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We describe a model for protein crystallization equilibria. The model includes four terms, (1) protein
translational entropy opposes crystallization, (2) proteins are attracted to each other by a nonelectrostatic
contact free energy favoring crystallization, (3) proteins in the crystal repel each other but, to a greater extent,
attract counterions sequestered in the crystal, which favors crystallization, and (4) the translational entropy of
the counterions opposes their sequestration into the crystal, opposing crystallization. We treat the electrostatics
using the nonlinear Poisson-Boltzmann equation, and we use unit cell information from native protein crystals
to determine the boundary conditions. This model predicts the stabilities of protein crystals as functions of
temperature, pH, and salt concentrations, in good agreement with the data of Pusey et al. on tetragonal and
orthorhombic crystal forms of lysozyme. The experiments show a weak dependence of crystal solubility on
pH. According to the model, this is because the entropic cost to neutralize the crystal is compensated by
favorable protein-salt interactions. Experiments also show that adding salt stabilizes the crystal. Cohn’s
empirical law predicts that the logarithm of solubility should be a linear function of salt. The present theory
predicts nonlinearity, in better agreement with the experiments. The model shows that the salting out phenomena
is not due to more counterion shielding but to lowered counterion translational entropy. Models of this type
may help guide faster and better ways to crystallize proteins.

1. Introduction

We are interested in the forces that stabilize protein crystals.
One motivation is that crystallization is often the rate-limiting
step in determining a protein’s structure. While technology for
protein crystallization has seen big advances,1,2 including the
recent application of microfluidic chips,3,4 the underlying
physical principles are not yet very well understood, and
crystallization still remains largely a business of trial and error.
Crystallization has two components, nucleation and growth.5

Nucleation is driven and favored by supersaturating the solution
with high protein concentrations, but growth is favored by then
reducing the protein concentration to prevent further nucleation
from competing with the growth of established nuclei. We focus
here on growth and on equilibrium protein crystal solubilities.

Both nucleation and growth processes are commonly treated
using two-body models. George and Wilson have shown the
power of two-body models. They showed that the “crystalliza-
tion slot”, which is the set of conditions that favor crystal
nucleation, corresponds to mildly attractive values of the second
virial coefficient B2.6 B2 is a quantity that characterizes the
interaction of two proteins with each other in solution.6–9 The
starting point for modeling both B2 and protein aggregation has
traditionally been the DLVO theory for colloid-colloid interac-
tions. DLVO theory describes the interprotein potential as the
sum of a screened electrostatic repulsion, a short-range van der
Waals attraction, and a hard-core excluded volume term between
two protein molecules. Two-body-based approaches have
yielded tremendous insight into the behavior of B2 and into
nucleation behavior.8–14

However, here, we take the view that in a crystal, the
electrostatics are different than those in pairwise protein-protein

situations, and it is better treated as a multibody interaction. In
particular, two-body models such as DLVO assume that
counterions primarily serve to partially shield the protein-protein
electrostatic repulsions. However, we believe that within a
protein crystal, the high density of charge on the protein
molecules must be fully neutralized by counterions in order for
the crystal to be electrostatically neutral. The key consequence,
described in the model below, is that the crystal contains an
internal concentration of counterions that is much higher than
the bulk solution concentration. This enrichment of counterions
inside of the protein crystal, and the concomitant depletion of
co-ions, comes at a considerable entropic cost that opposes
crystal formation.15,16 On the other hand, the counterions within
the crystal fully screen the repulsion between proteins in the
crystal and ensure that the primary contribution to the electro-
static enthalpy is the favorable protein-salt interaction. We find
that in the lysozyme model system, the temperature dependence
of the crystal solubility arises from the competition of these
two terms.

2. Model

We present a model that describes the solubility of protein
crystals. We define the solubility as the concentration of soluble
protein in equilibrium with the crystal phase. At equilibrium,
the chemical potential, µs, of the protein in the bulk solution
must be the same as the chemical potential, µc, of the protein
in the crystal

For the bulk phase, we assume that the protein is sufficiently
dilute that its activity can be approximated by its concentration
c, giving the standard expression
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Here, c° ) 1 M is the standard state concentration, and kBT
ln(c/c°) describes the translational entropy of the proteins in
the bulk. To facilitate comparison with experiments, we adopt
the same concentration units as those in refs 17 and 18, where
c° ) 1.47 × 104 mg/mL for lysozyme, and salt concentrations
are expressed as a percent weight/volume, 1% NaCl w/v =
0.17 M.

Combining eqs 1 and 2 gives the equilibrium solubility of
the protein crystal in terms of µc

Now, we describe our model of the crystal and µc. We are
interested in how solubility depends on pH, the concentration
of salt csalt, and temperature T; therefore, we decompose the
free energy into its enthalpy and entropy components

We assume that the crystal is large enough that we can neglect
surface effects and that the enthalpy and entropy are composed of
an electrostatic component that depends on the pH and salt and of
a nonelectrostatic component that is temperature-independent

The approximation that ∆h0 and ∆s0 are temperature-independent
is discussed in the Supporting Information.

We first consider the electrostatic terms. There are three
species involved in the electrostatic interactions, the protein
macroion, the counterions, and the co-ions. As with the protein,
the chemical potentials of the ion species must be equal in the
crystal and in the bulk solution, ln cbulk ) ln c( ( eφ/kBT. This
leads to expressions for the concentrations of positive and
negative counterions, c( ) cbulke-eψ/kBT, which then lead to the
Poisson-Boltzmann equation

Here, ψ is the electrostatic potential which we take to be zero
in the bulk solution, Ff is the fixed charge distribution on the
surface of the protein, cbulk is the bulk salt concentration, NA is
Avogadro’s constant, ε0 is the vacuum permeability, εw = 80
is the dielectric constant of water, and r is the distance from
the center of the protein, which we take here to be a sphere of
radius r ) a. Solving eq 7 with the appropriate boundary
conditions gives the electrostatic potential ψ, which encodes
the electrostatic influence of each component in the crystal.

We calculate the net signed number of charges as

where pH represents the solution pH, the pKai values are the
pK’s of the titratable side chains on the given protein, and we
take the pKa’s from ref 19. We do not employ lysozyme-specific
pKa values as these are only representative of the solution state
and are likely to be perturbed in the crystal. We have found
that the use of other pKa sets, such as those of Grimsley et al.,20

have minimal effect on the model results, and shifts of several
charge units are readily compensated for in the fitting procedure.
Given the valency Z of charge on the protein obtained in this
way, the electrostatic potential due to each protein alone will
be ψp(r) ) Ze/4πε0εwr.

Now, the task of specifying the boundary conditions for this
PB equation is greatly simplified by recognizing that the crystal,
which is macroscopic, must be electrostatically neutral. We
associate with each protein an amount of aqueous volume that
correctly accounts for the relative volume fractions of protein
molecules plus water. We call this a “cell” (it is different than
the actual crystallographic unit cell). We consider the total
volume (water plus protein) per protein molecule to be ap-
proximately spherical with radius r ) b(b > a); see Figure 1.
More accurate approximations could also be envisioned, but
this is simple and appears to be sufficient for our purposes.

We solve for the interaction between each protein molecule
and its ion cloud. We take the protein charge to be at the origin,
Ff ) Zeδ(r), where e is the elementary charge, and the free
ions are confined between the protein surface at r ) a and the
cavity boundary at r ) b. The radii are chosen so that the sphere
volumes match the appropriate crystal volumes. (The tetragonal
crystal of lysozyme (PDB code 193L) has a unit cell with
dimensions of Vuc ) 78.5 × 78.5 × 37.8 Å3 and contains eight
lysozyme molecules.21 Since the solvent content is 39.5%, we
have a ) (0.605 × 3Vuc/32π)1/3 ) 16.1 Å and b ) (3Vuc/32π)1/3

) 19.1 Å. For the orthorhombic crystals of lysozyme (PDB
code 1AKI), the unit cell contains four proteins, has a volume
Vuc ) 59.1 × 68.5 × 30.5 Å3, and has a solvent content of
42.8%.22 Therefore, a ) (0.572 × 3Vuc/16π)1/3 ) 16.1 Å and b
) (3Vuc/16π)1/3 ) 19.5 Å.)

There are two boundary conditions

First, at the protein surface, the electric field must be equal to
that of the unscreened macroion. Second, at the outer sphere of
the cell, the charge neutrality condition requires that the electric
field vanish. The latter boundary condition enforces the Donnan
equilibrium between the ions in the interior of the crystal and
in the solution.15,16

The vanishing field at r ) b implies that the cells are
noninteracting. While each protein “feels” a repulsive force due
to each neighboring protein, there is an equal and opposite
attraction to the counterions associated with those proteins.
Therefore, the charges on the proteins are fully screened by the
salt. Note that the vanishing field approximation is not valid

µs ) kBT ln( c
c°) (2)

c
c° ) eµc/kBT (3)

µc ) ∆h(pH, csalt, T) - T∆s(pH, csalt, T) (4)

∆h(pH, [NaCl], T) ) ∆hES(pH, [NaCl]) + ∆h0 (5)

∆s(pH, [NaCl], T) ) ∆sES(pH, [NaCl]) + ∆s0 (6)

εwε0∇
2ψ(r) ) -Ff(r) - eNA(cbulke

-eψ(r)/kBT - cbulke
eψ(r)/kBT)

(7)

Z ) - ∑
i

acid residues
10pH-pKai

1 + 10pH-pKai
+

∑
i

basic residues
10pKai-pH

1 + 10pKai-pH
(8)

ψ′(r ) a) ) - Ze

4πεwε0a
2

(9)

ψ′(r ) b) ) 0 (10)

Model for the Stabilities of Protein Crystals J. Phys. Chem. B, Vol. 114, No. 11, 2010 4021



for proteins with highly asymmetric charge distributions (i.e.,
strong dipole or quadrupole moments). This is not a concern in
the present work where we study lysozyme, which has a dipole
moment of ∼250 D or ∼50 e Å in the pH range of interest.
This is to be compared with a total charge of ∼10 e, which is
spread over a diameter of ∼30 Å.

We now compute the electrostatic potential, ψs, of the salt
ions in the cell surrounding the protein

where the integration is over the solvent volume in the cell.
While ψs may be calculated directly from a numerical integration
of eq 11, it is more readily obtained as follows. First, we note
that because of the geometric symmetry and the charge neutrality
of the cell, the sum of the salt and protein terms must vanish at
the cell boundary due to Gauss’ Law

However, the overall potential will be nonzero at r ) b, leading to a
constant of integration that we call ψ(b) ≡ ψ0

crys. The constant ψ0
crys is

a shift in the potential at all points within the crystal. It arises due to
the ionization at the surface of the macroscopic crystal. However, ψ0

crys

does not contribute to the protein-salt potential energy within the
interior of the crystal because the electric field of the surface charge
vanishes within the crystal due to Gauss’ Law. The complete
potential within a cell is

The protein-salt interaction is Zeψs
crys(a), which we calculate from

the numerical solution to eq 7 using

Now, we need the protein-salt attraction in the bulk state. Here,
ψ0

sol ) 0; therefore, the electrostatic potential is

and the protein-salt interaction is Ze(ψsol(a) - ψp(a)). Hence, the
difference in electrostatic potential that drives crystal formation is

We calculate the terms in eq 17 by numerically solving the
Poisson-Boltzmann equation for the geometry shown in Figure
1. ψsol is computed using b ) 50 Å. This is sufficient to avoid
boundary effects as the Debye length at the lowest salt concentra-
tion that we consider is ∼5 Å. We restrict our analysis to salt
concentrations e5% w/v in order for cbulk e 1 M.

Because the protein has high charge density, eψ/kBT. 0, we must
use the nonlinear version of the PB equation. However, in the
Supporting Information, we give a parallel treatment using the
linearized (Debye-Huckel) approximation because this analytical form
gives useful insights into dependencies on variables.

Next, we consider the electrostatic translational entropy, the
cost of sequestering the counterions at high concentration in
the crystal relative to the lower concentration in the bulk. In
general, the entropic cost T∆s for moving a single ion from a
medium 1 with concentration c1 to a medium 2 with concentration
c2 will be

If the bulk ion concentration is cbulk and if V is the aqueous cavity
volume in the cell, then the expected number of ions in the cell if
the protein were uncharged would be n ) cbulkV. If m is the number
of excess ions per protein when the protein is charged, the entropy
of sequestering and concentrating the ions in the crystal can be
computed from a process of “charging up” the crystal with its salt

To evaluate this entropy, we need to know the numbers, mf, of
both the counterions and the co-ions in the protein crystal. Because
of charge neutrality, we must have mf

- - mf
+ ) Z or

where the integral is over the aqueous cavity volume in the cell.
The counterion numbers may be determined by assuming that the
potential varies slowly within the aqueous cavity and thus may be
replaced with an average potential ψ(r) f ψj , yielding

Figure 1. Cell geometry used to solve eq 7. The inner sphere r ) a
represents the protein with a charge q ) Ze located at the origin. The
outer sphere r ) b represents the total volume (protein + solvent) per
protein in the crystal.

ψs(xb) ) cbulk ∫ (eψ(xb′)e/kBT - e-ψ(xb′)e/kBT)/ | xb - xb|d3xb′
(11)

ψp(b) + ψs(b) ) 0 (12)

ψcrys(r) ) ψp(r) + ψs
crys(r) + ψ0

crys (13)

ψs
crys(r) ) ψcrys(r) - ψp(r) - ψcrys(b) (14)

ψsol(r) ) ψs
sol(r) + ψp(r) (15)

∆hES ) Ze(ψs
crys(a) - ψs

sol(a)) (16)

) Ze(ψcrys(a) - ψcrys(b) - ψsol(a))
(17)

T∆s ) -kBT ln(c2

c1
) (18)

∆sES/kB ) -∫0

mf ln(n + m
n )dm (19)

) -(n + mf) ln(1 +
mf

n ) + mf

(20)

4πcbulk ∫a

b
(eψ(r)e/kBT - e-ψ(r)e/kBT)r2dr ) Z (21)

Z )
8πcbulk

3
(b3 - a3) sinh

ψ̄e
kBT

(22)
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This equation can be solved for the constant potential ψj , which
can then be used to determine the counterion enrichment numbers

Finally, we assemble all of these terms to get µc. The total chemical
potential for the crystalline state is given by combining eqs 4, 5,
6, 17, and 20

To compare to experiments, we convert this expression from µc to
the protein solubility c using eq 3. Of course, each protein crystal
differs in detail from the next. One type of protein will contact its
neighbors through different contact interactions than another type
of protein or even than another crystal lattice of the same protein.
Therefore, in the absence of more microscopic knowledge, we
currently treat the two quantities ∆h0 and ∆s0 as adjustable
parameters that we fit for any given protein and lattice. We note

Figure 2. Comparison of the experimental solubility of tetragonal lysozyme crystals (dots)17 to the predicted solubility, eqs 3 and 27 (lines).
Numbers at the top of each panel indicate solution pH.

mf
( ) 4πcbulk ∫a

b
(e-ψ̄e/kBT - 1)r2dr (23)

)
4πcbulk

3
(b3 - a3)(e-ψ̄e/kBT - 1) (24)

)
4πcbulk

3
(b3 - a3) ×

(exp[-sinh-1 3Z

8πcbulk(b
3 - a3)] - 1) (25)

µc ) ∆hES + ∆h0 - T∆sES - T∆s0 (26)

) Ze(ψcrys(a) - ψcrys(b) - ψsol(a)) +

kBT((n + mf
+) ln(1 +

mf
+

n ) + mf
+) +

kBT((n + mf
-) ln(1 +

mf
-

n ) + mf
-) + ∆h0 - T∆s0 (27)
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in the Supporting Information that these two quantities give useful
information about the contact interactions for the given protein in
its crystal.

3. Results

3.1. Tetragonal Crystals of Lysozyme. For lysozyme in
tetragonal crystals, we use ∆h0 ) -49.4 kJ/mol and ∆s0 )
-95.7 J/K/mol, so the contact free energy is ∆G ) ∆h0 - T∆s0

) -22.1 kJ/mol at T ) 285 K. Details of the fitting procedure
are presented in the Supporting Information. Figure 2 compares
the predictions of the theory with the data on the solubilities of
lysozyme crystals of Forsythe et al.17 The theory is in good
general agreement with the dependence of the crystal solubility
versus temperature, pH, and salt concentrations. Here are the
main results. First, not surprisingly, heating dissolves the crystal.
Since ∆s0 > 0 in this case, this effect of temperature is explained
by the translational entropies (of both the protein and the salt),
corresponding to canonical effects of melting in many simpler
systems. Second, adding salt stabilizes the crystalline state. This

has traditionally been attributed to the screening of the
protein-protein electrostatic repulsions by the salt. However,
our model indicates instead that this is mainly due to the reduced
penalty in translational entropy of sequestering salt as the salt
concentration increases. Third, changing the pH has only
relatively small effects on the crystal solubility. In the model,
this is because of the electrostatic compensation that is required
by charge neutrality. Increasing the charge on the protein leads
to a compensating increase in salt sequestered by the protein.
This increased sequestration of counterions results in increas-
ingly favorable protein-salt interactions for strongly charged
proteins but is opposed by the counterion translational entropy.
These two effects are offsetting and result in the weak pH
dependence.

3.2. Orthorhombic Crystals. We also tested our model on
the extensive data of Ewing et al.18 on the solubilities of
orthorhombic crystals of lysozyme. For these crystals, we found
that ∆h0 ) -3.6 kJ/mol and ∆s0 ) 54.3 J/K/mol provide the
best fits, resulting in ∆G ) ∆h0 - T∆s0 ) -20.2 kJ/mol at T

Figure 3. Comparison of the experimental solubility of orthorhombic lysozyme crystals to the predicted solubility, eqs 3 and 27 (lines). The points
are plotted from quadratic fits to the solubility as determined in ref 18. Numbers at the top of each panel indicate solution pH.
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) 305 K. These contact parameters are quite different than those
for the tetragonal crystals. We discuss these differences in more
detail in the Supporting Information.

Figure 3 compares the predictions with experiments. The
same overall temperature, pH, and salt trends can be seen here
as in the tetragonal crystals. In the orthorhombic crystals, we
find that the solubility is more sensitive to pH than our model
predicts. However, the maximum deviations are less than a
factor of 3, so the free energy errors are only on order of ∼1kBT,
a satisfactory result given the small number of free parameters.

4. Component Contributions

Figure 4 shows the four component contributions in our model
of crystal solubility. There are two nonelectrostatic terms, (1)
the translational entropy of the protein opposes crystallization,
and (2) the contact free energy of binding, ∆h0 - T∆s0, drives
crystal formation. There are two electrostatic terms, (3) the
enthalpy, ∆hES of the protein-counterion charge stabilization
and (4) the translational entropy of sequestering the salt ions
into the crystal, which opposes crystallization.

Here, we look at the behavior of these component terms. First,
Figure 5a shows that the electrostatic potential is relatively

constant throughout each protein cell’s water volume. It also
shows that even at the highest salt studied here, 5%, the
electrostatic potential in the cell epψ/kBT ≈ 1 is too high to
allow for using the linearized PB approach, which requires epψ/
kBT , 1. Figure 5b shows the calculated protein charge as a
function of pH, as well as the ion enrichment as a function of
salt concentration.

Second, Figure 6 shows the electrostatic enthalpy. Compari-
son of the black with the red curves confirms the point noted
above that using the linearized form of PB would lead to large
errors here.

Third, Figure 7 shows that the salt counterion entropies
constitute a large driving force opposing crystallization. This
entropy diminishes with increasing bulk salt concentrations.

4.1. pH Dependence. A surprising trend is the weak
dependence of the solubility on the solution pH shown in Figure
8. This stands in contrast to the strong dependence on pH that
is observed for the nucleation step.1 We believe that this
difference is explained as follows. Crystal nucleation appears
to be governed heavily by the two-body interactions of a protein
as it lands on the nucleating surface. These nucleation events
are too small to condense the counterions into a captured and
sequestered phase. Hence, nucleation depends strongly on the
charge-charge repulsion between two protein molecules.
However, as we noted above, we believe that the crystal
electrostatics are different; the protein-protein repulsions are
neutralized by the sequestered salt ions, leading to a much
weaker dependence of solubility on protein charge than that of

Figure 4. List of the terms included in the free energy for the binding
of a protein to the crystal given by eq 27. Terms favoring aggregation
are indicated with an arrow pointing to the right, while those opposing
aggregation have a left arrow.

Figure 5. (top) Solutions for the electrostatic potential ψ for a protein
charge Z ) +10 at various salt concentrations. (bottom) Calculated
charge from lysozyme using eq 8. Inset: plot of the expected counterion
and co-ion numbers per protein for a protein of charge Z ) 10. Also
shown are the expected ion numbers n for a neutral protein. All figures
were computed using a ) 16.1 Å, b ) 19.1 Å.
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nucleation on protein charge. In particular, the pH dependence
is weakest at low temperatures when the counterion confinement
free energy -T∆sES is minimized.

4.2. Salt Dependence. In Figure 9, we plot the log of the
protein crystal solubility as a function of the salt concentration.
An early empirical formula that has been called Cohn’s law23,24

suggested that this should be a linear function. However, the
newer data shown in Figure 9 indicates that instead, this
dependence is nonlinear. Our theory captures this nonlinearity.

We find that neither HES nor SES approach linear behavior at
small cbulk. At sufficiently dilute salt, the effect of co-ions may
be neglected, and the sinh term in eq 22 can be approximated
with an exponential. Then, mf

- ) Z - n, and the entropy penalty,
eq 6, diverges as -Z ln(Z/n). The enthalpy term, given
approximately by eq S17 (Supporting Information), has a leading
behavior

at low salt concentrations. Since κ ∝ cbulk
1/2 , this is nonlinear at

all values of cbulk. We conclude that Cohn’s formula is only
likely to apply in cases where the solvent cavities in the
aggregate are large enough that ∆hES and ∆sES are slowly
varying functions of the salt concentration.

5. Conclusion

We have described a model for the solubilities of protein
crystals as a function of temperature, pH, and salt. Our principal
finding is that the charge neutrality condition for the crystal
eliminates the screened monopole interaction between proteins.
This effectively isolates each protein as a local electrostatic
entity. Crystal formation is favored by increasing concentrations
of protein and salt, which reduce the unfavorable translational
entropies. We find that pH, which changes the charge on the
protein, has relatively little effect on crystal solubility because
it leads to a compensating increase in counterion concentration
inside of the crystal. We hope that such models of protein
crystallization will be useful for better understanding the physics
and for making crystallization technology more efficient and
rational.
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