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The hyperspherical coordinates approach to three-electron atomic systems is further refined by taking into
account the symmetry of the electrons analytically. Spins are treated explicitly for both doublet and quartet
cases to reduce the three-electron Schro¨dinger equation to a set of coupled two-dimensional partial differential
equations in a compact, symmetric form ready for numerical calculations. It is shown that the resulting
equations can be accurately solved usingB splines. By adopting the adiabatic approximation, the hyperspheri-
cal potential curves for singly, doubly, and triply excited states for the2Po symmetry of Li are obtained.
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I. INTRODUCTION

The systematic investigation of the nature of electron cor-
relation in atomic systems started about three decades ago
with the observation of doubly excited states in helium atoms
@1#. Since then, it has become one of the major themes in
atomic physics@2#. Triply excited states of atoms are ex-
pected to reveal even richer and stronger correlations and the
study of these systems has gained increasing attention in the
past few years. With the developments in laser and synchro-
tron radiation spectroscopy, more systematic studies of triply
excited states are beginning to emerge@3#. While some indi-
vidual triply excited states have been observed, a classifica-
tion scheme for these states is yet to be formed@4#. Such a
scheme will emerge only after the nature of electron corre-
lation in three-electron systems is understood.

The understanding of electron correlation requires imple-
mentation of new theoretical methods different from the
independent-electron model. Among others@5#, the hyper-
spherical coordinate approach@6# has been shown to be suc-
cessful in the analysis of electron correlations for different
doubly excited states and in the classification of these states
@7#. The recent implementation of the hyperspherical close
coupling method illustrates that this approach is capable of
performing accurate calculations over a broad energy region
for any physical parameters for two-electron systems, such
as photoionization cross sections and resonance positions
and widths@8#.

The early attempts at employing the hyperspherical ap-
proach to three-electron atomic systems using basis expan-
sion were made by two groups@9,10# and the results were
reviewed in Ref.@11#. These authors illustrated qualitatively
that the adiabatic hyperspherical potential curves could be
sorted into three groups, supporting singly, doubly, and triply
excited states, respectively. However, their numerical results
were not accurate enough for a quantitative investigation. To
achieve high accuracy, a method different from basis set ex-
pansion has to be developed. This was achieved recently in a
formulation by Bao and Lin@12# ~this reference is shortened
as BL hereafter! where the solution of the adiabatic hyper-

spherical potential curves is reduced to the solution of a set
of partial differential equations in two hyperangles. In this
formulation the solutions have proper exchange symmetry
built in and the states have well-defined total spin and total
orbital angular momentum quantum numbers, as well as par-
ity. In an earlier paper, the practical methods of solving these
partial differential equations in terms of a set ofB splines
were illustrated@13# within a special angular momentum
configurations3 and it was shown that accurate hyperspheri-
cal potential curves were obtained even at a large hyperra-
dius.

Following this initial success, the method was generalized
to treat real atomic systems. Calculations that included all
the important angular momentum components for the2Po

symmetry were carried out to study three-electron systems
such as Li and H22 @14#. The calculated adiabatic potential
curves were used to interpret the recent observation of triply
excited states of Li@3# and to illustrate that there are no
resonances in H22 as claimed in the earlier experiments@15#
and theory@16#, but in agreement with recent experiment
@17# and theory@18#. In the process of developing these cal-
culations, the formulation of BL was refined and the result-
ing equations are more amenable to numerical calculations.
This paper presents the analytical developments leading to
this improvement.

In Sec. II, we derive a set of partial differential equations
slightly different from those of BL. These equations are
equivalent to the original set in the BL paper. However, they
are more compact and explicitly symmetric; therefore they
are easier for numerical calculation. The role of spins is
treated analytically in Sec. III. The quartet states and doublet
states are separately analyzed. With the symmetry analyzed
in Sec. IV, we obtain the hyperangle dependence for the
couplings between different equations. These developments
make it possible to reduce greatly the burden of numerical
calculations. In Sec. V, the numerical implementation of the
hyperspherical approach is briefly discussed and the channel
potential curves for the prototype three-electron atomic sys-
tem, Li, are analyzed. A summary is given in Sec. VI. The
derivation employs numerous results from symmetry group
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analysis. To simplify the presentation of the method most of
the analytical details are presented in the Appendixes.

II. SYMMETRIC FORM OF DIFFERENTIAL EQUATIONS
FOR HYPERSPHERICAL CHANNEL FUNCTIONS

A. Hyperspherical approach

The hyperspherical coordinates for a three-electron
atomic system are obtained by replacing the radial distances
r 1 , r 2 , andr 3 , of the three electrons by a hyperradiusR and
two hyperanglesa1 anda2 , defined by

r 15Rsina1cosa2 ,

r 25Rsina1sina2 , ~1!

r 35Rcosa1 ,

where 0<R<` and 0<a1 ,a2<p/2. In this coordinate sys-
tem, the nine spatial degrees of freedom of the three elec-
trons in the laboratory frame are represented by a hyperra-
diusR representing the size of the atomic system, and eight
angles. Besides the two anglesa1 and a2 , the other six
angles are the spherical anglesr̂ i of each electron. However,
the spatial and spin parts of the wave functions cannot be
separated in general~unless for quartet states! and thus the
construction of the properly symmetrized wave functions is
much more complicated than for two-electron systems.

The total wave functionC is more conveniently rewritten
as

C5c/~R4sin2a1cosa1sina2cosa2! ~2!

where the prefactor is given by the Jacobian determinant.
The volume element fora1 and a2 dimensions is
d(cosa1)da2. The Schro¨dinger equation satisfied byc is

S 2
1

2

]2

]R2 1Ts1VDc5Ec ~3!

whereTs andV are given by

Ts52
1

2R2 S ]2

]a1
2 1

cosa1

sina1

]

]a1
1

1

sin2a1

]2

]a2
2D ~4!

and

V5
1

2R2 S lW1
2

sin2a1cos
2a2

1
lW2
2

sin2a1sin
2a2

1
lW3
2

cos2a1
D 1Vc ,

~5!

respectively. In Eq.~5!, lW i is the orbital angular momentum
of electroni andVc is the Coulomb potential,

Vc52ZS 1r 1 1
1

r 2
1

1

r 3
D1

1

r 12
1

1

r 23
1

1

r 31
, ~6!

whereZ is the charge of the nucleus andr i j is the separation
between the two electrons. In this paper, atomic units are
used unless explicitly stated otherwise.

We expand the wave functionc in terms of adiabatical
channel functionsFm ,

c5(
m

Fm~R!Fm~R;V! ~7!

whereV is the set of all angles (a1 , a2 , and the spherical
anglesr̂ i) and spins.Fm(R;V) is the eigenfunction of Eq.
~3! at constant hyperradius, i.e.,

~Ts1V!Fm~R;V!5Um~R!Fm~R;V! ~8!

with m being a channel index.

B. Reduction of the hyperspherical channel equation

Since the prefactor in Eq.~2! andFm(R) are totally sym-
metric under the permutation of any pair of electrons, the
channel functionsFm(R;V) should be totally antisymmetric.
Following BL and Appendix A, this is guaranteed by the
expansion

F5(
G

~P1XG
~a!!~Q2YG!1(

G
~P2XG

~b!!~Q1YG!

1
1

A2(G @~P3XG
~c!!~Q5YG!1~P4XG

~c!!~Q6YG!# ~9!

wherePi are the elements of the algebra of theS3 group
acting on the radial distances among the three electrons and
Qi are the similar elements but acting on the spherical angles
and spins. Each functionYG is the product of coupled spheri-
cal harmonics and spin functions given explicitly by

YG5u l 1l 2~ l 0!l 3 ;L&u
1

2

1

2
~s0!

1

2
;S&[ug&us0&, ~10!

with given total angular momentumL and total spinS.
In Eq. ~9!, the summation is over those
G5( l 1 ,l 2 ,l 3 ,l 0 ,s0)[(g,s0) with a well-defined parity
given byp5(2) l11 l21 l3. The quantum numbersL, S, their
azimuthal components, and the parityp, are exact conserved
quantities. Note that theQiYG are the projections ofYG onto
a subspace satisfying a specified permutation symmetry. In
general, the dimension of this subspace is smaller than the
dimension of the whole space spanned by the functions
YG . Therefore not all the projected functionsQiYG are inde-
pendent. It is necessary to select the linearly independent
ones in the sum of Eq.~9!.

The last sum of Eq.~9! needs special attention. Here one
functionYG is to be projected onto two different subspaces,
Q5 andQ6 . This requires that the independent projections of
bothQ5YG andQ6YG be generated by the same set ofYG ;
thus they can be mapped one on one from one subspace to
another. Similarly,XG

(c) is to be projected ontoP3 and P4

subspaces; therefore the projections ofP3 andP4 should also
be related. As analyzed in Lemmas A2 and A3, these re-
quirements are satisfied. BecauseXG

(c) appears in both terms
of this sum, a normalization factor of 1/A2 @which is missing
in the original expansion of BL’s Eq.~33!# is needed such
that allXG

( i ) are treated on the same footing.
Equation~9! indicates that the independent equations for

XG
( i ) can be obtained by usingP1Q2YG , P2Q1YG , and

53 3935HYPERSPHERICAL APPROACH TO THREE-ELECTRON ATOMIC . . .



(1/A2)@P3Q5YG1P4Q6YG# to project out Eq.~8!. Notice
that not all the elements of the coupling matrix,

VG8G
i 8 i 5^Qi 8YG8uVuQiYG&, ~11!

are independent when acted on byPj . Appendix B gives the
relations among these matrix elements. After these equalities
are substituted the final differential equations can be simpli-
fied into matrix form:

S P1~TsD
~2!1V22!P1 P1V

21P2 A2P1V
25P3

P2V
12P1 P2~TsD

~1!1V11!P2 A2P2V
15P3

A2P3V
52P1 A2P3V

51P2 P3~TsD
~5!1V55!P31P3V

56P4

D S X~a!

X~b!

X~c!
D

5US D ~2!P1

D ~1!P2

D ~5!P3

D S X~a!

X~b!

X~c!
D ~12!

where X( i )5(XG
( i )) are vectors andVi 8 i5(VG8G

i 8 i ) and

D ( i )5(DG8G
( i ) ) are matrices themselves. The overlap matrix

DG8G
( i ) is given by

DG8G
~ i !

5^QiYG8uQiYG&. ~13!

By comparing to the original differential equations~34! of
BL obtained by the projections ofQ2YG , Q1YG , and
Q5YG , Eq. ~12! shows explicitly what basis should be used
to calculate the elements ofV. For example,P1V

25P3 indi-
cates that the elements ofV in this block should be evaluated
through the inner products with left functions from
$P1% ^ $Q2% subspace and right functions from$P3% ^ $Q5%
subspace. The superfluous terms in the original equations of
BL are eliminated due to Lemma B1 and the equations here
are more compact. Unlike the original differential equations
of BL, the partial differential equations in the matrix form
Eq. ~12! are explicitly symmetric. This is clear by rewriting
the last equation of Lemma B1 as (P3VG8G

56 P4)
†

5P3VGG8
56 P4 . Since the major numerical task is to calculate

the matrix in the left hand side of Eq.~12!, the symmetric
formulation reduces greatly the amount of calculation and
ensures the use of a real diagonalization algorithm.

III. CONSTRUCTION OF BASIS FUNCTIONS YG

To reduce the matrix equation~12! further, we need to
treat the angular parts involving spherical harmonics and
spin functions explicitly. For the doublet case (S51/2), there
are two spin functions constructed by coupling the first two
spins into either a triplet (x15u 12

1
2(1)

1
2;

1
2&) or a singlet

(x05u 12
1
2(0)

1
2;

1
2&) state, while a quartet case (S53/2) has

only one spin function (x5u 12
1
2(1)

1
2;

3
2&). The properties of

these spin functions under the permutations are treated ex-
plicitly in Appendix C.

For S53/2, x can be factorized:

QiYG5Qi~ ug&x)5xQi ug&. ~14!

Here we have decomposedQi into the sum of the products of
two factors @Eq. ~A5!#, one acting onx and another on
ug&. According to Eq.~C1a!, only one term involving the
totally spin symmetric operator does not vanish, which thus
leads to the right hand side of the above equation. Therefore,
for the quartet case,x is dropped from the differential equa-

tions and VG8G
i 8 i are simply replaced by V g8g

i 8 i

[^Qi 8g8uVuQig&. The structure of the equations remains the
same. In this case, the properties of the system are indepen-
dent of the spin polarization.

For S51/2, spin functions are essentially involved. We
analyze first$Q2YG% which is the union of$Q2(ug&x1)% and
$Q2(ug&x0)%, i.e.,

$Q2YG%5$Q2~ ug&x1!%ø$Q2~ ug&x0!%, ~15!

where$ f n% denotes the space spanned by the functionsf n .
Each functionQ2(ug&x1) can be obtained by expandingQ2

into the products ofQi8 andQj9 acting onug& and x1 , re-
spectively @Eq. ~A5b!#. As shown by Eq.~C1b!, only two
terms, containingQ39x1 andQ49x1 , are nonzero. Thus,

Q2~ ug&x1)5
1

2
~x0Q6ug&1x1Q5ug&), ~16!

where we have dropped the superscript ofQi8 on the
right hand side without confusion. Similarly we have
Q2(ug&x0)5

1
2(x0Q3ug&2x1Q4ug&). Following Lemma A6,

Q3ug& and 2Q4ug& can in turn be expanded in terms of
Q6ug& and Q5ug& with the same expansion coefficients.
Therefore,

Q2~ ug&x0)5
1

2(g8
cgg8~x0Q6ug8&1x1Q5ug8&)

5(
g8

cgg8Q2~ ug8&x1). ~17!
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This shows thatQ2(ug&x0) is linearly dependent on
Q2(ug&x1 ). Hence $Q2(ug&x1)%ø$Q2(ug&x0)%
5$Q2(ug&x1)% and

$Q2YG%5H 1

A2
~x0Q6ug&1x1Q5ug&)J [$Yg

~a!%,

~18a!

where we have normalized the function to 1. Notice that we
cannot decompose$Q2YG% further into two orthogonal sub-
spaces,$x0Q6ug&% and $x1Q5ug&%, since these two sub-
spaces are not invariant under the operation ofQ2 individu-
ally, as indicated by Eq.~C2a!.

In a parallel fashion, we can derive

$Q1YG%5H 1

A2
~x0Q5ug&2x1Q6ug&)J [$Yg

~b!%.

~18b!

The analysis of the subspace$Q5YG% is slightly more
complicated. ExpandingQ5 into the products of two factors
and using Eq.~C1b!, we have

Q5~ ug&x1)5x1Q2ug&2
1

2
~x0Q6ug&2x1Q5ug&),

Q5~ ug&x0)5x0Q1ug&1
1

2
~x0Q3ug&1x1Q4ug&)

5x0Q1ug&1
1

2(g8
cgg8

3~x0Q6ug8&2x1Q5ug8&) ~19!

where in the last line above we have used Lemma A6. The
above equation indicates that$Q5YG%5$Q5(ug&x1)%

ø$Q5(ug&x0)% is spanned byx0Q1ug&, x1Q2ug&, and
x0Q6ug&2x1Q5ug&. Following the results in Eq.~C2c!,
these three orthogonal functions are invariant underQ5 indi-
vidually; therefore,

$Q5YG%5$x0Q1ug&%1$x1Q2ug&%

1H 1

A2
~x0Q6ug&2x1Q5ug&)J

[$Yg
~c1!%1$Yg

~c2!%1$Yg
~c3!%, ~18c!

i.e., the subspace$Q5YG% is now split into three orthogonal
ones, each itself being invariant underQ5 . Since
Q65Q6Q5 , subspace$Q6YG% can be obtained by operating
Q6 on the above equation. Equation~C2d! gives the evalua-
tion of the operation. The result is

$Q6YG%5$2x1Q1ug&%1$x0Q2ug&%

1H 1

A2
~x0Q5ug&1x1Q6ug&)J

5$Q6Yg
~c1!%1$Q6Yg

~c2!%1$Q6Yg
~c3!%. ~18d!

From the results of Eqs.~18a!–~18d!, the main task for con-
structing the basis functions then is to find all the indepen-
dent Q1ug&, Q2ug&, and Q5ug& (Q6ug& are obtained by
Q6Q5ug&).

From the definition of coupled spherical harmonics, we
have

s2u l 1l 2~ l 0!l 3 ;L&5~21! l11 l22 l0u l 2l 1~ l 0!l 3 ;L& ~20!

wheres25(12) is the second element of theS3 group. The
symmetric and antisymmetric subspaces under the permuta-
tion of electrons 1 and 2~ denoted as$ f1% and$ f2%, respec-
tively, in Appendix A! can now be analytically constructed
as ug6&} 1

2(16s2)u l 1l 2( l 0) l 3 ;L&, which leads to

ug6&5H 1

A2
@ u l 1l 2~ l 0!l 3 ;L&6~21! l11 l22 l0u l 2l 1~ l 0!l 3 ;L&# for l 2. l 1 ,

u l 1l 1~ l 0!l 3 ;L&, l 05even for 1, l 05odd for 2.

~21!

As analyzed by Eq.~A9a!, $Q1%1$Q3%5$ug1&%. Thus the
diagonalization ofQ1 in subspace$ug1&% decomposes this
space into$Q1% and$Q3% as follows: the former consists of
those eigenfunctions with eigenvalues 1 and the latter con-
sists of those eigenfunctions with eigenvalues 0~see Lemma

A1!. Similarly, from Eq. ~A9b!, $Q2%1$Q5%5$ug2&% and
the diagonalization ofQ2 decomposes this space into$Q2%
and$Q5%.

Substitution of Eq.~18! into Eq.~9! results in the channel
functions forS51/2,

53 3937HYPERSPHERICAL APPROACH TO THREE-ELECTRON ATOMIC . . .



F5(
g

~P1Xg
~a!!Yg

~a!1(
g

~P2Xg
~b!!Yg

~b!

1
1

A2 (
ci5c1 ,c2 ,c3

(
g

@~P3Xg
~ci !!Yg

~ci !1~P4Xg
~ci !!

3~Q6Yg
~ci !!# ~22!

where the sum ofci is over the three orthogonal subspaces
$Yg

(ci )% of $Q5YG%. The corresponding differential equations
become

S H11 H12 H13 H14 H15

H21 H22 H23 H24 H25

H31 H32 H33 H34 H35

H41 H42 H43 H44 H45

H51 H52 H53 H54 H55

D S X~a!

X~b!

X~c1!

X~c2!

X~c3!

D
5US D~5!P1

D~5!P2

D~1!P3

D~2!P3

D~5!P3

D
3S X~a!

X~b!

X~c1!

X~c2!

X~c3!

D ~23a!

where the overlap matrix is defined by
D( i )5(Dg8g

( i ) )5(^Qig8uQig&).
The matrix elements in each blockHi j are given by the

inner products of the basis functions,P1Yg
(a), P2Yg

(b), and
(1/A2)@P3Yg

(ci )1P4(Q6Yg
(ci ))#, with respect to the

operator Ts1V. For example, (H11)g8g

5P1^Yg8
(a)uTs1VuYg

(a)&P1 . Substituting Eq.~18a! into this
equation, (H11)g8g5P1(^Q6g8uTs1VuQ6g&1^Q5g8uTs
1VuQ5g&)P1/2 where we have used the fact thatTs1V
is independent of spins. Notice thatTs is independent of
spherical angles andDg8g

(6)
5Dg8g

(5) ~Lemma A7!; we have

(H11)g8g5P1@TsDg8g
(5)

1(Vg8g
66

1Vg8g
55 )/2#P1 . Following this

procedure the explicit expressions ofHi j are

H115P1S TsD~5!1
V661V55

2 DP1 ,

H125P1

V652V56

2
P2 , H135P1V61P3 ,

H145P1V52P3 , H155P1A2
V662V55

2
P3 ,

H225P2S TsD~5!1
V661V55

2 DP2 , ~23b!

H235P2V51P3 , H2452P2V62P3 ,

H255P2A2
V561V65

2
P3 ,

H335P3~TsD~1!1V11!P3 , H345P3V12P4 ,

H355P3A2V16P3 ,

H445P3~TsD~2!1V22!P3 , H4552P3A2V25P3 ,

H555P3S TsD~5!1
V661V55

2 DP31P3

V652V56

2
P4 ,

Hji5Hi j
† ,

whereVi 8 i5(Vg8g
i 8 i ) and results in Lemma B2 were used to

eliminate the superfluous terms. Notice thatHi j are still op-
erators rather than numbers and further inner products in the
dimensions ofa1 anda2 are yet to be performed.Hi j

† is the
conjugate operator ofHi j . By choosing the representation as
usual such that the coordinates are diagonalized~i.e., are

numbers!, V g8g
i 8 i become the ordinary functions of the two

hyperangles.

IV. HYPERANGLE DEPENDENCE
OF THE COUPLING ELEMENTS

In order to carry out numerical calculation, it is conve-
nient to obtain the simplest form of the explicit dependence

of V g8g
i 8 i on the two hyperangles. This in turn needs the analy-

sis of the symmetries ofV g8g
i 8 i . The closure relation Eq.~A7!

ensures that any arbitrary function ofa1 anda2 can be ex-
panded asf5P1f1P2f1P3f1P5f , i.e., the Hilbert space
of the functions of the two hyperangles can be decomposed
into four subspaces each with a definite permutation symme-
try. The functions with P1f5 f ~and thereforePi f50,
i52,3,5) form the subspace of totally symmetric functions
under the permutations of any pairs ofr i . The functions in
the subspace ofP2f5 f are totally antisymmetric under the
exchange ofr i . The symmetries of the functions in the other
two subspaces, formed by the functions ofP3f5 f and
P5f5 f , respectively, are mixed.

We first rewriteV in terms of functions with certain sym-
metries. Define the auxiliary functions

Yi j
~ l !5

4p

2l11 (
m52 l

l

Ylm* ~ r̂ i !Ylm~ r̂ j ! ~24!

whereYlm are the spherical harmonics, and two other sets of
functions

t15
1

sin2a1cos
2a2

,

3938 53XIAZHOU YANG, C. G. BAO, AND C. D. LIN



t25
1

sin2a1sin
2a2

, ~25!

t35
1

cos2a1
,

and

g13
~ l !5

~sina1cosa2 ,cosa1!,
l

~sina1cosa2 ,cosa1!.
l11 ,

g23
~ l !5

~sina1sina2 ,cosa1!,
l

~sina1sina2 ,cosa1!.
l11 , ~26!

g12
~ l !5

~sina1cosa2 ,sina1sina2!,
l

~sina1cosa2 ,sina1sina2!.
l11 ,

where, (.) represents the smaller~larger! of the two terms
in the parentheses.V is then given by

V5
1

2R2 F2Rw1 lW1
2t11 lW2

2t21 lW3
2t312R(

l.0
~Y13

~ l !g13
~ l !

1Y23
~ l !g23

~ l !1Y12
~ l !g12

~ l !!G ~27a!

where

w5
1

~sina1cosa2 ,cosa1!.
1

1

~sina1sina2 ,cosa1!.

1
1

~sina1cosa2 ,sina1sina2!.
2ZS 1

sina1cosa2

1
1

sina1sina2
1

1

cosa1
D ~27b!

and we have usedYi j
(0)51. Notice thatw is independent of

spherical anglesr̂ i and is totally symmetric for the three
electrons, i.e.,P1w5w.

From three independent functionst i , another set of three
independent functions can be constructed,

h15t11t21t3 ,

h35t11t222t3 , ~28!

h55t12t2 .

Similarly, three new independent functions are constructed
as

g1
~ l !5g13

~ l !1g23
~ l !1g12

~ l ! ,

g3
~ l !5g13

~ l !1g23
~ l !22g12

~ l ! , ~29!

g5
~ l !5g13

~ l !2g23
~ l ! .

These functions are constructed to exhibit certain symme-
tries,

Pjhi5d j i hi , Pjgi
~ l !5d j i gi

~ l ! , j51,2,3,5, i51,3,5.
~30!

Notice that no invariant functions ofP2 can be formed by
t i or by gi j

( l ) .
We can now expressV in terms ofhi andgi

( l )

V5
1

2R2 F2Rw1
lW1
21 lW2

21 lW3
2

3
h11

lW1
21 lW2

222 lW3
2

6
h3

1
lW1
22 lW2

2

2
h512R(

l.0
S Y13

~ l !1Y23
~ l !1Y12

~ l !

3
g1

~ l !

1
Y13

~ l !1Y23
~ l !22Y12

~ l !

6
g3

~ l !1
Y13

~ l !2Y23
~ l !

2
g5

~ l !D G ~31!

in which each term shows the explicit symmetry.

Appendix D displays thatV g8g
i 8 i ~or their simple linear

combinations! possess certain permutation symmetries and,
therefore, can be divided into four groups. The first group is
in the P1f5 f subspace. From Eqs.~30! and ~31!, we con-
clude that the coefficients ofh3 , h5 , g3

( l ) , andg5
( l ) should be

zero. Therefore, for this group,

~ lW3
2!g8g

i 8 i 5~ lW2
2!g8g

i 8 i 5~ lW1
2!g8g

i 8 i ,

~Y12
~ l !!g8g

i 8 i 5~Y23
~ l !!g8g

i 8 i 5~Y13
~ l !!g8g

i 8 i ~32!

where (lW j
2)g8g

i 8 i and (Yjk
( l ))g8g

i 8 i are the elements oflW j
2 andYjk

( l )

betweenuQi 8g8& and uQig&, respectively. Hence we have

Vg8g
i i

5
1

2R2 F2RDg8g
i w1~ lW1

2!g8g
i i h1

12R(
l.0

~Y13
~ l !!g8g

i i g1
~ l !G , ~ i i !5~11!,~22!,

~33a!

Vg8g
55

1Vg8g
66

2
5

1

2R2 F2RDg8g
5 w1

~ lW1
2!g8g

55
1~ lW1

2!g8g
66

2
h1

12R(
l.0

~Y13
~ l !!g8g

55
1~Y13

~ l !!g8g
66

2
g1

~ l !G , ~33b!

where we have usedDg8g
5

5Dg8g
6 ~Lemma A7!. This group

enters in the diagonal blocksHii ( i51,2,3,4,5) of Eq.~23b!.
The second group is in the subspace ofP3f5 f . In this

group, Eqs.~30! and ~31! indicate that the coefficients of
h1 , h5 , g1

( l ) , andg5
( l ) should be zero, i.e.,

~ lW2
2!g8g

i 8 i 5~ lW1
2!g8g

i 8 i , ~ lW3
2!g8g

i 8 i 522~ lW1
2!g8g

i 8 i ,

~Y23
~ l !!g8g

i 8 i 5~Y13
~ l !!g8g

i 8 i , ~Y12
~ l !!g8g

i 8 i 522~Y13
~ l !!g8g

i 8 i , ~34!

which leads to
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Vg8g
i 8 i 5

1

2R2 F ~ lW1
2!g8g

i 8 i h312R(
l.0

~Y13
~ l !!g8g

i 8 i g3
~ l !G ,

~ i 8i !5~25!,~52!,~16!,~61!, ~35a!

Vg8g
66

2Vg8g
55

2
5

1

2R2 F ~ lW1
2!g8g

66
2~ lW1

2!g8g
55

2
h3

12R(
l.0

~Y13
~ l !!g8g

66
2~Y13

~ l !!g8g
55

2
g3

~ l !G .
~35b!

The third group is in theP5f5 f subspace and the coeffi-
cients ofh1 , h3 , g1

( l ) , andg3
( l ) should be zero, i.e.,

~ lW2
2!g8g

i 8 i 52~ lW1
2!g8g

i 8 i , ~ lW3
2!g8g

i 8 i 50,

~Y23
~ l !!g8g

i 8 i 52~Y13
~ l !!g8g

i 8 i , ~Y12
~ l !!g8g

i 8 i 50. ~36!

Thus

Vg8g
i 8 i 5

1

2R2 F ~ lW1
2!g8g

i 8 i h512R(
l

~Y13
~ l !!g8g

i 8 i g5
~ l !G ,

~ i 8i !5~15!,~51!,~26!,~62!,~65!,~56!. ~37!

The last group is in the subspace ofP2f5 f and all the co-
efficients ofhi andgi

( l ) ought to be zero. Therefore we have

~ lW3
2!g8g

i 8 i 5~ lW2
2!g8g

i 8 i 5~ lW1
2!g8g

i 8 i 50,

~38!
~Y12

~ l !!g8g
i 8 i 5~Y23

~ l !!g8g
i 8 i 5~Y13

~ l !!g8g
i 8 i 50,

and

Vg8g
12

5Vg8g
21

50, ~39a!

Vg8g
65

2Vg8g
56

50. ~39b!

This is the result of the fact that fromt i andgi j
( l ) no invariant

functions ofP2 can be constructed.
With these results, all the angular momentum algebra is

expressed in terms of elementary analytical expressions and
the dependence on the two hyperanglesa1 and a2 is ob-
tained, and the resulting equations Eq.~23a! can be solved
numerically.

V. NUMERICAL IMPLEMENTATION
AND CHANNEL POTENTIAL CURVES

A straight adiabatic expansion as indicated in Eq.~7!
would require the solution of Eq.~23a! for all the important
g ’s. The order of the resulting coupled second-order partial
differential equations ina1 anda2 will be quite large and
the resulting potential curves will have numerous avoided
crossings. In the present application, we will adopt a two-
step numerical implementation which is based on the decom-
position ofV into two terms,

V5S (
$g8%5$g%

1 (
$g8%Þ$g%

D ug8&^g8uVug&^gu[V01V1 ,

~40!

where ug&5u l 1l 2( l 0) l 3 ;L& and $g8% 5(Þ) $g% indicates
that (l 18 ,l 28 ,l 38) and (l 1 ,l 2 ,l 3) are ~not! in the same angular
momentum configuration. In future applications it is antici-
pated that instead of the pure adiabatic expansion Eq.~7!, the
wave function will be expanded as

c5(
m,b

Fm,b~R!Fm,b~R;V! ~41!

whereb5( l 1 ,l 2 ,l 3) andFm,b(R;V) satisfies Eq.~8! in the
subspace of fixed angular momentum configurationb. This
is the procedure adopted in the hyperspherical close coupling
method.

At present we are interested in obtaining adiabatic poten-
tial curves in two steps. We use angular momentum configu-
ration to imply basis functions or states that have a well-
defined (l 1 ,l 2 ,l 3), irrespective of the order in which each
l i appears since they are properly symmetrized. Thus in step
1, Ts1V0 can be diagonalized independently within each
configuration to produce intermediate channel potential
curves Um

0 (R) and intermediate channel functions
Fm

0 (R;V). The numerical details of such a diagonalization
are given in Ref.@13#. In the second stage of the diagonal-
ization procedure, a selected set ofFm

0 (R;V) are then cho-
sen from the different individual configurations as basis
functions to solve the whole eigenproblem of Eq.~8!. The
resulting final channel potential curves and wave functions
are expected to be close to the actual adiabatic potential
curves if all the important intermediate channel functions are
used as basis functions in the second diagonalization.

This two-step approach offers advantages both in numeri-
cal calculations and in physical interpretation of the spectra
of a three-electron system. The complicated final potential
curves can be understood by a set of simpler intermediate
potential curves of individual angular momentum configura-
tions, and only ‘‘important’’ intermediate channels are
needed in the calculation of the final channel potential curves
and wave functions; thus the amount of calculation can be
greatly reduced. We have used this method to obtain accu-
rate channel potentials for the atomic systems Li, H22, and
He2 with the 2Po symmetry. The recent observation of tri-
ply excited states of Li@3# is analyzed by the calculated
potential curves. Furthermore, the adiabatic potential curves
for the H22 system are used to ‘‘prove’’ that there are no
resonances of any kind. These results are reported elsewhere
@14#. In the remainder of this paper we show potential curves
from the first-step diagonalization and then the final adia-
batic curves for the Li atoms to illustrate the procedure and
the interpretation that the first-step calculation can offer.

Figure 1~a! displays the intermediate potential curves of
the angular momentum configuration~001!, i.e.,s2p, for the
2Po states of the lithium atom (Z53), with those that con-
verge to the doubly excited states in the largeR limit ex-
panded in Fig. 1~b!. From the traditional independent-
particle configuration interaction viewpoint, the potential
curves include all configurations of the typen1sn2sn3p
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(n1 ,n2>1, n3>2) which can couple to2Po states. In the
limit of R→`, one electron is far away from the ‘‘core,’’
hence the potential curvesUm(R) must tend to one of the
eigenenergies of the residual two-electron Li1 system. This
asymptotic behavior can serve as the criterion for checking
the numerical convergence and the accuracy. Good agree-
ment was found between the asymptotic potential curves
within this angular momentum configuration and the previ-
ous calculations of the eigenenergies of Li1 @19#.

As discussed in Ref.@13# for the configurations3, the
most striking feature of Fig. 1 is that potential curves can be
easily identified into three groups. Each group is recognized
by its asymptotic state corresponding to the state of the
Li 1 ion. The first group consists only of the lowest potential
curve which goes to the 1s21Se limit of Li 1. This potential
curve supports singly excited states of Li of the type
1s2np states. The second group of potential curves approach
the 1sns(1,3Se) or 1snp(1,3Po) singly excited states of
Li 1; they support doubly excited states of Li. The third
group of potential curves approach doubly excited states of
Li 1 asymptotically and they support triply excited states of
Li. Note the numerous crossings between the second and the
third group of potential curves.

Within a fixed (l 1 ,l 2 ,l 3), each potential curve can be
labeled by the two-electron states in the asymptotic limit.
Thus each channel can be labeled asNl8nl2S11Lp (N<n).
However, this labeling has little physical significance at
smaller values ofR. On the other hand, the group of curves
~four curves, for example, in the second group! within each
(N,n) stays relatively close for all values ofR. As shown in
Ref. @13# for the s3 configuration, the (N,n) quantum num-
bers can serve as bookkeeping for the nodal structure in the

a1 anda2 coordinates, in addition to the nodal lines set up
by the symmetry imposed by the quantum numbers
2S11Lp.
An important question to answer is whether (N,n) are

still approximately conserved after the coupling between an-
gular momentum configurationsV1 has been included. We
used the lowest 50 intermediate channels from the configu-
rations~001!, ~012!, ~111!, and ~113!, respectively, to form
the basis for the diagonalization ofTs1V. Other, ignored,
configurations do not contribute channels to the~2,2! shell
which we are interested in. The final channel potential curves
are plotted in Fig. 2. Apparently, the shell structure is still
recognizable. The number of final channels in a given shell
(N,n) is the sum of the numbers of the intermediate channels
in the same shell. For example, the~2,2! shell has nine chan-
nels, three from the configuration~001!, three from~111!,
two from ~012! and one from~113!. They are strongly mixed
by the coupling between angular momentum configurations
V1 . However, the channels from different shells are seldom
mixed byV1 .

In Fig. 2~b! we display also the values of~2,2! potential
curves obtained atR518 by using only the nine intermediate
channels in the~2,2! shell in the second-step diagonalization.
The results are almost identical with the results of the full
calculation, in which many other shells are included. This
indicates that (N,n) can still be used as ‘‘good’’ quantum
numbers to label the final channel potential curves and wave
functions. On the other hand, from the study of doubly ex-
cited states, this labeling in terms of (N,n) will fail for
higher values ofN andn as the energy separation between
different ‘‘shells’’ becomes smaller. Anyway, the main point
is that the two-step diagonalization procedure allows us to

FIG. 1. The intermediate potential curves
within the~001! configuration of the lithium atom
as functions ofR. The members of~1,1!, ~1,2!,
and ~2,2! shells are labeled. The energy region
where the channels support triply excited states is
enlarged in~b!. Atomic units are used here.
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obtain accurate adiabatic potential curves for the semiquan-
titative analysis of all the spectra of a three-electron system.
The power of such a method for analyzing the spectra of
triply excited states of Li was illustrated in Ref.@14#.

VI. SUMMARY

We have further developed the analytical formulation in
the hyperspherical approach to three-electron systems. The
partial differential equations for solving the hyperspherical
channels are reduced to a compact, symmetric form. Spins
are treated analytically and the hyperangle dependence of the
couplings between different equations are obtained. The nu-
merical solutions of these equations for the Li atom were
obtained to illustrate the employment of this approach. Cal-
culations for all possible different symmetries are under way
and interesting features of three-electron correlation are ex-
pected to emerge soon.
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APPENDIX A: S3 ALGEBRA

In this appendix, we present and derive some properties of
S3 algebra which are needed in the analysis of our hyper-
spherical approach.

TheS3 group has six permutations as its elements,

s151, s25~12!, s35~13!, s45~23!, s55~123!,

s65~132!, ~A1!

with the multiplications given in Table I. The algebra ele-
ments are defined by

FIG. 2. The final potential curves for the
2Po state of the lithium atom as functions ofR.
The energy region where the channels support tri-
ply excited states is enlarged in~b!. The triangles
are calculated involving only nine channels from
the ~2,2! shell atR518. Atomic units are used
here.

TABLE I. Multiplication table for theS3 group elementssisj .

j

i 1 2 3 4 5 6

1 s1 s2 s3 s4 s5 s6
2 s2 s1 s6 s5 s4 s3
3 s3 s5 s1 s6 s2 s4
4 s4 s6 s5 s1 s3 s2
5 s5 s3 s4 s2 s6 s1
6 s6 s4 s2 s3 s1 s5
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Sk5(
i51

6

ci
ksi , k51, . . . ,6, ~A2!

whereci
k are given in BL. With this definition, the products

of SiSj are shown in Table II.
The corresponding conjugate operators are defined by

^Skf 1u f 2&5^ f 1uSk
†f 2& which leads to

Sk
†5(

i51

6

ci
ksi

21 , ~A3!

wheref 1 and f 2 are arbitrary functions andsi
21 is the inverse

of si . Using Table I to getsi
21 , we have

Sk
†5Sk~k51,2,3,5!,

S4
†52S6 , ~A4!

S6
†52S4 .

To evaluateSkf 1f 2 , it is convenient to decomposeSk into
the sum of the products of twoS3 algebras, (Pi) and (Qj ),
acting onf 1 and f 2 , respectively. The decomposition can be
obtained explicitly~see BL!:

S15P1Q11P2Q21
1

2
~P3Q31P4Q41P5Q51P6Q6!,

~A5a!

S25P1Q21P2Q11
1

2
~P3Q51P4Q61P5Q31P6Q4!,

~A5b!

S35P1Q31P2Q51P3~Q11Q3/2!2P4Q4/2

1P5~Q21Q5/2!2P6Q6/2, ~A5c!

S45P1Q41P2Q62P3Q4/21P4~Q12Q3/2!2P5Q6/2

1P6~Q22Q5/2!, ~A5d!

S55P1Q51P2Q31P3~Q21Q5/2!2P4Q6/2

1P5~Q11Q3/2!2P6Q4/2, ~A5e!

S65P1Q61P2Q42P3Q6/21P4~Q22Q5/2!2P5Q4/2

1P6~Q12Q3/2!. ~A5f!

Table II and Eq.~A2! indicate

SiSj5d i j Si~ i , j51,2,3,5! ~A6!

and

S11S21S31S551, ~A7!

respectively. ThereforeS1 , S2 , S3 , andS5 form a complete
set of projection operators and project functions onto four
orthogonal subspaces satisfying specified permutation sym-
metries. Hence we have the following lemma.

Lemma A1.The eigenvalues ofS1 , S2 , S3 , andS5 are
either 0 or 1.

We call an eigenfunction ofPi ( i51,2,3,5) with eigen-
value equal to 1~i.e., Pi f5 f ) ‘‘invariant’’ of Pi .

Let $ f n% be a Hilbert space spanned by functionsf n . Sup-
pose the space is ‘‘closed,’’ i.e., allSkf n(k51, . . . ,6) are
within this space. The space can be decomposed into two,
$ f n%5$ 1

2(11s2) f n%1$ 1
2(12s2) f n%[$ f1%1$ f2%, where the

$ f1% subspace is symmetric while$ f2% is antisymmetric un-
der the exchange of the electrons 1 and 2. From Table I we
get

S1s25s2S15S1 , S3s25s2S35S3 , ~A8a!

S2s25s2S252S2 , S5s25s2S552S5 , ~A8b!

S4s25S4 , s2S452S4 , S6s252S6 , s2S65S6 .
~A8c!

Therefore, if we denote$Sk% as the subspace spanned by
Skf n andd$k% as its dimension, then

S1,3$ f
1%,$ f1%, S1,3$ f

2%50, $ f1%5$S1%1$S3%,
~A9a!

S2,5$ f
2%,$ f2%, S2,5$ f

1%50, $ f2%5$S2%1$S5%,
~A9b!

S4$ f
1%,$ f2%, S4$ f

2%50, S6$ f
2%,$ f1%, S6$ f

1%50,
~A9c!

i.e., S1 and S3 (S2 and S5) project a function in$ f1%
($ f2%) onto another function in the same subspace and
$ f1% ($ f2%) is divided into two orthogonal subspaces
spanned by the projections ofS1 andS3 (S2 andS5), while
S4 (S6) maps a function in$ f1% ($ f2%) onto another func-
tion in $ f2% ($ f1%). In this paper, we do not distinguish
‘‘mapping’’ and ‘‘projection’’ and all Si f n are called the
projection of f n by Si .

Lemma A2. If a set of functionsf n
1 generate independent

projections ofS3f n
1 , they generate independent projections

of S4f n
1 also.

Proof. Supposef n
1 generate independentS3f n

1 , but not
all S4f n

1 are independent. Hence we can find a set of nonzero
constantscn such that(ncnS4f n

150. But from Table II we
haveS6S452S3 . ThusS6 times the previous equation leads
to (ncnS3f n

150, which conflicts with the initial assumption
that all S3f n

1 are independent. Therefore, allS4f n
1 are also

independent.

TABLE II. Multiplication table for the productSiSj of the ele-
ments of theS3 algebra. The blank indicates that the product van-
ishes.

j

i 1 2 3 4 5 6

1 S1
2 S2
3 S3 S6
4 S4 -S5
5 S4 S5
6 -S3 S6
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Lemma A3. If a set of functionsf n
2 generate independent

projections ofS5f n
2 , they generate independent projections

of S6f n
2 also.

The proof is similar with the use ofS4S652S5 . The
immediate conclusion of Lemmas A2 and A3 is the follow-
ing.

Lemma A4. d$3%5d$4% andd$5%5d$6%.
Furthermore, we have Lemma A5.
Lemma A5. $S4%5$S5% and$S6%5$S3%.
Proof. Since $S2%'$S4% ~due to S2

†S45S4
†S250) and

$S1%'$S6% ~due to S1
†S65S6

†S150), Eq. ~A9c! leads to
$S4%$$S5% and$S6%$$S3%, which indicated$4%<d$5% and
d$6%<d$3%. On the other hand, Lemma A4 should be satis-
fied. Therefored$4%5d$5%5d$6%5d$3% and Lemma A5 is
concluded. With the help of this lemma andS4S150 and
S6S250, we get

S4$S3%5$S5%, S4$S1,2,5%50, ~A10a!

S6$S5%5$S3%, S6$S1,2,3%50. ~A10b!

Hence S3f m
1 and S4f m

1 can be expanded byS6f n
2 and

S5f n
2 , respectively. These two expansions are related as fol-

lows.
Lemma A6. If S3f m

15(ncmnS6f n
2 , then S4f m

1

52(ncmnS5f n
2 .

Proof. The second equation can be obtained by the mul-
tiplication of S4 with the first one.

The projectionsS4f n
1 and S3f m

1 ~similarly, S6f n
2 and

S5f m
2) are further related by the following lemma.
Lemma A7. ^S4f n

1uS4f m
1&5^S3f n

1uS3f m
1& and

^S6f n
2uS6f m

2&5^S5f n
2uS5f m

2&.
The proof is straightforward by noticing thatS6

†52S4 ,
2S4S65S55S5S55S5

†S5 , and2S6S45S35S3S35S3
†S3 .

Notice that the lemmas and equations in this appendix are
the general properties ofS3 algebra and hence are valid not
only for Si , but also forPi andQi as well. The necessary
and sufficient condition forF to be totally antisymmetric is
given by

S2F5F ~A11!

which leads to Eq.~9! ~see BL for details!.

APPENDIX B: RELATIONS BETWEEN THE ELEMENTS
OF THE COUPLING MATRIX

Among the elements of the coupling matrixVG8G
i 8 i , not all

of them are independent when acted on byPj . The lemmas
in this appendix display some of the relations between them.

Lemma B1.

P1VG8G
25 P35P1VG8G

26 P4 , P2VG8G
15 P35P2VG8G

16 P4 ,

P4
†VG8G

62 P15P3VG8G
52 P1 , P4

†VG8G
61 P25P3VG8G

51 P2 ,

P4
†VG8G

66 P45P3VG8G
55 P3 , P4

†VG8G
65 P35P3VG8G

56 P4 .

We prove the first one as an example. Equation~A5a! allows
us to decomposeP1 as a sum of six products of two factors,

Pi8 andPj9 , with Pi8 acting onVG8G
25 andPj9 on P3 , respec-

tively. Only two terms containingP39 andP49 are not zero due
to the multiplication rules ofP3 ~see Table II!, thus
P1VG8G

25 P35@(P38VG8G
25 )P31(P48VG8G

25 )P4#/2 where we have
dropped the superscripts ofPi9 and used the results of the
multiplicationsPiP3 . Notice that@Eq. ~B.4! of BL#

~Pj8VG8G
i 8 i !5Qj^Qi 8YG8uVuQiYG&. ~B1!

whereQj acts on bothQi 8YG8 andQiYG . Hence

P1VG8G
25 P35@~Q3^Q2YG8uVuQ5YG&!P3

1~Q4^Q2YG8uVuQ5YG&!P4#/2.

Decomposing againQ3 andQ4 into the sum of the products
of two factors acting onQ2YG8 andQ5YG , respectively, and
using Table II to select nonvanishing terms, we obtain

P1VG8G
25 P35

1

2
~VG8G

25 P31VG8G
26 P4!. ~B2!

By parallel reasoning,

P1VG8G
26 P45

1

2
~VG8G

25 P31VG8G
26 P4!. ~B3!

The comparison of Eqs.~B2! and~B3! leads to the first equa-
tion of the lemma. In fact, for this particular case, usingP1
to multiply Eq. ~B2! from the left gives the result directly
while the method demonstrated above is more general. Simi-
larly, we can prove the following lemma.

Lemma B2.

P3VG8G
16 P35P3VG8G

15 P4 , P3VG8G
61 P35P3VG8G

51 P4 ,

P3VG8G
25 P352P3VG8G

26 P4 , P3VG8G
52 P352P3VG8G

62 P4 ,

P1VG8G
66 P352P1VG8G

55 P3 , P3VG8G
66 P152P3VG8G

55 P1 ,

P1VG8G
66 P15P1VG8G

55 P1 , P2VG8G
66 P25P2VG8G

55 P2 .

Notice that the above proofs are independent of any specific
features ofYG . Therefore they are the general properties of
the coupling matrix. For example, they are also valid for

Vg8g
i 8 i .

APPENDIX C: EXPLICIT TREATMENT OF SPINS

The projections of spin functions are given by

Qkx5dk1x, ~C1a!

Q1,2,5,6x150, Q3x15x1 , Q1,2,3,4x050, Q5x05x0 ,

Q4x15x0 ,Q6x052x1 . ~C1b!

These equations are the results of the evaluations of the op-
erations ofQk on the spin functions and the analytic formula
of the evaluations in terms of 6j symbols are given in Eqs.
~22!–~25! of BL. From Eq. ~C1! we see thatx is totally
symmetric whilex1 (x0) is ~anti!symmetric about the ex-
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change of the electrons 1 and 2 but is not so when the ex-
changes involve the electron 3.

The following equations are useful in the analysis of the
invariant subspaces ofQi operators in the Hilbert space of
$ug&%:

Q2x0Q65Q2x1Q55~x0Q61x1Q5!/2, ~C2a!

Q1x0Q552Q1x1Q65~x0Q52x1Q6!/2, ~C2b!

Q5x0Q15x0Q1 , Q5x1Q25x1Q2 ,

Q5x0Q652Q5x1Q55~x0Q62x1Q5!/2, ~C2c!

Q6x0Q152x1Q1 , Q6x1Q25x0Q2 ,

Q6x0Q652Q6x1Q55~x0Q51x1Q6!/2. ~C2d!

These equations are derived by decomposingQi into the sum
of the products of two factors acting onx i andQj , respec-
tively @Eq. ~A5!#, and Eq.~C1b! is used to eliminate the
vanishing terms. From Eq.~C2a!, we know that although
x0Q6ug& andx1Q5ug& are not invariant ofQ2 individually,
x0Q6ug&1x1Q5ug& is indeed invariant ofQ2 . Similarly,
x0Q5ug&2x1Q6ug& is invariant of Q1 and x0Q1ug&,
x1Q2ug&, andx0Q6ug&2x1Q5ug& are invariant ofQ5 . Us-
ing Eq.~C2d!, we can map the invariant subspace ofQ5 into
the subspace of$Q6YG%.

APPENDIX D: SYMMETRIES OF THE ELEMENTS
OF THE COUPLING MATRIX

In this appendix, we analyze the permutation symmetries

of Vg8g
i 8 i . With these properties, their dependence on the hy-

perangles can be derived. Since the analysis is independent

of the specific features ofug&, the results are also valid for
other choices of basis. For example, they are also valid for

VG8G
i 8 i .
SinceP11P21P31P551 @Eq. ~A7!#, we expect to find

four groups. The first group is formed byVg8g
11 , Vg8g

22 , and
Vg8g
55

1Vg8g
66 which are totally symmetric under the permuta-

tion of radial distances of electrons, i.e., we have the follow-
ing lemma.

Lemma D1. P1Vg8g
11

5Vg8g
11 , P1Vg8g

22
5Vg8g

22 , and
P1(Vg8g

55
1Vg8g

66 )5Vg8g
55

1Vg8g
66 .

Proof: Equation ~B1! leads to P1Vg8g
i 8 i

5Q1^Qi 8g8uVuQig&. Q1 is in turn decomposed into the sum
of products of two factors acting onQi 8g8 andQig respec-
tively @Eq. ~A5a!#. Lemma D1 is then derived by the multi-
plications of Table II.

The second group and the third group are invariant of
P3 andP5 , respectively. Their symmetries are mixed.

Lemma D2. P3Vg8g
25

5Vg8g
25 , P3Vg8g

52
5Vg8g

52 ,
P3Vg8g

16
5Vg8g

16 , P3Vg8g
61

5Vg8g
61 , and P3(Vg8g

66
2Vg8g

55 )
5Vg8g

66
2Vg8g

55 .
Lemma D3. P5Vg8g

15
5Vg8g

15 , P5Vg8g
51

5Vg8g
51 ,

P5Vg8g
26

5Vg8g
26 , P5Vg8g

62
5Vg8g

62 , P5Vg8g
56

5Vg8g
56 , andP5Vg8g

65

5Vg8g
65 .
The members of the last group,Vg8g

12 , Vg8g
21 , and

Vg8g
65

2Vg8g
56 , are totally antisymmetric under the permuta-

tions of radial distances of electrons, i.e., we have the fol-
lowing.

Lemma D4. P2Vg8g
12

5Vg8g
12 , P2Vg8g

21
5Vg8g

21 , and
P2(Vg8g

65
2Vg8g

56 )5Vg8g
65

2Vg8g
56 .

OtherVg8g
i 8 i which are not listed in the above lemmas~e.g.,

Vg8g
14 ) have no use in the formulation.
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