
Class 4: C++ Part II

Contents

Contents
Contents 1

Explicit type conversion (“casting”) 1

Usefulness of arrays and references: 1

An algorithm for DrawAllBalls() 1

Many things demonstrated by DrawAllBalls() 2

A more CPU-efficient algorithm 2

New DrawAllBalls() algorithm implementation 3

Moral of the story 3

Structs: motivation 3

Structs in C/C++ 3

Example usage 4

Exercise (after break) 4

Some good programming practices 5

Assignment 5

Explicit type conversion (“casting”)
Syntax in C or C++: (typename) expr

Alternate C++ syntax: typename (expr)
Numeric types are also converted implicitly when needed, particularly when

it’s a “promotion”:

1

Implicit type con-
version

Explicit type conver-
sion

int i=5;
double x;
x= i;

double x=3.1415;
int i;
i= (int)x; // C style
i= int(x); // C++ style

Usefulness of arrays and references:
Suppose in our bouncing ball program we had more than one ball to track.

• We could use a vector or an array for x and another one for v.

• We might want to simplify the main loop by making a separate MoveBall()
function. The main loop in the code might look like this:

while(1) {
for (int i=0; i<n; i++) {

MoveBall(x[i], v[i], dt); // alters x, v (pass by ref.)
}
DrawAllBalls(x,v,n); // you can pass an array or vector

}

An algorithm for DrawAllBalls()
Algorithm goal: Print a line showing where balls are.

Algorithm outline:

• Loop over positions in line:

– Figure out whether ’ ’ or ’*’ should be printed

∗ Loop over balls
∗ Set character to be printed to ’*’ if any ball is at current position

– Print character

• Print newline.

Many things demonstrated by DrawAllBalls()
Implementation:

// Print a line showing where balls are:
// at each position, check whether a ball is there,
// and print a ’*’ or ’ ’ depending
void DrawAllBalls(vector<double> & x, vector<double> & v, int n)
{

int icolumn; // column index
int iball; // ball index

2

char c; // character
for (icolumn=0; icolumn<80; icolumn++) {

c= ’ ’; // space in this column, unless we find a ball
// start of ball-search
for (iball=0; iball<n; iball++) {

if ((int)(x[iball]) == icolumn) {
c=’*’; // found a ball
break; // early exit from ball-search loop

}
}
// end of ball-search
cout << c; // print ’ ’ or ’*’

}
cout << ’\n’;

}

A more CPU-efficient algorithm
The previous algorithm had two nested loops: one over 80 columns, the other
over n balls. The ball position check is done as many as 80*n times. Can we be
more efficient? Yes, we can.

Algorithm outline:

• Create a string 80 characters long, initialized with ’ ’

• Loop over balls:

– For each ball, set corresponding position in string to ’*’

• Print string and newline.

Now have only nball loop iterations, not 80*nball.

New DrawAllBalls() algorithm implementation
// Print a line showing where balls are
void DrawAllBalls(vector<double>& x, vector<double>& v, int n)
{

string s;
s.resize(80,’ ’); // set to 80 spaces
int iball; // ball index
for (iball=0; iball<n; iball++) { // start of ball loop

int ix= (int)(x[iball]);
s[ix] = ’*’;

}
// end of ball loop
cout << s << ’\n’;

}

3

Moral of the story
Sometimes you can find a more efficient algorithm in terms of CPU by doing
something a little different. Often this involves using just a little more memory.

Structs: motivation
Suppose our bouncing balls had more parameters: two dimensions, radius, color,
name of video game character, etc. Then the main loop might look like this:

while(1) {
for (int i=0; i<n; i++) {

MoveBall(x[i],y[i],u[i],v[i],r[i],color[i],name[i],dt);
}
DrawAllBalls(x,y,u,v,r,color,name);

}

It would be nice if it could look like this:

while(1) {
for (int i=0; i<n; i++) {

MoveBall(balls[i], dt);
}
DrawAllBalls(balls);

}

Structs in C/C++
C and C++ let us define our own structures which collect data, possibly of
different types, in contiguous memory locations.

Declaration Syntax Memory allocation
struct MyBall_s {

double x;
double y;
double u;
double v;
double r;
int color;
char symbol;

};

struct MyBall_s ball;

Relative address contents
0 through 7 x
8 through 15 y
16 through 23 u
24 through 31 v
32 through 39 r
40 through 43 color
44 symbol

Total size: 45 bytes

Example usage
void MoveBall(struct MyBall_s & ball, double dt)
{

4

ball.x= ball.u * dt;
ball.y= ball.v * dt;
Bounce(ball.x, ball.u);
Bounce(ball.x, ball.v);

}

void Bounce(double &x, double &v) {
{

// bounce on wall at 79 or 0.
// Warning: explicit 79 is bad practice!
if ((x>=79.0 && v>0) || (x<=0.0 && v<0))

v= -v;
}

Exercise (after break)
Modify bouncing ball to have

• Multiple balls

• Two dimensions

• Different positions of wall in x and y

• Show on screen by reprinting repeatedly

Class: further define specification, write algorithm. Instructor: code it, with
class catching errors.

Some good programming practices
• Avoid arbitrary constants (like 79) in your code.

– This is especially important if you use it more than once!

– Better to define a variable for it.

• Document what your code does at multiple levels:

– Big picture: problem solved or task performed, input, and output

– Algorithm: how it does it, in language-independent terms

– Code: the variables and critical steps (comments in code)

• Keep copies of your older versions of code, especially if they work!

– Revision control systems can help with this, but for small projects,
just make backup copies manually with some systematic naming or
subdirectory structure. (v1/ball.cc, v2/ball.cc, etc.)

5

Assignment
• Come up with further ideas for improving either “bouncing ball” or “ad-

venture” (pick one).

• Figure out algorithm for doing them, implement them in code.

• Document the features. (E.g., in “ReleaseNote.txt”)

• Document the algorithm. (E.g., in “DeveloperNotes.txt”)

• Document the code internally with comments.

• Keep your old version for reference, make new version.

6

	Contents
	Contents

	Explicit type conversion (``casting'')
	Usefulness of arrays and references:
	An algorithm for DrawAllBalls()
	Many things demonstrated by DrawAllBalls()
	A more CPU-efficient algorithm
	New DrawAllBalls() algorithm implementation
	Moral of the story
	Structs: motivation
	Structs in C/C++
	Example usage
	Exercise (after break)
	Some good programming practices
	Assignment

