
 
 
 
 
 Whole set of homework problems for AMO-1.  
Exercise 1: Confirm the atomic units of B and of the Laser intensity are indeed given by 
the values shown in the lecture notes. 
 
Exercise 2:   Calculate the electron's and the proton's kinetic energy if each of their 
velocity is given by one atomic unit. 
 
Exercise 3: Look for the energy separation of the hyperfine structure of the ground state 
of atomic hydrogen and show that its wavelength is 21 cm. 
 
Exercise 4: confirm that 1 atomic unit in wavelength is 45.6 nm. For a Ti-Sapphire laser 
of wavelength 800nm, calculate its mean photon energy in eV's, its wavelength and 
frequency in atomic units,  its period in fs and its frequency in Hertz. 
 
 Exercise 5.  You can learn a lot about hydrogen atom using Bohr model. Go over the 
derivation and use atomic units. Now remember to use reduced mass to go from two-
body system to one-body problem.  Let the total energy of the ground state of H be -13.6 
eV. 

   (a)   What is the energy difference between the ground state of H and of  D, in 
meV. 
   (b)  Consider a muonic hydrogen, i.e., replace the electron by a negatively 
charged muon which has mass 206 in atomic units. What is the binding energy of 
the ground state of such a system. What is the velocity (in atomic units) and the 
radius of the muon with respect to the proton in the ground state? What is the 
wavelength for the n=2->1 transition? 
 

Exercise 6.  BJ problem 1.8 (If part a is too hard, you can skip it) 
 
Exercise 7. BJ problem 1.9 (note that this method is used to obtain high energy gamma 

ray photons)  
 
Exercise 8.   BJ 2.7. 
 
Exercise 9.   BJ 2.10 
 
Exercise 10:  BJ 2.20 
 
Exercise 11. In this exercise we want to derive eq. (2.380) and (2.381) of BJ. 

  Start from the first-order coupled eqs. (2.377a,b), reduce them to two uncoupled second-order 
ordinary differential equations.  Then solve each second-order differential equation analytically. 
 



Problem 12: (a)Write down explicitly the wavefunctions of  the two Stark states in 
terms of linear combination of hydrogenic wavefunctions in spherical coordinates 
using the formula above for m=0 and n=2.  

    (b) Plot the charge density in polar coordinates for each Stark state. 
    (c) Prove that each Stark state is not an eigenstate of L2, thus parity is not a good 

quantum number for each Stark state. 
    (d) Calculate the diagonal and off-diagonal matrix elements of the operator -eFz for 

an H in a static electric field along the z-axis, for two Stark states. Show that the off-
diagonal term is zero. This shows that Stark states are eigenstates for a hydrogen 
atom in a static electric field.   

 
 
   (If you are good at using computers, do this problem for m=0 and n=5, and give a 

good writeup. I like someone to show the density plots of the five Stark states.) 
 
Exercise 13: Write down the 2p1/2 and 2p3/2 wavefunctions of H in the Pauli 

approximation explicitly.  Use α and β  to represent the spin-up and spin-down 
wavefunctions and R21(r) to represent the 2p radial wavefunction. 

 
 

 
Exercise 14. The n=2 states of atomic hydrogen are degenerate in the first order 
approximation. Look it up and sketch the energy levels at the following successive 
approximations: 
    (a) including spin-orbit interaction; (b) according to Dirac theory; (c) including QED 

effect; (d) including hyperfine interaction from the nucleus. State clearly the good 
quantum numbers at each level of approximation and the degrees of degeneracy. For 
actual splitting you may want to consult BJ or some other books 

 
 
Exercise 15: To make sure that you indeed know how to do  Taylor's expansion, do 

problem 5.4 of BJ.  
 
 
Exercise 16. 
     Go to the web (NIST site) to find out the ionization energies of Li, Na, K, Rb and 

Cs. Express the results in eV's. Find the ns-> np1/2 and ns np3/2 energies where n is 
the principal quantum number of the outer-most shell. Express the energy difference 
in terms of  wavelengths in nanometers. 

    Find the isotopes of these alkali atoms and their nuclear spins. 
 
Exercise 17. This exercise will guide you through the construction of the two-electron 

wavefunctions of a helium atom in the nonrelativistic approximation. 
  (a) Assume that the electron-electron interaction can be neglected, construct explicitly 

the wavefunctions of the two electrons that can be labelled as  1s2p 1P and 1s2p 3P. 
Consider the case that ML=0 and MS=0. You will write the wavefunction as the 



product of the spin function and the spatial wavefunction.  Show that the 
wavefunctions you have constructed are eigenstates of 22 , SL .  Show that under 
exchange of electron 1 and electron 2, the total wavefunction indeed is antisymmetric. 
What is the parity of each state? Find the eigenvalues of L2, S2, and the energy of 
each state. 

  (b) Construct the same wavefunctions using the Slater determinants. Prove that the 
resulting wavefunctions are identical to the one derived from (a). 

 
Exercise 18. Use eq. (6) and the variationally obtained effective charge, calculate the 

total energy of the two-electron Hamiltonian. Compare this energy with the ground 
state of the one-electron Hamiltonian, i.e., after one electron has been removed. The 
difference of these two energies gives the binding energy. Do the calculation for He 
and H-. Compare your answers to the experimental data. 

 
 
Exercise 19.  This exercise is related to the calculation of binding energies of a 

spherical model potential. 
 
   The model potential for describing the bound orbitals for oxygen atom can be written 

in the form V(r)=-Z(r)/r where the effective charge has the form 
                    )exp()exp(71)( crbrarrZ −+−+=    
  with a=1.41881, b=-6.22735 and c=2.5114. 
 
  Calculate the orbital energies of 1s, 2s, 2p of the oxygen atom. Also calculate the 

energies of the excited states 3s and 3p. Compare your results that you can find from 
the experiment. 

 
 Exercise 20. The Hund's rule.  
   In this exercise, we will consider two electrons on the same shell. Consider 2p2 

configuraton. Without the Pauli exclusion principle, the total L=0,1,2 and S=0,1 are 
allowed. Write down the two-electron wavefunctions for the possible L and S, and 
demand that the total wavefunction be antisymmetric under exchange of the two 
electrons, show that the allowed L and S satisfy L+S=even. Thus only 1S, 3P and 1D 
are allowed for the 2p2 configuration. 

 
   Evaluate the expectation values of the electron-electron interaction <LS|1/r12|LS> for 

1S, 3P and 1D, respectively and work out the angular integrals analytically using the 
formula given in the handout on angular momentum algebra. The remaining radial 
integral is positive definite so you can see the Hund's rule works. 

 
Exercise 21.  
       In the elastic scattering region one can write the elastic phase shift near the 

resonance region as respot δδδ +=  where the first term is a constant and the second 
term is the standard rapidly changing phase shift near the resonance. Show that the 
elastic cross section near the resonance can be expressed in the form of the Fano 



profile, and find the expression of the q-parameter for the four cases shown in the 
figure. Assume s-wave scattering. 

                      

                                          
 
Exercise 22. Doubly excited states of He  
    Let us write the helium Hamiltonian as H=H0+H1 where the first term consists of 

one-electron hydrogenic operators only and the second term is the 1/r12 interaction. 
Thus the zeroth order wavefunctions  2s3p 1P and 2p3s 1P states are degenerate. 
According to the +/- designation of Fano, the two states should be given by (2s3p + 
2p3s) 1P  and (2s3p- 2p3s) 1P,  respectively.  Write down explicitly the wavefunctions 
of these two states in terms of radial hydrogen wavefunctions and coupled angular 
momentum functions. You can omit the spin part for this purpose. 

 
   1. Use 1st order perturbation theory to evaluate the matrix element of  H1 for each of 

these two states.  
 
    2. Work out all the angular integrals analytically (similar to problem 20) to reduce 

them to summation of terms involving only radial integrals -- the so-called Slater 
integrals.  

 
    3. You can write a simple 2D integration program to calculate these Slater integrals. 

Note that the 2s, 2p, 3s and 3p are just hydrogenic orbitals.  (If you are not good at 
programming, ask the results of these integrals from your fellow classmates, but give 
them credits.) 

 
    4. Use the results from (2) and (3) to calculate the binding energies of these two 

states. Compare them with the values given in the table on the third page of Lecture 
note-13. (Look at the n=3 of  the (N,K)=(2,0) and (2,1) groups.) Express the 
difference of your calculations in eV's. 

 
    5. Look up on the web for the binding energy of the ground state of He. 
 
    6. Calculate the photon energy (in eV) needed to excite the He atom from the ground 

state to these two states. Compare your results with what you can read from Fig.4 on 



page 2 of note-13. (You can get even more precise values by going to the original 
paper indicated there.) 

 
    7. Calculate the  energies of the ejected electron when these two doubly excited 

states autoionize. 

  
 Exercise 23.    
   (1)         Enumerate the possible L and S of  the 2s2p3p configuration. 
                Find the possible L and S for the 2p23p configuration. 
 
   (2)    Go to the web to look for the mean term energy (<E>=weighted averaged of EJ> of the ground 
state configuration of C, N, O atoms  and confirm that the  terms do satisfy the Hund's rule. 
 
  (3)  Go to the web to find out the mean energy levels of the "2'22 lll  intrashell states of O IV. The 
convention for atoms is that the neutral oxygen is written as O I. Thus O IV is O3+. Intrashell states 
mean that the principal quantum numbers of the open shell orbitals are identical. Thus the possible 
configurations in this case is 2s22p, 2s2p2 and 2p3.  Find out all the possible L and S for each 
configuration(you can even just look them up)  and the mean energies of all these states according to 
the configurations. Check if the Hund's rules are satisfied for the 2p3. 
      
   Follow the example of Fig. 5 of Morishita and Lin, J. Phys. B31, L209 (1998) and order the energy 
levels you found in the similar way. The energy pattern in this new ordering show the rotational level 
structure of a symmetric top. ( Will be further discussed briefly in the class.) 
 

(4) In the class we talked about the Lande interval rule, and we have said " It is empirically shown 
that if the shell is more than half-filled then the fine structure level is inverted." Check this statement 
by looking at the fine-structure energy levels of 1s22s2p 3PJ of Be. Check the same for the term 
1s22s22p5 2P of Ne II. 
 
 
 
Exercsie 24.  Z-Scaling along the isoelectronic sequence.  
     (a) Write down the Schrodinger equation for atomic hydrogen, and for He+.  From the 
equation for He+, do a change of variable by using a new r'=Zr for Z=2, show that the 
resulting equation is the same as the Schrodinger equation for atomic hydrogen except 
that the new energy E'=E/Z2, where E' is the hydrogenic energy and E is the energy for 
He+. Thus shows the Z2 scaling of the eigen-energies with Z. 
    (b)   From this exercise,   what is the relation  between the expectation values, 

>< φφ |1|
r

, of H and of He+.  

     (c) Now use eq. (5,16) and (5.17) for the spin-orbit interaction expression, show that 
the spin-orbit interaction term shall scale like Z4 for hydrogenic systems. 
    (d) Convince yourself then that the Slater integral shall scale like Z  for the two-
electron helium-like ions. 
    (e) Extend the method to scaling with respect to the reduced mass for hydrogenic 
systems: How the expectation value of 1/r scales with the reduced mass?  
 
 



Exercsie  25. Selection rules for autoionization. 
 
  (a) The 2s2p 1Po doubly excited state of He is about 60 eV from the ground state. When 
this state autoionizes, what is the energy of the ejected electron, in eV?  
(b) Note that electron-electron interaction is responsible for the autoionization. This is a 

scalar operator, such that the L, S and parity, before and after the autoionization should 
be identical.   Based on this,  what is the orbital angular momentum of this ejected 
electron? How about its spin?  
(c) It is well-known that the 22 p  3Pe state cannot autoionize, why? Try to follow the 

argument used in (b). 
 
Exercsie 26.  Multitudes of coupling schemes. 
(a) The LS coupling is not always the best coupling scheme. Consider the configuration 

1s22s22p53p of Ne. The first nine electrons are rather tight, but the excited 3p electron 
tends to stay further out. The better coupling scheme is that 1s22s22p5 first couple to 2Pj 
with j=3/2 and j=1/2. Then the j of the core couples with the orbital angular momentum 
of the outer electron to form a new quantum number, say K. Finally the K couples with 
the spin of the outermost electron to form the total J of the atom. Go to the NIST website 
for the energy levels listed there, sketch the energy levels for all the possible J. List all 
the states that have identical J together. 
 (b) Now if you think LS coupling should be better, identify all the L and S that couple 

to the same J, and group these states together. 
 (c) You can also use jj coupling and group all the states that have the same final J.  
 
Convince yourself that the number of states for a given total J is the same, independent 

of what scheme you start with. 
  

  
          Refer to Note-17  for the equations given below 
 
Exercsie 27. Prove eq. (2.15). Consider the x-component only and use the hint given 
above that equation. 
 
Exercsie 28. You can use eq. (2.20) to calculate the spontaneous transition rate.  
   (a) Show that the 2p state of atomic hydrogen indeed has a lifetime of 1.6 ns. 
   (b) What is the lifetime of the 2p state of He+. Use scaling argument. 
   (c) If a beam of 1000 hydrogen atoms are travelling at one-tenth the speed of light. At 
t=0, all of them are excited to the 2p state, for example, like in a beam-foil experiment. 
How many atoms can be found in the ground state after the beam has travelled 1 cm, 10 
cm? 
 
Exercsie 29. (a) One millions atoms of hydrogen initially are in the 5p states. Consider 
all the possible initial radiative decay paths (by electric dipole transitions) from this state. 
    (b) Since all the excited states eventually will decay to the ground state, find out the 
different photon energies that you can get if the initial state is a 5p state. 
 



 Comments: If you can calculate the transitions rates for all the states you have 
considered you should be able to find out how many photons for each energy if you know 
initially how many atoms you have. Transition rates of atomic hydrogen have been 
tabulated in the classic book by Bethe and Salpeter, " Quantum Mechanics of one- and 
two-electron atoms. " 
  

  
Exercsie 30.  Calculate the relative spontaneous emission rates of 2/32 p  and 2/12 p  

rates of atomic hydrogen to 2/11s .   
  Note that the good quantum numbers here are the J's. Use the wavefunctions for  

2/32 p  and 2/12 p from Problem 13 earlier. Since I ask for the relative rates only, there 
is no need to calculate any radial integrals. 

 
Exercsie 31. Relative intensities of the emission lines for hydrogen atoms in a magnetic 

field.  
 
    (a)  For simplicity, we will neglect the spin-orbit interaction and consider the 

transitions from 3d to 2p only. First you note that the 2p state will be splitted into 
three states, and the 3d will be splitted into five states.  Sketch the levels of 3d and 2p 
in a weak magnetic field.   

   (b) In a magnetic field, how many different emission lines will you observe? 
   (c) Calculate the relative intensities of these lines. 
  Hint: Use Wigner-Eckhart theorem. There are no integrals to calculate. 
 
Exercsie 32. Radiative lifetimes along the Rydberg series. 
      Consider the snp 1→  transitions in atomic hydrogen. What would be roughly the 

lifetime of the 20p state? How about 25p state? Use scaling method given in the hint 
below. The lifetime of the 2p state is 1.6ns. 

 
   Hint: From eq. (2.20), the major difference comes from the radial integrals. Since the 

1s wavefunction is localized in a small volume, we need to figure out how the excited 
state wavefunctions behave at small r. For a given l , from the hydrogen 
wavefunction, you can see it behaves like 2/3/1 n  approximately. Look up the 
hydrogenic wavefunctions for ln  states and write down the normalized wavefunction 
for small r to convince yourself that it indeed scales like 2/3/1 n .   

 
Exercsie 33. This exercise is to identify the dominant radiative transitions between two 

states. Consider E1, M1, E2, M2 only. Also consider if two-photon transitions could 
be important. Note that if J is given then J is consider to be the only good quantum 
number. If only L is given, then L is considered to be a good quantum number. 

 
   (1) For atomic hydrogen: 
          (a) 2s-> 1s  (b) 2/12/1 12 ss →  (c) sd 13 →  (d) The transition between the two 

hyperfine levels of the ground state of hydrogen 
      



 (2)  For helium 
         (a) →Sss 121 Ss 121  
         (b) →1

321 Sss 0
121 Ss  

          (c) →2,1,0
321 Pps  0

121 Ss  there are three cases here. 
 (3) The intercombination lines in O I (go to NIST data center for the energy levels) 
        (a) 2,1,0

342
2

142 2222 PpsDps →   (b) 2,1,0
342

0
142 2222 PpsSps →  

       Identify the type of transition and the energy of each transition. 

  
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


