- 1. 4.27.
- 2. 4.29.
- 3. 4.30.
- 4. 4.31.
- 5. Let us choose the |+> and |-> basis states of the spin ½ system which are the eigenstates of S² and S_z. If $|+>_x$ and $|->_x$ be the eigenstates of S² and S_x. Express $|+>_x$ and $|->_x$ in terms of |+> and |-> basis states.

By definition, a projection operator P_{+x} will have the property

$$P_{+x} |+>_{x} = 1 |+>_{x}$$

 $P_{+x} |->_{x} = 0 |->_{x} = 0$

- (a) Express the operator P_{+x} in the basis set of $|+>_x$ and $|->_x$. It is a matrix.
- (b) Express the operator P_{+x} in the basis set of |+> and |->.
- (c) Show that the operator $P_{+x} = |+>_x <+|_x$. Note that $<+|_x$ is the bra of the ket $|+>_{x}$. To prove (c) calculate the matrix of $|+>_x <+|_x$ is the same as in (a) and in (b) above.