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We study the effect of confinement on diffusion-limited bimolecular reactions within a lattice model

where a small number of reactants diffuse among a much larger number of inert particles. When the

number of inert particles is held constant, the rate of the reaction is slow for small reaction volumes due to

limited mobility from crowding and for large reaction volumes due to the reduced concentration of the

reactants. The reaction rate proceeds fastest at an intermediate confinement corresponding to a volume

fraction near 50%. We generalize the model to off-lattice systems with hydrodynamic coupling and

predict that the optimal reaction rate for monodisperse colloidal systems occurs when the volume fraction

is approximately 19%. Finally, we discuss the implications of our model for bimolecular reactions inside

cells and the dynamics of confined polymers.
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It is a somewhat surprising fact that the total concentra-
tion of protein within a cell rivals that within a protein
crystal [1]. This highly crowded environment plays an
important role in dynamical processes, such as chemical
reactions, and thermodynamic properties, such as chemical
equilibria, observed in vivo [2]. While the volume fraction
of macromolecules within the cell may exceed 30%, at any
given time there may be just a few copies of a given protein
corresponding to a concentration of a few nanomolars for a
cell of volume 1 �m3 [3,4]. This is in stark contrast to
in vitro experiments, where the reactants are present at a
relatively high concentration with a negligible level of
crowding molecules. Therefore, caution is required when
interpreting in vivo biochemical experiments as it is not
always obvious what effect the presence of crowding
molecules will have. For example, the rate of a reaction
may be increased if the crowding favors a compact tran-
sition state, decreased if the reaction is diffusion-limited,
or unaffected if the reactants are small compared to the
crowding species [5].

In this Letter, we study the effect of crowding on re-
action rates in a finite system with fixed numbers of crowd-
ing and reacting particles. This is in contrast to a typical
in vitro experiment, where the level of crowding is adjusted
by adding inert particles to the system. However, for in vivo
experiments the number of particles in the cell is often
fixed, and their density can be adjusted by osmotic shifts of
the cell volume. In this situation the concentration of
reactants and the degree of crowding are not independent
as is implicitly assumed in previous work [1–5]. Instead,
they change concomitantly with the volume of the system,
and this, we find, leads to a nonmonotonic dependence of
the reaction rate on the volume. This nonmonotonicity is
the result of two distinct dynamical regimes. When the
system volume is very large, the effect of the crowding
particles is negligible. Therefore, the rate of reaction is
dictated by the time required for the reactants to diffuse the
mean separation between reactive particles which in-

creases with the system size. We will call such systems
‘‘concentration-limited.’’ At the opposite extreme is the
case where the system volume is very close to the sum of
the total volume taken up by the reactant and crowding
particles. In this case the separation between reactants may
be quite small, but the reaction proceeds slowly because
the high density of crowding particles severely impedes the
diffusion of the reactants. Such systems are ‘‘crowding-
limited.’’ Between these two limits, there is an optimal
volume at which the reaction proceeds the fastest. We note
that the existence of a maximum rate as a function of
confinement is predicated on the assumption that the par-
ticle number is kept fixed while the system volume is
changed. Varying the system volume while keeping the
concentration fixed (or vice versa) will result in a mono-
tonic change in the reaction time.
The competition between the concentration-limited and

crowding-limited regimes may be understood from a sim-
ple argument. Take the bimolecular reaction Aþ B ! A,
where the surface of the A particles, taken to be a sphere,
absorbs B particles. The flux of particles at the A surface
(i.e., the reaction rate) is 4�acD, where a is the radius of
the A particle, and the concentration of B particles far from
the sphere, c, is inversely proportional to the volume of the
system c / R�3[6]. The effect of crowding particles that
do not react with the absorbing boundary may be included
through a rescaling of the diffusion constant D provided
the distance the reactant particles must travel is large
compared to the mean spacing between crowding particles.
For the case of a lattice-based system, a mean-field diffu-
sion constant (which is a good approximation when the
crowding particles move much faster than the reactants) is
achieved by multiplying the ‘‘bare’’ diffusion constant D0

by the success probability for an attempted hop to a neigh-
boring site. This results in a diffusion constant D � D0p,
where p ¼ ð1� cÞ is the probability that a neighboring
site is unoccupied and c is the number density of particles
on the lattice. Therefore, the flux at the absorbing surface
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scales as að1� Nb3R�3Þ=R3, where N is the total number
of particles in the system and b is the lattice constant. This
expression is nonmonotonic in R, and it has a maximum
when the system size is such that the particle density is
1=2.

In order to go beyond this simple argument, we explore
the transition from concentration-limited reactions to
crowding-limited reactions using a model with two reac-
tant particles that react instantaneously upon contact con-
fined to a spherical volume in the presence of inert
crowding particles. The reaction rate is then the inverse
mean first passage time for the particles to find each other.
If we make the further simplification of holding one of the
reactants stationary, the mean first passage time is given by

�� ¼ 1

V

Z
V
�ð ~xÞdd ~x; (1)

where the integral is over the d-dimensional volume of the
system. Assuming that the motion of the mobile reactant is
diffusive, �ð ~xÞ, the average time for it to reach the sta-
tionary particle starting from position ~x, satisfies the equa-
tion [7]

Dr2�ð ~xÞ ¼ �1: (2)

D is the effective diffusion constant in the presence of
crowders and is a function of the crowder concentration.
Equation (2) is subject to a reflecting boundary condition at
the system periphery and an absorbing boundary condition
at the surface of the stationary reactant.

If we place the fixed reactant at the center of the spheri-
cal domain, as shown in Fig. 1, then Eq. (2) is exactly
solvable with the result (in two and three dimensions,
respectively)
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Here r is the radial position of the starting point, a is the
radius of the stationary target, and R is the radius of the
confining domain. Equations (3) and (4) may be used with
Eq. (1) to yield expressions for the inverse ‘‘reaction rate’’
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In the spirit of the mean-field argument introduced ear-
lier, we employ a lattice-gas model and utilize an excellent
approximation for the concentration-dependent diffusion
constant derived by van Beijeren and Kutner [8]. For the
case when the reactant and crowding particles have equal
mobilities and move on a two-dimensional square lattice,
this diffusion constant takes the form

DðcÞ ¼ �b2

8
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� cÞ þ c2ð�� 1Þ2

q
� cð�� 1Þ�; (7)

where b is the lattice spacing, � is the attempt rate for
particle moves, and c is the ratio between the total number
of mobile particles to the number of accessible sites c ’
b2ðN þ 1Þ=½�ðR2 � a2Þ�. Combining Eqs. (5) and (7), we
find an expression for the reaction time which is plotted in
Fig. 2. We emphasize that the key assumption made here is
that the only effect of the crowding particles on the motion
of the reactive particle is to change its diffusion constant,
and the motion remains diffusive up to time scales com-
parable to the reaction time.
To test the validity of this assumption, we have per-

formed Monte Carlo simulations of the lattice model.
The simulations consist of one reactant and N inert parti-
cles confined to a two-dimensional circular domain of
radius R with a circular target of radius a at the center,
as shown in Fig. 1. Each simulation begins with a random
configuration of the reactant and crowding particles and
ends when the reactant reaches the center target at which
point the first passage time is recorded. The average reac-
tion time is determined from at least 1500 such runs.
The simulation results for 2000 crowding particles show

a minimum in the reaction time very near the minimum of
36:9b predicted by Eq. (5) (corresponding to 47% of the
sites being occupied). The reaction times diverge sharply
when the confining radius becomes less than 29 lattice sites
or the concentration exceeds �75%. Similar agreement is
found for 4000 (Fig. 2, teal line) and 8000 (not shown)
crowding particles. At large confining radii, the reaction

FIG. 1. Snapshot from the simulation described in the text.
The stationary target is indicated by the black circle in the center,
and the mobile reactant is the black dot halfway between the
target and the top of the outer circle. Also shown are the
2000 inert crowding particles (gray).
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times increase as R2 and approach the reaction rate in the
absence of crowding particles (green line). As shown in
Fig. 2, the difference between the crowded and uncrowded
reaction times is nonzero at all system sizes. This can be
explained by noting that, while the probability that a given
site is occupied scales as R�d, the required number of steps
scales like Rd. The result is that the number of time steps
where the particle is unable to move due to crowding
remains nearly constant as the system size is increased.

The reaction times in Fig. 2 deviate from the theoretical
curve at confining radii below 50b with a maximum error
of 35% at the highest concentration simulated. This dis-
crepancy is due to a nondiffusive correction to the mean
squared displacement (MSD) in the lattice-gas model [9],
which allows the reactant to more efficiently sample the
space compared to purely diffusive motion. This point is
illustrated in Fig. 3, where the MSD observed in our
simulations is compared to purely diffusive behavior with
D given by Eq. (7). For small system sizes and long times,
where the nondiffusive behavior is expected to be signifi-
cant, the simulation MSD systematically exceeds the theo-
retical value.

The mean-field treatment we have employed in the two-
dimensional lattice model can be extended to the more
physically relevant three-dimensional, off-lattice system
with a few modifications. We recall that hard sphere sys-
tems undergo a glass transition at a volume fraction �c �
0:58, which is less than the close-packing density [10,11].
Although the system is not completely frozen, the relevant
time scales diverge sharply. Therefore, we restrict our

analysis to densities below�c. In the fluid regime, for�<
�c, the self-diffusion constant is modified not only by the
short range excluded volume interactions but also by long
range hydrodynamic coupling mediated by the solvent
[12]. In this case the diffusion constant is approximately
given by D ¼ D0ð1��=�cÞ2 [12]. If we use this formula
in Eq. (6) and assume R � a, we find that the reaction time
for monodisperse Brownian spheres is of the form ��3d /
��1ð1��=�cÞ�2 and has a minimum for volume fraction
� ¼ �c=3 � 0:19.
Experimentally, a crowded reaction with adjustable vol-

ume could be realized using microfluidic techniques. In
this case the tracer and crowding particles would be con-
fined to a microdroplet reaction vessel whose volume could
be controlled through osmotic gradients across a semi-
permeable barrier [13]. This system mimics in vivo experi-
ments that show increased tracer particle diffusion in
osmotically swollen cells [14,15].
In most systems of interest, the target reactant would be

mobile rather than stationary. One expects that the ratio of
the reaction time for the stationary target to the reaction
time for two mobile reactants in a fixed box size should be
independent of the number of crowding particles present,
as the crowding particles merely rescale the diffusion time.
Our simulations support this intuition, and we find that the
ratio is �1:6 and �2:0 in two and three dimensions,
respectively, with corrections on the order of a=R.
In the context of these theoretical results, it is natural to

ask to what extent do cells optimize biochemical reaction
rates by adjusting their size? At first glance it would seem
unlikely that cell volume would be a useful parameter for
the cell to use to regulate reaction rates due to the large
number of reactions that occur simultaneously involving
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FIG. 3 (color online). Comparison of the MSD of the mobile
reactant (solid lines) to MSD calculated in Ref. [8] (dashed lines)
for systems of size R ¼ 79:6, 35.8, and 26.7, corresponding to
concentrations of c ¼ 0:1, 0.5, and 0.9, respectively (N ¼ 2000).
The theoretical curves are the solution of Fick’s second law in a
circular geometry.
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FIG. 2 (color online). Comparison of the reaction time pre-
dicted by Eq. (5) (solid lines) to the simulation data (dots) for
2000 (black) and 4000 (teal) crowding particles. (Inset) Reaction
times at constant densities of 0.2 (black), 0.5 (teal), and 0.7
(purple) for 2000, 4000, and 8000 crowding particles showing
the expected monotonic dependence, as well as the inaccuracy of
Eq. (7) at higher densities. In both plots the green dashes indicate
the reaction time predicted in the absence of crowding particles.
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reagents that differ in size by many orders of magnitude.
Furthermore, differential protein expression rates during
the cell cycle could modify the overall protein concentra-
tion and thereby alter the cytoplasmic diffusion rate [16].
However, it is well known that the cell is more complicated
than a ‘‘bag of enzymes,’’ and therefore the potential exists
for the cell to establish subcellular compartments in such a
way that the various reaction volumes are individually
tunable. For example, the digestion of a pathogen by a
macrophage occurs within a vesicle created by endocyto-
sis. The volume of this vesicle is, in principle, adjustable
by the amount of membrane used during vesicle creation.
Similarly, other membrane-bound organelles such as
Golgi, endoplasmic reticulum (ER), mitochondria, and
the nucleus could be individually adjusted to optimize
reactions occurring within. This is consistent with the
finding that diffusion rates in the mitochondria and ER
can differ substantially from the cytoplasm [17,18].

The case of the cell nucleus deserves special considera-
tion. Here the primary reactions of importance involve the
manipulation of the genome which is encoded by DNA. In
analogy to our two-reactant model, many of the genome
management functions the cell performs require two spe-
cific portions of the DNA to find each other. These internal
cyclization reactions may occur between monomers sepa-
rated by polymer spacers ranging from less than a persis-
tence length, up to lengths on the order of the chromosome
size [19,20]. If we identify the polymer segments that flank
and bridge the reacting monomers as crowding particles,
then we can immediately generalize the previous argument
for the rate of crowded reactions to the internal cyclization
of a confined polymer. Specifically, the rate of internal
cyclization will have a nonmonotonic dependence on the
size of the box containing the polymer. This nonmonoto-
nicity has been previously observed in computer simula-
tions [21].

The onset of crowding-limited dynamics at small system
sizes leads to nonmonotonic behavior in the relaxation of
other structural properties of the polymer such as its end-
to-end vector. This nonmonotonicity is quantitatively dif-
ferent from that of crowded reactions due to the subdiffu-
sive motion of the monomers imposed by the connectivity
of the polymer. However, it can be easily explained by
noting that the initial effect of reducing the volume acces-
sible to the polymer to smaller than its unconfined size is to
reduce the conformational phase space that the polymer
can sample. This allows the polymer to sample space faster
resulting in shorter relaxation times. However, like the free
particle case, as the monomer density approaches the
close-packing limit the polymer becomes jammed and
the relaxation times increase.

We have shown that a simple, analytically tractable
model is able to quantitatively predict reaction times oc-

curring within crowded environments. This model can be
generalized to off-lattice systems and systems with explicit
solvent with slight modification. The nonmonotonicity in
the reaction times shown here has broad implications for
reactions within cells as well as the dynamics of confined
polymers.
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