
Class 9: Fitting data

General problem
We have some model with one or more adjustable parameters ai and a function
that describes how well the model fits some set of measurements. Let’s call
this goodness-of-fit function F . This function depends on the parameters of the
model, so F = F (a).

Our main problem: Find the value of a which minimizes F . This looks like
a job for our function minimizer!

Secondary task: Estimate how far each ai can be perturbed from its best
fit value without increasing the F by more than some amount. This is used for
estimating parameter uncertainty ranges or tolerances. This can be done using
the Hessian matrix at the best fit point.

Defining the goodness-of-fit function
A common choice for the F function is the sum of the squares of normalized de-
viations of the measurements from the model. For n independent measurements
yj , and corresponding values from the model fj(a),

F (a) = χ2(a) =
∑

j

[yj − fj(a)]2

s2j
.

What we choose for sj depends on our purpose in fitting the model to the data.

• When studying what model best describes the data, we set sj equal to our
best estimate of the RMS error of measurement j. If the measurement
errors are gaussian and independent, we have a true χ2 random variable.

• If we want a function that fits the data for some other purpose, we choose
sj to be appropriate tolerances for that purpose.

There are other possibilities for the goodness-of-fit function. (See Other
goodness-of-fit functions.)

Example: voltmeter calibration
Situation: for some reason, you have to use an imperfectly calibrated volt-
meter. You record the voltmeter readings at several known voltages from a
well-calibrated source. You want to be able to convert any reading to the true
voltage. You care more about the accuracy in some voltage ranges than in
others.
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True volt-
age

Readout Readout preci-
sion

Required ac-
curacy

0.000 0.000 0.001 <0.001
0.500 0.501 0.001 0.01
1.000 1.006 0.001 0.01
1.500 1.512 0.001 0.003
3.000 3.060 0.001 0.006
5.000 5.139 0.001 0.01
9.000 9.450 0.001 0.01
12.00 12.80 0.01 0.1
18.00 19.80 0.01 0.1

Voltmeter calibration (continued)
Your first idea: Define the function f(x; a, b) = ax + bx2, where x is the

reading, and f(x; a, b) should give the true voltage. Chose a and b for best
fit of true voltage as a function of readout, using your required accuracy
as the weights sj .

The voltmeter’s designer says: The readout voltage R is theoretically a
function of the input voltage v, with R(v) = Ae(v−VT )2/(v+B) − C, so
you should fit readout voltage to true value and invert R(v).

A statistician agrees, and further says you should use the readout precision,
not your required accuracy.

What do you do?

Your voltmeter chi-squared function
Go with your first idea:

χ2(a, b) =
∑

j

(vj − f(xj ; a, b))2

s2j

where xj is the readout, vj is the voltage, and sj is required accuracy. Then
you will have your useful and easy-to-use function f .

Now just code that χ2 function and run a general-purpose function mini-
mizer. Start it at a = 1, b = 0, which is close to the right solution.

Chi-squared in matrix form
The function

χ2 =
∑

j

(yj − fj(a))2

s2j
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is more generally (in case of correlated measurements)

χ2 =
∑
jk

(yj − fj(a))(yk − fk(a))wjk.

In matrix form,
χ2 =

(
y − f(a)

)T
V −1

(
y − f(a)

)
.

Taking the derivatives with respect to a and setting them to zero to find the
minimum χ2,

∂χ2

∂a
= −2

(
y − f(a)

)T
V −1 ∂f

∂a
= 0.

f(a)TV −1B = yTV −1B

where B ≡ [∂fj/∂ai].
If we can solve this for a, we’re done.

Special case: linear superposition of arbitrary fixed
functions
Suppose our model is fj(a) = a1B1j + a2B2j + ..., where the B’s depend on the
measurement index j but not on any parameter. In matrix form,

f = B a,

where the B are fixed. Then general problem for the minimum χ2 given above
becomes simply

aTBTV −1B = yTV −1B,

which has the exact solution:

a =
(
BTV −1B

)−1
BTV −1y.

Linearizing the non-linear: voltmeter calibration
revisited
The voltmeter fit function from the previous example is just the sum of coeffi-
cients times fixed functions, exactly the special case above.

• So we can solve for the best fit using matrix math directly. (There are
many C++ packages that provide classes for linear algebra, including
ROOT, GSL, Boost, and others.)

• This calculation executes very fast compared to the general function min-
imization.

N.B. Even though the model for voltmeter was “non-linear”, it was a linear
superposition of fixed functions. So this is perfect for the “linear fit”. This is a
commonly occuring case, worth remembering.

Contrast with this case: fit f(x) = a sin(ωx+ φ) + b to some measurements
yj for known xj . The a and b parameters can be found quickly by the linear
fit for given ω and φ, but the latter two parameters have to be found by the
general minimization routine.
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Another example: fitting Bode’s law
The mean orbital distance a of a planet in the solar system supposedly fits the
relation

am
∼= A+B · 2m,

where A ' 0.4, B ' 0.3, and

Planet m Observed a
(AU)

Mercury −∞ 0.39
Venus 0 0.72
Earth 1 1.00
Mars 2 1.52
Ceres 3 2.77
Jupiter 4 5.20
Saturn 5 9.54
Uranus 6 19.2
Neptune 6 2

3 30.06
Pluto 7 39.44

What are the best A and B to calculate all planets’ mean orbital distances
to the same fractional precision?

Assignment: complete fit of Bode’s law to plane-
tary data
Feel free to use the minimizer code example from the previous lecture, and just
rewrite the function to minimize.

Alternatively, you can base your C++ code on any fitting example from the
ROOT website’s “howto” or “tutorial” sections.

Alternatively, use the linear fit solution. (But program it, don’t just use
Matlab or Maple.)

Other goodness-of-fit functions
In other cases, we might use a different function for goodness-of-fit.

• Our measurements have non-Gaussian statistics according to our model,
and we’re really interested in the model or the model parameters them-
selves:

– Use maximum likelihood method. (Postpone discussion until proba-
bility and statistics.)

• Our measurements have Gaussian statistics, but there’s a correlation be-
tween the measurement errors:
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– There’s a straightforward generalization of the χ2 function,

χ2 = δxT V −1δx

where V is the covariance matrix. (Derived from the Gaussian prob-
ability distribution.)

• Our measurements consist of m uncorrelated quantities at N points:

– Can be treated just like n = m ∗N independent measurements.

• Our measurements are similar to the previous case, but our model has a
large number N unknown parameters, each of which affects just the m
measurements at one of the N points:

– Find a fast way to fit each of the N parameters at each point (ideally
from an analytic analysis, such as the linear fit case). Define the
global χ2 of the remaining parameters, with the N parameter already
optimized.

There are many other cases, each can be treated by a consideration of the
likelihood function and/or the tolerances of your fit for your technical applica-
tion. Most common cases are covered in the standard references.
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