = (1 — A) ™!
expected when aggregation dominates. An-
other example of the approach to equilibrium
is given in Fig. 2, where n, for a variety of k’s
is displayed as a function of time for the kernel
combination K(i, j) = (/ + /)*! and F(i, j}
= (i + j)*'. The initial distribution was all
monomers, £ = 1, hence one sees n;(¢) fall
monotonically with time, n,.(¢) for k < 54 all
show maxima, and n,(¢) for k > 5, all increase
monotonically with time.
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FiG. 6. Equilibrivm mean size, s; {(Q) equilibrium
number of clusters, N, (X), and their product (O3} as a
function of the exponent y = (& — A + 2)~! for K{(i, j)
= (§j)*? and F(i, j) = 1. Dashed line is a first approxi-
mation theoretical fit and solid line is a second (and betier)
approximation theoretical fit to Eq. [7] as described in
the text.

The values of sg and ¢, used to obtain the
plots in Fig. | were determined by analysis of
the approach to equilibrium which should be
exponential as described by Eq. [12]. An ex-
ample of this is given in Fig. 3 where we plot
§ — 5p versus ¢ semilogarithmically. Straight
lines are obtained supporting Eq. {12] and the
best fits to the straight lines yield sy and y#o.
Values for s, and ¢, for the variety of kernel
combinations used are tabulated in Table L

To compare these numerical values of s,
and f; to theory, we use the analytical results
Eqgs. [7]and [8]. M, = 1000 in all these runs
and k. and krare determined from the kernels.
The values for 2 and & could not be calculated
analytically due to our ignorance of the ana-
Iytic form of the size distribution »n, for ar-
bitrary kernels. As we will show below, the
scaling function is almost exponential, ¢(x)
= Be P~ for kernels of the same homogeneity,
X = a, and approximately so for other kernel
combinations. The normalization condition
that M|, = X k n; and the use of s = M, /M|,
Eq. [3], vield B = 4 and 8 = 2. Thus we use
this along with ¥(x, y) = ®(x, y) = 1 as a
lowest-order approximation to calculate 2 and
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b to aliow for a comparison of theory to the
numerical values. These theoretical values are
also given in Table L.

Inspection of Tabie I shows good agreement,
especially when A = «. Systematic differences
are seen, however. The equilibrium size is ei-
ther smaller or larger than theory depending
on whether X > o or A < ¢, respectively. The
characteristic time, £y, always deviates larger
than theory. We cannot determine whether
these deviations are due to the exponential
approximation for »; or the Vigil-Ziff (%) ob-
jection that @ and b are inappropriate. It is
most likely a combination of these two errors.

Regardless of this, the deviations are small, -

especialty for small A and «, and we conclude
that Eqgs. [7] and [8] work in a satisfactory
manner.

The values of 5y and ¢ in Table I were de-
termined from the time evolution study of
ni(t}. As described in our numerical proce-
dure section, we also determined the asymp-
totic solutions for »n,(2), sy and ¢, by solving
the Smoluchowski equation, Eq. [1], with
ni(t) = 0 expected at equilibrium. This has
allowed us to make a more far reaching test
of theory versus numerical values in that we
have atlowed both y, through A, and M, to
vary widely.
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FIG. 7. Demonstration of how quickly the system de-
velops a scaling form, n, ~ s~26(k/s). Also note how no
evolution is seen between t/4 = 0.13 and oo on the scale
of this graph. The kernel combination is K(i, j} = (i + j)**,
Fi,p=1.
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FiG. 8. Scaling plot showing small x = k/s evolution
ast/ty — co. The kernel combination is K(, ) = (i + j)°5,
Fli, )= 1.

Figure 4 shows s, as a function of M| for
three different aggregation kernels combined
with a constant fragmentation kernel F({, j)
= |. The theoretical lines are calculated from
Eq. [7]. Once again, approximation must be
made when calculating the values a and b. We
have made two levels of approximation in or-
der to see the importance of the approxima-
tions. The lowest order approximation is to
assume, as described above, that n,(f) is ex-
ponential in k& and also that ®(x, y) = ¥(x,
¥) = 1. The next order and better approxi-
mation is again to assume an exponential n.(¢)
but now use ®(x, y) and ¥{x, v) equal to
their actual values. The integral in Eq. [5]
could not be solved exactly for sum kernels of
the form (x + y)* but suitable approximations
were used. Figure 4 demonstrates good agree-
ment between theory and the numerical values
especially when the better approximation is
used, although results using the lower order
approximation are not bad.

Figures 5 and 6 show both s, and Ny and
their product as functions of y = (e — A + 2}7!
for combinations of F(i, j) = | and sum and
product aggregation kernels, respectively.
Once again two levels of approximation were
used in calculating @ and b which were in-
volved in calculating sp. Again good agreement
is seen for sy, better for the better approxi-
mation. Deviation of theory and numerical
values increase with increasing y, however,
and we will show below this is most likely a
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result of an increasing difference of n.(¢) from
exponential. Also note that theory and nu-
merical values cross at y = § which can cor-
respond to & = A = 0, a combination known
to yield an exponential #.(1).

The product sV is also shown in Figs. 5
and 6 and it is not a constant as forecast by
Sorensen et al. Fora = A =0, n = M52
d(x) = 4M s 2e7 %S (see above). Thus by
Eq. [10], soNo = 2M, = 2000 fora = A =0
or y = 1. This value appears true for the nu-
merical results at y = 1 in Figs. 5 and 6 as
well. For y > 4, however, 55V, > 2000 and
niot a constant. This is due to the nonconstancy
of [° ¢(x)dx as y varies; we find the shape of
o(x)is a function of K and F. If we had taken
5 = M, /My instead of M,/ M, then the prod-
uct of Nysp would have remained constant.

B. Scaling

We first demonstrate how quickly scaling is
established by Eq. [1] after an initial size dis-
tribution composed solely of monomers 7,(0)
= M6, . This is done by plotting (1) ver-
sus k/s. We will take a general attitude that
scaling is indicated when such plots fall on the
same curve.

a6 L a
o A a
o5} o o 05 0
& a 03 o]
Q4 r e e QI [+])
b 03 ko a
o2t S
o
o
Ol ] a
o @ c o o®* . 4 & a A a
Qbp
10053 L H L 1 1 1
Q | 2 3 4 5 6 7

t/te

FIG. 9. The exponent r vs, reduced time ¢/1;. All systems
evolve to v ~ 0.05 but this value is a residual value rep-
resenting the limiting slope of the scaling plot 5%n, vs. &/
s which is always slightly negative (to yield = > 0}. Solid
points indicate = determined when only the first two points
on 2 log-Jog scaling plot could fit to a straight line. Data
represented by the circles started monodisperse but with
the initial size greater than the equilibfium mean size.
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F1G. 10. Scaling plot for a variety of kernel combinations
of the form k{f, j) = (i + j)*, F(i, [} = (i + j)=. For k/
§ = 1 all curves are linear, hence », is exponential, and
fork/s < | have r =~ 0.

Figure 7 is such a scaling graph plotted
semilogarithmically for the kernel combina-
tion K(i,j) = (i + j)®*, F(i,j)= 1. One sees
that very soon, relative to ¢y, after ¢ = 0 the
different time plots fall on nearly the same
curve to indicate an approximate scaling is
achieved. This approximate scaling at small
t/tp is very important in the analysis of Eq.
[1] as performed by Sorensen et al. nothwith-
standing the objections of Meakin and Ernst.
Use of the scaling ansatz, Eq. [2], at early
times after a very nonscaling start is justified
as a good approximation by Fig. 7.

We find in general that the size distribution
does continue to evolve past 1/2, > 1, although
it is not readily apparent in Fig. 7 because the
evolution continues only for k/s < 1. To il-
lustrate this we plot s>, (1) vs. k/5 on a double-
log scale for a similar kernel combination, K(,
Y=+ H%, F(i,j) =1 in Fig. 8. Here for
k/s < 0.3 we see the size distribution continues
to evolve past ¢/t ~ L. Not shown in the graph
is the nonevolving exponential tail for &/s > 0.3
which was readily apparent in Fig. 7. For k/s
< 0.3 the double-log graphs are straight lines
implying the power law r, ~ k77 in this region.
The exponent + decreases with time.

In pure aggregation systems, i.e., F(i,j} =0,
power law behavior for n; is expected for sum
kernels with 7 < 1 + A (13). Thus we may
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interpret the declining  with time as another
manifestation of the crossover from aggrega-
tion dominated to equilibrium regimes as dis-
cussed by Meakin and Ernst. In fact, the kernel
combinations which we have studied fit into
their class (iii) category for which they predict
7 = 0 at infinite time. Figure 9 shows 7 as a
function of reduced time, ¢/t,, for a number
of examples and indeed 7 does approach zero
at long time.

We can achieve the asymptotic t/f; = o
size distribution with our second numerical
analysis method wherein we set ri,(¢) = 0. Re-
sults for a variety of kernel combination are
given in Fig. 10. Here we se¢ a systematic trend
with & — A. For &« — A = 0 we find exponential
(1) for all kincluding k = 0. Fora - A <0,
n; increases rapidly as k — 0 whereas for «
— A > 0 the &k — 0 region is rounded below
an exponential. For ali « — ) the size distri-
butions are exponential for k/s = 1.

We believe it is this quasiexponential be-
havior which allows the analytical results to
have reasonable accuracy. As Vigil and Ziff
{9) pointed out, g and & are constants for K(7,
§) = F(i, j) = 1 and ¢{x) exponential. OQur
numerical results show ¢(x) is exponential for
k/s> 1 for a variety of A and «. We have also
seen that this exponential behavior improves
for A ~ a. Meakin and Ernst were correct to
object to the use of the scaling ansatz because
the scaling function should evolve, but Figs.
7 and 8 demonstrate that the evolution from
aggregation dominated to equilibrium regimes
is confined to small k/s and hence may have
little effect on integrals such as those involved
in ¢ and b. Certainly, the theory proves itself
in the correct prediction of the exponents de-
scribing the dependencies on &, and k¢ of the
equilibrium size and the characteristic time.
It also properly describes stable and nonstable
regimes. Finally, its predictions for the equi-
librium size and characteristic time show rea-
sonable agreement with the numerical results.
Thus it seems that limitations placed into the
theory, i.e., the evolution of the scaling and
the indeterminacy of the constants @ and b,
are not severe.
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V. SUMMARY

We have numertcally solved the Smolu-
chowski rate equation including both aggre-
gation and fragmentation kernels. The theo-
retical predictions of Sorensen ef al. regarding
equilibrium cluster sizes and characteristic
time scales are found to hold. The size distri-
bution was seen to quickly reach a scaling form
and then slowly evolve at /s < 1 as the system
passed from an aggregation dominated to an
equilibrium regime in accord with the predic-
tions of Meakin and Ernst. The scaling func-
tion, ¢(x), was well approximated by an ex-
ponential, and this and the small evolution of
the cluster-size distribution as the system ap-
proached equilibrium were used to show that
the approximations inherent in the theory do
not severely hinder its usefulness.
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