Evolution of the Cluster Size Distribution during Slow Colloid Aggregation
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We have made in situ dynamic light-scatiering measurements to observe the real-time evolution to
scaling of the light-scattering moments of a gold colloid cluster size distribution during aggregation in a
slow aggregation regime. Quasi-monodisperse sols with significantly different aggregation rates evolved
quickly 1o the same polydispersity in approximately equivalent reduced time units. This behavior and
the experimental values of the asymptotic polydispersity agreed with numerical solutions to the coagulation
equation and theoretical forms for the large-size part of the distribution. Numerical solutions showed,
however, that the small-size part of the distribution daes not reach its asymptotic scaling form in the
time scales of our experiments. @ 199 Academic Press, Inc.

INTRODUCTION

Considerable interest has been directed to-
ward understanding the kinetics of aggregation
in the recent past ( 1, 2). This has been incited
by the discoveries that aggregates display a
scale invariant symmetry and hence are de-
scribed by fractals (3, 4), and thai the cluster
size distributions scale with time (5, 6). Fur-
thermore, the kinetics of aggregation are rel-
evant to a wide variety of natural phenomena,
The Smoluchowski equation is the basic
equation of aggregation and is given by (7, 8)

dn 1

) > KU, jynn;

i+ j=k
—m 2 K(k, jyn;, [i]
i=1

where n;(¢) is the cluster size distribution de-
scribing the concentration of clusters with &
monomers per cluster, and K({, j) is the ag-
gregation kernel. For long aggregation times
and for homogeneous kernels where

K(ai, aj) = a*K(i, j) 2]

the Smoluchowski equation supports the fun-
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damentally important result that the size dis-
tribution exhibits scaling (3, 9). That is,

ni(1) ~ s % k/s), [3]

where the time dependence is found solely in
the mean size s(¢). This scaling implies that
the relative shape of the distribution is constant
and hence a universal function of the variable
x = k/s, independent of the initial distribu-
tion.

Evidence for scaling exists in many forms.
Friedlander’s pioneering work showed the ex-
istence of self-preserving distributions in hy-
drosols and atmospheric aerosols undergoing
Brownian coagulation (5, 10). These distri-
butions were confirmed numerically by Hidy
(11). The more recent simulations by Viscek
et al. (6) have demonstrated scaling parame-
terized by exponents describing the power-law
dependencies of n. () on k and ¢,

Recent experimental work includes that of
von Schulthess ef al. (12), who measured the
cluster distribution for slowly aggregated latex
spheres. In this slow, reaction-limited regime
they found that the mean size increased ex-
ponentially with time and the size distribution
was represented by a power-taw ny, ~ k™7 with
7= 1.4+ (.15, Weitz and Lin (13) coagulated
gold hydrosols, collected the aggregates, and
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determined the size distribution with trans-
mission electron microscopy. They found ev-
idence for dynamic scaling and size distribu-
tion shape dependence upon the rate of ag-
gregation. In the slow, reaction-limited
aggregation regime, which was again charac-
terized by an exponential growth, the size dis-
tribution followed a power-law n; ~ k™" with
7~ 1.5 for small x = k/s5. Subsequently, Ball
et al. (14) developed a reaction-limited aggre-
gation kernel which successfully predicted this
behavior. In another study Martin (15) used
dynamic light scattering to study scaling in the
slow aggregation regime in silica sols. He
showed that the inverse relaxation time of the
light-scattered correlation function and the
Rayleigh linewidth scaled with different pow-
ers of the momentum transfer ¢ when gR »
1, where R is the mean aggregate radius. Since
the power by which these characteristic times
scale 1s related to the size distribution through
the exponent 7, he was able to find 7 ~ 1.85
in the small-x regime. He also used the shape
of the correlation function to infer r ~ 1.9, a
similar value. Finally, by fitting the long time
tail of his scattered light autocorrelation func-
tion to a stretched exponential, he concluded
that an exponential cutoff at large x was fea-
sible.

One many conclude from these studies that
in the reaction-limited regime exponential
growth is seen and the small-x part of the dis-
tribution is power law. Some variation in the
exponent 7 currently exists. All these studies
are concerned with the small- x part of the dis-
tribution: von Schulthess et a/. (12) and Weitz
and Lin (13) by direct observation, and Martin
(15} by the fact that in the gR > 1 regime the
scattered intensity per cluster varies as (k) ~
k, hence the intensity weighted distribution is
md(k) ~ k%% which is dominated by small
k. As mentioned above, Martin concludes that
an exponential, large-x cutoff is consistent
with his data, but this must be viewed with
caution given this intensity weighting of the
small- x part of the distribution.

In this paper we report real-time, in situ
light-scattering measurements for an aggre-
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gating colloidal gold cluster distribution and
verify the distribution’s approach to a scaling
form. Our light-scattering measurements were
confined to the gR < | regime where the scat-
tered intensity is proportional to the square of
the cluster mass, i.e., (k) ~ k2. Hence for 7
< 2, the intensity-weighted distribution in-
creases with k. This means that our results are
sensitive to the large- x part of the size distri-
bution. Thus, in contrast to the work above
our measurements are real-time and large-x
sensitive. We used dynamic light scattering
and measured the time-dependent intensity-
weighted moments of the aggregating distri-
bution. These weighted moments are the first
and second cumulants of the scattered-light
intensity autocorrelation function (16, 17).
They contain information regarding the mean
cluster size and relative shape of the cluster
distribution. From these, we were able to
watch the relative shape of our cluster distri-
bution evolve and then stop changing with
time, indicating the distribution had scaled. It
is important to realize that scaling can be ob-
served without the absolute determination of
the cluster distribution, 7.{f). Moments can
be used to classify a distribution uniquely.
Here, we use intensity-weighted moments to
classify the scaling behavior of our distribu-
tion.

Our experimental results demonstrate: (1)
The evolution to and the maintenance of dy-
namic scaling from arbitrary initial distribu-
tions during aggregation. (ii) The quickness
of the approach to scaling, within one to two
characteristic aggregation times (defined be-
low). (iii) The large x = k/s limiting form,
P(x) = x ¢ %, where A is the kernel ho-
mogeneity (9), describes our data accurately.
(iv) Comparison of our experimental results
to numerical solution of Eq. [1] indicates that
while the large-x part of the distribution es-
tablishes its asymptotic limiting form quickly,
the small- x part of the distribution does not.

EXPERIMENTAL

Gold colloids were prepared by sodium ci-
trate reduction of chloroauric acid as described
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by Enustun and Turkevich (18). These sols
were then carefully filtered through 0.2-pm
filters to remove dust particles which could
seriously interfere with our desire to measure
the light-scattered second cumulant. Aggre-
gation was initiated by addition of pyridine to
~107> M. This caused a slow aggregation
which leads to clusters with a fractal dimension
of D ~ 2,03, as described by Weitz et al. {19)
in gold colloids and Schaefer e /. (20) in silica
colloids. The faster diffusion-limited regime
was not studied because light-scattering spectra
with enough accuracy for determination of the
second cumulant could not be obtained in a
short time scale,

The dynamic light scattering or photon
correlation spectroscopy (PCS)} experiment
was fairly standard (17), involving an argon
ion laser operating at A = 488 nm and a scat-
tering angle of 90°, Spectra run times were 3
to 5 min in duration, which were short com-
pared to the overall reaction rate, in order to
avoid artificial broadening of the size distri-
bution.

Some discussion has appeared in the liter-
ature regarding the optical properties of gold
colloids (21, 22). Central to this contention
is the question whether depolarized light scat-
tering affects light-scattering results. For our
colloids we found the depolarization ratio to
be less than 1% and this small amount had no
measurable effect on our PCS results.

Data analysis involved fitting the experi-
mental correlation functions to

C(t) = B+ dexp(—pid + jpat®), [4]

where u; and g, are the first two cumulants.
The ratio @ =u,/u? is called the polydispersity
index and is a measure of the relative width
of the intensity-weighted size distribution. It
has been extremely useful in the past for mea-
surement of size distributions in particulate
systems (23) and characterization of nonex-
ponentiality in careful light-scattering mea-
surements in critical fluids (24 ). Experimental
determination of @ can be difficult due, in
large part, to uncertainty in B, To measure B
accurately we looked at C(t) at large t where
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C(t) = B and calculated B from the photo-
count statistics. We were able to obtain reliable
agreement between these two values. Other ef-
fects such as photomultiplier afterpulsing and
heterodyning with stray light were checked and
determined to be small. With careful experi-
mental technique we were able to limit our
experimental uncertainty in Q to +0.02.

Five different samples were studied. Initial
radii and polydispersity indices ranged from
9.5 to 15 nm and 0.04 to 0.10, respectively,
To make interpretation of our data straight-
forward and to weight the large-size part of the
distribution, we constrained our data to the
gR < 1 regime.

Time Evolution of Scaled Moments

As we stated previously, the light-scattering
cumulants are moments of the cluster size dis-
tribution n;(¢). The time evolution of the Nth
moment, My, can be found by multiplying
Eq. [1] by &7, then summing over k to yield
My=1} S [+ )Y - ¥~ iY]

5

X K(i, jymny. [5]

Following Taylor and Sorensen (25), we now
assume that the cluster size distribution has
scaled, hence is represented by Eq. [3], and
that the aggregation kernel is homogeneous
with degree A. Then,

My = s()YV2PMIIW(K), (6]

where 5{¢} is the mass-weighted mean cluster
size and Ix( K) a constant dependent on K(/,
J). Equation [6] describes the time evolution
of scaled moments according to Smoluchow-
ski’s equation. By setting s = M,/ M, in Eq.
[6], an expression for s can be found (9) which
upon substitution intc Eq. [6] yields

My = My(0)(1 + 2/1)". [7]

.Here, 8 = (N — 1)z, where z has the well-

known value {(9) 1/(1 — A\) and £ is a char-
acteristic aggregation time related to the initial
size and kernel homogeneity.

We can now consider the time evolution of
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the moments that describe the experimental
light-scattering parameters. The first camulant
in the Rayleigh regime where I ~ k? is given
by

B = 2 D) X kg, [8]
X K

where D, is the hydrodynamic diffusion coef-
ficient for a cluster of size k. Since D; is in-
versely proportional to the cluster radius, we
will assume D, oc k~/P, where D is the ag-
gregate fractal dimension. Thus,

- Msyip

7 19

£

and from Eq. [ 7] we obtain
p(8) = g (0)(L + 1/1)77P. [10]

In obtaining Eq. [10] we have assumed that
the hydrodynamic diffusion coefficient varies
as Dy ~ k~'/P  This assumption may not be
exact for very small k; the question is, How
good is this assumption? Chen, Deutch, and
Meakin (26), and Meakin, Lin, and Deutch
{27) have studied the diffusion coefficient of
fractal aggregates by computing the Kirk-
wood-Riseman drag. In their first study (26)
they found for clusters with a fractal dimension
of 2.5 an cffective fractal dimension of 2.12
for drag on clusters as small as 10 particles. In
their second work (27) clusters with a fractal
dimension of 1.81 had an effective dimension
of 1.84 for the diffusion coefficient for clusters
larger than 50 particles. Neither study showed
any systematic departure from the power-law
dependence of the effective hydrodynamic ra-
dius with k even at small k. Furthermore, both
results can be accurately extrapolated to the
correct monomer {(k = 1) value. These facts
imply that use of I, ~ k™ '/? for small &£ might
not be unreasonable. Our experiments began
with monomeric spherical gold particles and
were allowed to evolve until the radii were be-
tween 2.6 and 7.3 times the initial values. This
implies that our final cluster sizes were be-
tween 7 and 53 particles per cluster for the five
different sols. This is the range studied by Chen
et al. and suggests that our approximation is
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good near the end of our runs. Near the be-
ginning of our runs our assumption is unsub-
stantiated but certainly plausible.

RESULTS AND DISCUSSION

The first cumulant data were fit to Eq. [10]
with D = 2.05, one example of which is shown
in Fig. 1. Due to the limited time scales (to
keep gR < 1) the fits were limited in the ac-
curacy of . and z but had sufficient accuracy
for our purpose, discussed below. The value
of z led to values for the kernel homogeneity,
for all sols, in the range X = 0.5 = 0.1 for D
= 2.05. The data could not be fit to an expo-
nential dependence. This is surprising since
earlier work on gold colloid aggregation using
similar pyridine concentrations as a coagulant
showed exponential growth (19). We cannot
at this time offer an explanation for this dif-
ference. However, we point out that our hom-
ogeneities support the recent computer work
of Meakin and Family (28, 29), who found
kernel homogeneities of A = 0.5-0.6 for slow
cluster—cluster aggregation models. It is inter-
esting to note that Eq. [9] approaches an ex-
ponential as z = oo, 1.e.,, A — 1. Thus, Eq.
[9] and an exponential are similar for large z.
Our value for A is corroborated by the O mea-
surements described below.

At this time we give a brief speculative ar-
gument on the origin of A =~ 0.5 in our aggre-
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F1G. 1. Time evolution of the first cumulant for sol 3.
The relative first cumulant, g, (0)/ g, (£}, is plotted versus
time ¢ plus an adjustable parameter z.. Unadulterated data
are with . = 0. To fit to Eq. (10) a value of t, = T h is
required. This fit yields a straight line with slope equal to
z/ D on this graph.
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gating colloid. The Brownian coagulation ker-
nel has the functional dependence

K(i, j) ~ ('P + j12)

X (VP 4 jTIP) (1)

For a slow aggregation processes, cluster dif-
fusion is no longer the rate-determining step,
hence the second term in Eq. {11] is ineffective
since it is the diffusional term. Therefore, one
can conjecture

K(i, j)y ~ (i"0 +j1y, (12}

implying A = 1/D. For D = 2,05, A =~ 0.5,
consistent with our experimental value.

(), the key parameter in this report, is a
measure of the distribution’s polydispersity
{16, 23). For the scattering intensity propor-
tional to the square of the cluster mass, J ~ k?
{gR < | guarantees this), Sorensen and Taylor
(30) derived the expression

_ My a,pMy
S S 2k
MZ—i,"D

which we refer to as the asymptotic polydis-
persity index. One recognizes the importance
of this result by using the scaling distribution,
Eq. [3], to calculate the moments in Eq. [13]
and hence ¢J,. One finds that Q. is not a
function of time and therefore, if a distribution
has scaled, the polydispersity index must be
constant.

The experimental polydispersity index ¢ as
a function of reduced time ¢/ ¢, for all five sols

Qo L, [13]

v < 9 o
020 | . (o=}
o v, a
'DQD'O@‘ &;FVQQXG‘XQ X x
L v
Q ] Sol | x
QIO v ® 2 ¢
3 v
| R 4 o
¥ 5 e
il . 1 ' [
o} | 2 3 4 5 )
t/1;

Fi1G. 2. Polydispersity index, @, versus reduced time,
t/t., for the five sols. Characteristic coagulation times are
t.=1.1,09, 7, 2.5, and 1.1 h for sols 1-3, respectively.
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FiG. 3. Values of the asymptotic polydispersity ratio,
Q. , versus kernel homogeneity for D = 2.05 for three
different forms for the scaling distribution. “Num.” is the
numerical solution Lo the Smoluchowski equation.

1s displayed in Fig. 2. The characteristic time
¢, was that obtained for each run from the first
cumulant fit to Eq, [10]. A universal curve is
seen despite the fact that ¢, in the different sols
ranged from 0.9 to 7 h, Note that in every case
the  value evolves to the same asymptotic
value of @, = (.19 + 0.02. This is a graphic
demonstration of the evolution to and then
the maintenance of dynamic scaling for the
large-size part of the distribution. Further-
more, observe that the time scale to achieve
this dynamic scaling is fairly quick, roughly
1.5 reduced-time units in all sols.

The numerical value of (), can be calcu-
lated if a form for the scaling distribution is
assumed. Due to the k2 scattering dependence
in the gR < 1 regime, we assume that only the
large- x tail of the distribution affects (... With
this assumption we choose the cutoff function
valid for large x given by others (5, 9, 31, 32),

d(x) ~ x"he ™, [14]

where Botet and Jullien (31)givea =1 — A,
but its exact value does not affect our results
below.
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Using Eqs. [13] and [14] we calculate @,
as shown in Fig. 3 as a function of X for D
= 2.05. From the u, time dependence above,
we found A = 0.5 £ 0.1; hence from Fig. 3,
we predict O, = 0.17 = 0.01. This is in good
agreement with our experimental determina-
tion of @, = 0.19 x 0.02 and suggests the
general validity of the large- x form in Eq. [14]
and our analysis.

Proper calculation of (., would require an
exact knowledge of the distribution at all x,
not just the large-x tail, which is unavailable.
Thus, to achieve a more detailed evaluation
of Q,,, we have numerically solved the Smo-
luchowski equation [1] with an imtially
monodisperse distribution for both sum, K(i,
J)y = i* + j*, and product, K(i, j} = (i)*?,
kernels for a variety of A’s and have numen-
cally determined both the size distribution and
Q(1). Sufficient accuracy was obtained using
a numerical finite-difference technique where
valume conservation was enforced.

We found that O evolved to the same
asymptotic Q,, at the same rate in reduced
time units for kernels of the same homoge-
neity. That is, the evolution of (J(¢) was in-
dependent of the kernel type. The reduced
time required to reach 0.9Q,, from a mono-
disperse distribution was a slightly increasing
function of X and, as shown in Fig. 4, was ~3
for X = 0.5 for either kernel. This reduced time

171,

F1G. 4. Q calculated from the numerical solution to the
Smoluchowski equation and Eq. (13) for A = 0.5 and D
= 2.05.
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FG, 5. Size distribution m, versus k for three reduced
time, £/1,, obtained from numerical solutions to the Smo-
luchowski equation. Identical results were obtained for
both sum and product kernels. The kernel hemogeneity
is 0.5.

of 3 is somewhat longer than our experimental
runs which, however, started polydisperse.
Given our experimental error, there is consid-
erable similarity between Figs. 3 and 4. Thus
our data substantiate the evolution of the size
distribution as described by the Smoluchowski
equation. The numerical Q,, values as a func-
tion of A are also given in Fig. 3 and we con-
sider these more realistic than those obtained
from Eq. [14]. ForA = 0.5 £ 0.1, @, = 0.21
=+ (.03, again in good agreement with the ¢x-
perimental O, = 0.19 + 0.02.

We interpret the results above to indicate
that the large- x tail of the distribution quickly
establishes the form given in Eq. [14]. The
small descrepancy between numerical results
and those obtained from Eq. [14] does not
indicate a problem in Eq. [14]. but rather its
improper use at small x. The exponential cut-
off is consistent with the conclusion of Martin.

Further examination of our numerical re-
sults has shown that while the large-x tail
quickly establishes its scaling form in Eq. [14],
the small-x part of the distribution does not
achieve its asymptotic scaling exponent over
our experimental time scales. To demonstrate
this we show in Fig. 5 the actual size distri-
bution, #;, as a function of k determined from
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our numerical solutions of the Smoluchowski
equation. Identical results were obtained for
both sum and product kernels with A = 0.5.
As the reduced time increases, the small-x part
of the graph becomes linear on the double log-
arithmic plot indicating the expected power-
law, 1, oc k7. The value for the exponent is
found to be 7 =~ 1.0. This compares poorly to
the predicted asymptotic scaling value of 7 = 1
+ A = 1.5 for Class I kernels (9). Kang et al.
{33) have also concluded that the scaling ex-
ponents do not abtain their asymptotic values
very quickly after initiation of aggregation.
They concluded that intermediate scaling re-
gimes develop at short times in which scaling
exponent relations hold, but the exponents
themselves have not reached their asymptotic
values.

As we have stressed, in the gR < | regime
where we confined our experiments light scat-
tering weights the large-x part of the size dis-
tribution. Thus the numerical result for ¢ in
Fig. 4 indicates that the large-x part of the dis-
tribution evolves quickly to a near-constant
value which indicates scaling for this part. The
experimental value of @, is consistent with
both the numerical solution in Fig. 4 and that
caiculated from Eq., [14] to indicate that
asymptotic scaling as given by Eq. [14] has
been achieved. On the other hand, analysis of
Fig. 5 indicated that the small-x part of the
distribution had a nonasymptotic value for the
exponent 7, which implies that asymptotic
scaling has not been achieved for small x. We
conclude that the large-x and small- x parts of
the distribution achieve their asymptotic forms
at considerably different time scales during the
aggregation process.

To stress the importance of the large- x cut-
off in our results and the insensitivity of our
results to the small- x form of the distribution,
we have used Eq. [13] for the power-law x~~
with r = 1 + A and a sharp cutoff. The results
are also given in Fig. 3. For A = 0.5 £ 0.1, the
theoretically predicted asymptotic value O
= (.31 £ 0.07 is in poor agreement with the
data. If on the other hand we use 7 = 1.0 as
found in our numerical solution, this corre-
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sponds to A = 0, which yields @, = 0.11, again
in poor agreement. Thus a power-law plus
sharp cutoff description of the size distribution
to determine @, does not appear to be satis-
factory and we cannot make a comparison be-
tween our work and carlier experimental work
(12, 13, 15) concerned with the small-x part
of the distribution.

CONCLUSION

In conclusion, we have demonstrated the
quick approach to scaling of the large-size tail
of the distribution of a slowly aggregaling col-
loid. Experimental values of the asymptotic
polydispersity index agree with those calcu-
lated from Eq. [14] and numerical solutions
to the Smoluchowski equation. These numer-
ical solutions also indicate that the small-size
regime does not establish its scaling form
nearly as fast.
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