
Class 3: C++ part I

C-inherited syntax
• C++ has become very complicated (or “rich”), but it’s based on C.

• C and C++ have a “nested” syntax structure.

• At the top level, C has two main possibilities:

– Define a function, or
– Declare something (say what it is):

∗ a new “user-defined” type
∗ a function (without defining it)
∗ a global variable (but avoid that)

– Within a function definition, other declarations can occur. (That’s
the nesting.)

• C++ has a few other options, such as the using namespace statement.

Function definitions
Basic function definitions consist of function_type function_name (ar-

gument_list) { function_body }

where function_type is the type of the functions return value (like int or
double), and argument_list is a comma-separated list of variable declarations.

For example:

double FahrenheitToCelsius(double T_degF)
{

double T_degC;
T_degC = (T_degF - 32.0)/1.8;
return T_degC;

}

Pass-by-value vs. pass-by-reference

Parameters (aka arguments) in C are generally1 “passed by value”: the value is
copied into a new variable to be used as the function argument.

• Changing the value in the function doesn’t change any values in the calling
program.

1

C++ also allows “pass by reference”:

• The caller must provide a variable as the argument. It doesn’t have to
have the same name as the argument.

• Changes to the argument in the function change the value of the variable
in the calling program.

• Internally, the called function is really being given the address of the
variable in the calling function.

Exercise 1: pass by value vs. pass by reference
Compare these two function definitions:

double FahrenheitToCelsius1(double T) // pass by value
{

T = (T - 32.0)/1.8; // reusing T -- bad practice!
return T;

}

double FahrenheitToCelsius2(double & T) // pass by reference
{

T = (T - 32.0)/1.8;
return T;

}

Try them out and see what they do. (Write a main() for this.) Can you call
FahrenheitToCelsius1(32.0)? Can you call FahrenheitToCelsius2(32.0)?

Moral of Exercise 1
Be careful to remember which function arguments are pass-by-value and which
are pass-by-reference.

Scope of variable definitions
A variable defined inside the body of one function is completely different from
a variable of the same name defined in the body of another function:

double FahrenheitToCelsius3(double T_degF)
{

double T_degC;
T_degC = (T_degF-32.0)*5.0/9.0;
return T_degC;

}

double FahrenheitToCelsius4(double T_degF)

1 Exception: arrays passed to a function are passed by reference, even in C.

2

{
double T_degC;
T_degC = (T_degF+40.0)/1.8-40.0;
return T_degC;

}

Break

Flow control
• Conditional execution (branching): if and if-else

• Looping: while, do-while, for

• Loop shortcuts: continue and break

basic if
if (expr) {

statements;
}

Does statements if expr is non-zero, where expr can be any expression.
Example:

if (x > 100 && u > 0.0) {
u= -u;
x= 100;

}

basic if/else
if (expr) {

statements;
}
else {

statements;
}

Does first block if expr is non-zero, otherwise does second.

if / else if / ... / else
if (expr) {

statements;
}
else if (expr2) {

statements;
}
else if ...

3

and so on and so forth, optionally ending in:

else {
statements;

}

looping: while and do

basic while basic do while
while (expr) {

statements;
}

do {
statements;

} while (expr);
repeats state-
ments as long as
expr is non-zero

does statements, then
repeats as long as expr
non-zero

loop shortcuts: break, and continue
• break will jump out of a loop, continuing after the end of the loop

• continue will jump to the test and loop again if non-zero.

looping: for

loop using for ... is exactly identical to
this...

for (expr1; expr2; expr3) {
statements;

}

expr1;
while (expr2) {

statements;
expr3;

}
... with one exception.

The one way a for is different from a while is that a continue inside the
for loop will execute expr3 before going back to the beginning.

Example: print an asterisk in column n
void printStarAt(int n)
{

using namespace std;
int i;
for (i=0; i<n; i=i+1)

4

cout << ’ ’;
cout << "*\n";

}

Exercise 2: 1-d bouncing “ball” (asterisk)
Goal:

• bounce a ball between two walls

• let x be the position of the ball

• let v be its velocity (+1 moving to the right, -1 to the left)

• start with x=0, v=+1

• reverse direction if it hits a wall at x=79 or x=0

• “animate” on terminal using the printStar() function

Work together to define the algorithm, and I’ll code it according to your
directions.

Assignment: “Adventure”
Make a simple interactive “text adventure game” that repeatedly asks user for
“commands” and then gives responses.

Simple example: http://www-personal.ksu.edu/~gahs/john/adventure0.html

• Note: this was written by my 8-year-old son, with a little help from me.

• Uses JavaScript, but only works with Firefox, not Internet Explorer.

Classic example: http://www.ifiction.org/games/play.phpz?cat=&game=1&mode=html

• This is Will Crowther’s 1973 version.

You don’t have to set up a really big adventure, just implement a few com-
mands in a loop and some reasonable responses. Have fun.

5

http://www-personal.ksu.edu/~gahs/john/adventure0.html
http://www.ifiction.org/games/play.phpz?cat=&game=1&mode=html

	C-inherited syntax
	Function definitions
	Pass-by-value vs. pass-by-reference
	Exercise 1: pass by value vs. pass by reference
	Moral of Exercise 1
	Scope of variable definitions
	Break
	Flow control
	basic if
	basic if/else
	if / else if / ... / else
	looping: while and do
	loop shortcuts: break, and continue
	looping: for
	Example: print an asterisk in column n
	Exercise 2: 1-d bouncing ``ball'' (asterisk)
	Assignment: ``Adventure''

