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The cross sections for the photodetachment from the second bound state of the negative hy-
drogen ion, H™ (2p?3P¢), for photon energies above the H(n =2) threshold are calculated using a
hyperspherical close-coupling method. This state is parity forbidden to autoionize into H(n = 1) +e
and has an extremely small binding energy of 0.01 eV. The results for low photon energies agree
with earlier calculations. For energies near the H(n = 3) threshold, two shape resonances are found
in addition to many Feshbach resonances. These resonances are identified by examining adiabatic

hyperspherical potential-energy curves.

PACS number(s): 32.80.Fb, 32.80.Dz, 31.50.+w

I. INTRODUCTION

In an earlier paper [1], the photodetachment cross sec-
tions of H™ from the ground state were examined using a
hyperspherical close-coupling (HSCC) method for ener-
gies up to the threshold for the production of H(N =4),
where N is the principal quantum number. The calcu-
lated photodetachment cross sections were in good agree-
ment with experimental data [2]. The HSCC calculations
were recently extended up to the H(IN =7) threshold [3]
and good agreement with experiment [4] was found again.
The HSCC method was also applied to calculate pho-
toabsorption cross sections of helium [5-7] and other two-
electron systems [8] from the ground state and of helium
from excited states [9-11].

In the present work, we studied the photodetach-
ment of H- from the second bound state, namely, the
H~(2p%3P¢) state. The energy of this state lies in the
continuum H(1s) + ep, but its autoionization is parity for-
bidden. We do not anticipate that such photodetachment
experiments may be carried out in the near future, but
the calculations were performed for the following reasons.

(1) To locate and identify many shape and Feshbach
resonances of H™ associated with high-N thresholds.
Many of these resonances were calculated and identified
recently, for example, by Ho and Bhatia [12,13] using
a complex-coordinate rotation method with variational
wave functions.

(2) To study the effect of the extremely weak binding of
H~(2p?3P¢°), or of its diffuse wave function, on the pho-
todetachment cross sections and their resonance struc-
tures. The binding energy with respect to the H(/NV =2)
threshold is 0.01 eV, which is much smaller than the bind-
ing energy 0.75 eV of the ground state H™(1s215).

(3) To compare the photodetachment cross sections
with those calculated by Jacobs et al. [14] using three-
state close-coupling wave functions for the final contin-
uum states, and with the recent results of Du et al. [15]
and Starace [16], who calculated the cross sections at low
energies using a semiempirical adiabatic hyperspherical
approximation.

Details of the theoretical method were described else-
where [5,9]; only the essentials are mentioned briefly in
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Sec.II in this paper. The results are presented in Sec. III
with some discussion, and a conclusion is given in Sec.IV.
Atomic units are used throughout unless otherwise noted.

II. HYPERSPHERICAL CLOSE-COUPLING
METHOD

In the hyperspherical coordinates, the two-electron
wave function of H™ is expressed as ¥(r;,r;) =
(R%/?sinacosa) 1®(R,a,), where R=(r +r2)'/2 is
the hyperradius, & = arctan(rz/r1) is the hyperangle, and
Q denotes collectively the four angles (£1,%2). To solve
the Schréodinger equation, the configuration space is di-
vided into two regions: the inner one (R < Rjs) where the
electron-electron interaction is strong and the outer or
asymptotic region (R > Rps) where the electron-electron
interaction is relatively weak and electron exchange is
negligible. In the inner region, the wave function @(ﬁm),
which is the Bth independent solution of the inner-region
Schrodinger equation, is expressed in a close-coupling ex-
pansion

Nen
oV (R ) = 3 Fu(B)du(e % R), )
p=1

‘where Ny, is the number of channels included. The dia-

batic basis functions ¢, are defined in detail in Ref. [5].
Substituting Eq. (1) into the Schrédinger equation, one
obtains close-coupling equations for F,,(R).

Beyond R = Rjps, the two electrons are well sepa-
rated, i.e., one is relatively close to the nucleus and
the other is far away, and the outer-region wave func-
tion \Ilg’l't)(rl,rz) is expanded in terms of the hydro-
gen wave functions. This expansion leads to the usual
independent-electron close-coupling equations. They
may be decoupled, by a unitary channel transformation,
within a block of channels associated with degenerate ex-
cited states N [17-19], if we neglect potentials of a range
shorter than the dipole potential throughout the outer
region. We choose Rjs to be so large that this is a good
approximation.
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The solutions of each uncoupled equation are of the
Bessel class and are well known [17,18,20]. For open
channels, we may define two linearly independent energy-
normalized solutions s;(k,72) and c¢j(k,72) that behave
asymptotically like sine and cosine functions, where
%kf, = €, is the channel energy, or the total energy F
plus the binding energy 1/2n2 of the hydrogen atom. For
closed channels, we may find a solution f;(rz) that de-
cays exponentially with r;. The wave function in the
outer region is then expressed as

TS =70 ST @j(ra,£2) (55 (knr2) ip — cj(knt2)Jj5]

j,open

+r3t D pi(r1,£2) £(r2)Cy

J,closed

(2)

where ¢;(ry,f2) is a channel function obtained by di-
agonalizing the asymptotic Hamiltonian, and is a linear
combination of products of hydrogenic wave functions
and the angular wave functions of the other electron.

By performing two-dimensional matching of the two
functions ¥ and ¥ = (R5/? sin a cos a)_1<1>(in) on
the hyperspherical surfgce R = Ry, the coeflicients I;g,
Jig, and Cjz are determined, from which the reaction
matrix K is calculated.

This procedure was carried out for the final contin-
uum states as well as for the initial H™ (2p%3P¢) bound
state. We chose N, =36 and Rjp; =400 for the former.
For the latter, we chose N, =24 and Rjs = 380. This
choice of the matching radius, which is quite large for a
bound state, was necessary because of the extremely dif-
fuse wave function, as explained in Sec.I, item (2). The
total binding energy was calculated to be —0.125 351 in
good agreement with a result —0.125 350 of an elaborate
variational calculation [21]. This necessitates no artificial
adjustment of potential-energy curves to reproduce the
correct binding energy, such as was made empirically in
Ref. [15].

Once the initial- and final-state wave functions are cal-
culated, the dipole matrix elements and the photodetach-
ment cross sections may be calculated. We used both
the length and the acceleration forms of the dipole tran-
sition operator. The two different forms led to results
in agreement with each other within two significant fig-
ures at most energies. However, the convergence of the
acceleration-form cross section with Ng was found to
be extremely slow close to the N = 2 threshold. This was
shown elsewhere [22] to be due to the significant cancella-
tion among contributions to a dipole-acceleration matrix
elements from various different channels u. Therefore,
only the results of length-form calculations are presented
in this paper.

III. RESULTS AND DISCUSSION

We first present in Fig. 1 the global partial cross sec-
tions for photodetachment in which the hydrogen atom
is left in the 2s or 2p excited state. Both partial cross
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FIG. 1. Partial cross sections for photodetachment from
the H™(2p?3P°) state to final states with the H atom left in
(a) the 2s state, or (b) the 2p state. The solid curves represent
the present results, and the circles the results of Jacobs et al.
[14]. The downward arrows indicate the thresholds for the
production of H(NV).

sections drop rapidly with increasing energy after a sharp
peak near the H(IV =2) excitation threshold. Also pre-
sented in the figure are the results by Jacobs et al. [14],
which are discussed below. Numerous resonances appear
in each channel as the photon energy approaches each
excitation threshold. In the following, the calculated re-
sults are analyzed.

A. Cross sections near the H(IN = 2) threshold

The photodetachment cross sections in the low-energy
region were calculated by Jacobs et al. [14] using 1s-2s-
2p three-state close-coupling wave functions for the final
state and an 84-term Hylleraas-type wave function for
the initial state. Their results are shown by circles in
Fig. 1 and are in good agreement with the present results
except that their calculations were terminated before the
present cross sections drop sharply toward the H(INV = 2)
threshold. Since the initial state is 3P¢, the final states
populated are 3P° and 3D° states. The open channels
below the H(/NV = 3) threshold are

hv + H™ (2p*3P°) — H(1s) + ep(3P°)
— H(2s) + ep(®P°)
— H(2p) + es(®P°)
— H(2p) + ed(*P°)
— H(2p) + ed(®D°). (3)
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FIG. 2. Cross sections for photodetachment from the
H™(2p23P°) state to final states H(N =2) + €l (*P°) in the
energy region near the H(IV =3) threshold indicated by the
arrow. Dotted curves: H(2s) partial cross section. Dashed
curves: H(2p) partial cross section. Solid curves:
these cross sections. The inset is a magnification of a region
close to the H(/N = 3) threshold.

sum of

Thus three continuum channels of 3P° symmetry are de-
generate, which introduces an effective dipole potential
as explained in Sec.II, and the H(2s) and H(2p) par-
tial cross sections are theoretically finite at the threshold
H(N =2) [17,18,23], although the calculated results in
Fig. 1 might look as if they approached zero.

The rapid drop of these cross sections near the thresh-
old was found also in the recent calculations of Du et al.
using hyperspherical coordinates within the adiabatic ap-
proximation [15]. Their results for the 2p partial cross
section and for the sum of the 2p and 2s partial cross
sections are close to our results and those of Jacobs et al.
[14]. However, the smaller 2s partial cross section ob-
tained by Du et al. [15] and Starace [16] differed from
ours and from the results of Jacobs et al. and was not
presented here. Reference [15] also discussed the impor-
tance of the couplings among the adiabatic hyperspheri-
cal channels, which were neglected in their calculations.

B. ®P° resonances near the H(IN = 3) threshold

The contributions to the 2s and 2p partial cross sec-
tions and to their sum from 3P° final continuum states

JIAN-ZHI TANG, C. D. LIN, BIN ZHOU, AND ISAO SHIMAMURA s1

near the N =3 threshold are shown in Fig. 2. Five Fesh-
bach resonances in the spectra were identified and their
positions and widths were calculated by fitting the spec-
tra to the Fano-profile formula [24]. The results are listed
in Table I and are compared with those calculated vari-
ationally by Ho and Bhatia [12,13] using Hylleraas- or
Slater-type basis functions and the complex-coordinate
rotation method. Table I also compares the results with
those obtained by Pathak et al. [19] using the R-matrix
method. We note that all these calculations agree well
with each other.

It is interesting to note that the first resonance has
almost a Lorentzian shape for the 2s partial cross section,
but is a window resonance for the 2p partial cross section.
It is just the opposite for the second resonance. In fact,
the two partial cross sections add up to a nearly flat curve
such that there is only a slight indication of resonances
in the total cross section for the production of H(N =2)
in this energy region. Three other sharp resonances are
clearly seen in all the three cross sections below the N =3
threshold which is marked by a downward arrow.

Figure 2 also shows a pronounced shape resonance in
the 3P° channel above the N =3 threshold, which dom-
inates the 3P° photodetachment cross section in this en-
ergy region. The fitted position and width of this shape
resonance are included in Table I together with the re-
sults of Refs. [12] and [19]. Our results agree well with
those of Ho and Bhatia [12] but differ substantially from
those of Pathak et al. [19], especially in the width.

To identify the resonances calculated above, it is useful
to examine the adiabatic hyperspherical potential curves.
The 3P° curves near the N =3 threshold are shown in
Fig. 3. There are five adiabatic channels converging to
the N =3 threshold. In the asymptotic region, as de-
tailed more clearly in the inset, three potential curves
approach the N =3 threshold from above, and two from
below. The two highest curves are fully repulsive and
can support no resonances. The lowest curve, which has
a designation of (2,0)" in terms of the (K,T)# quantum
numbers, see Lin [25], supports an infinite series of reso-
nances, of which four are included in Table I with identi-
fication N (K, T)#; n is the principal quantum number of
the outer electron. If a single-channel approximation is
valid and if the resonances are dominated by the asymp-
totic dipole potential, then the positions €y, measured
from the H(IV) threshold and the widths I'y ,, of succes-

TABLE I. Energies E, and widths T' (in a.u.) of resonance states of H™ (* P°) near the H(IV = 3)

threshold. 1.65[—3] = 1.65 x 1073,

Present Complex coordinate® R matrix®
Classification —E, N —FE., I —FE., T

3(2,0)7 (Feshbach)  0.06791  1.65—3]  0.06791 1.71[=3] 0.06792  1.64[—3]
3(2,0)F (Feshbach) 0.05743 3.04[—4] 0.05742 3.03[—4] 0.05742 3.09[—4]
3(1,1), (Feshbach) 0.05640 4.15(—6] 0.05638 4.00[—6] 0.05638 4.4 [—6]
3(2,0)7 (Feshbach) 0.05592 6.42[—5] 0.05591 5.65[—5] 0.05591 6.36(—5]
3(2,0)F (Feshbach) 0.05563 1.33[—5] 0.05562 1.20[-5]

3(0,0)F (shape) 0.05478  8.92[—4]  0.05475° 8.5 [—4]° 0.05530 6.0 [—6]

2Reference [13].
bReference [19].
“Reference [12].
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FIG. 3. Adiabatic potential curves of H™ (*P°) as func-
tions of hyperradius R. The thin horizontal line indicates the
H(N =3) threshold. The inset is a magnification of a part
near this threshold.
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sive resonances are related by

€EN,n . FN,n

= = exp{2n(—a; — 1)"1/2},
Norr - T p{2m(—a; — )7/}

where a; is the strength of the dipole potential in the jth
asymptotic uncoupled equation [19]. The ratio expected
from the dipole potential is 5.16 for the (2,0)" channel,
the ratios of the energy positions of the successive (2,0)*
resonances in Table I are 5.47, 4.75, and 4.82, and the
ratios of the widths are 5.36, 4.73, and 4.83, respectively.

Figure 3 shows an avoided crossing between the second
and the third curves of the N =3 manifold. The (K, T)4
character is preserved as the avoided crossing is crossed
diabatically. Thus the second curve at small R, having a
(0,0)" character, may be connected diabatically into the
third curve at large R having the same character. This
curve crosses the H(/V = 3) threshold near R = 36 and has
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FIG. 4. Cross section for photodetachment from the

H~(2p?3P°) state to the final state H(2p) +ed (*D°) in the
energy region close to the H(/N =3) threshold indicated by
the downward arrow.

TABLE II. Energies E, and widths I’ (in a.u.) of res-
onance states of H™(*D°) near the H(N =3) threshold.
3.15[—5] = 3.15 x 1075,

Present Complex coordinate

(Ref. [13])

Classification —FE. N —FE. N
3(1,1); (Feshbach) 0.05578 3.15(—5] 0.05577  3.8]—5]
3(0,2)} (shape)  0.05555 2.46[—4] 0.05550  2.8[—4]

a potential barrier, which supports the shape resonance
as seen in Fig. 2. The third curve at small R connects
diabatically to the second curve at large R. This diabatic
potential is labeled as the (1,1)~ curve, and supports the
third Feshbach resonance listed in Table 1. It was demon-
strated and explained before [3,11] that many A = — res-
onances, weakly populated in photoabsorption spectra
from tightly bound states, are greatly enhanced in pho-
toabsorption from excited states. Here is still another
example where the initial state is an extremely weakly
bound state.

C. 3D° resonances near the H(IN = 3) threshold

Photoabsorption from the 3P¢ state also populates
3De final states. There is-only one final channel in Eq. (3)
having this symmetry, and this channel produces H(2p).
The contribution to the 2p partial cross section from this
channel is shown in Fig. 4, where two Feshbach reso-
nances and one shape resonance are clearly seen. The
positions and widths of the first Feshbach resonance and
the shape resonance are given in Table II and are com-
pared with the calculations by Ho [13]. The agreement
is satisfactory.

To analyze the origin of these resonances, we show
adiabatic hyperspherical potential curves of 3D° symme-

try in Fig. 5. The avoided crossing between the first
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FIG. 5. Adiabatic potential curves of H™(*D°) as func-
tions of hyperradius R. The thin horizontal line indicates the
H(N =3) threshold. The inset is a magnification of a part
near this threshold.



4698

two N =3 curves may be treated as a diabatic crossing,
and a single-channel approximation may be made, as in
Sec. ITI B. The diabatic curve that supports the shape res-
onance is the (0,2)" curve, which has an attractive well
at small R, crosses the H(N =3) threshold near R=42,
and has a repulsive barrier at large R. The two Fesh-
bach resonances are supported by the (1,1)” potential,
which is repulsive at small R but is an attractive dipole
potential at large R. These (1,1)” resonances exemplify
the enhanced A= — resonances in photoabsorption by
weakly bound states, just like the 3P° (1,1)~ resonances
discussed in Sec.III B.

IV. SUMMARY

We have studied the photodetachment spectrum of H™
from the weakly bound 2p2?3P¢ state using the hyper-
spherical close-coupling method. We have shown that
the partial cross sections for leaving the hydrogen atom
in the 2s and 2p excited states are in good agreement with
the close-coupling calculations of Jacobs et al. [14] in a
low-energy region. At even lower energies than those cov-
ered by Jacobs et al., the photodetachment cross sections
drop rapidly toward the H(/V = 2) threshold in agreement
with the results of Du et al. [15], who carried out semiem-

JIAN-ZHI TANG, C. D. LIN, BIN ZHOU, AND ISAO SHIMAMURA 51

pirical adiabatic hyperspherical-coordinate calculations.

We have also extended our calculations to higher en-
ergies to analyze resonances near the H(N =3) thresh-
old. We have found two series of Feshbach resonances of
3P° symmetry, one series of Feshbach resonances of 3D°
symmetry, and one shape resonance of each of these sym-
metries. The existence of shape resonances just above
high-N excitation thresholds appear to be quite common
in H™. Using diabatic hyperspherical potential curves,
we have assigned the correlation quantum numbers K,
T, and A to these Feshbach and shape resonances. Some
A = — resonances are clearly seen in the photodetach-
ment spectrum, which is characteristic of photoabsorp-
tion by weakly bound states [3,11]. The calculated reso-
nance positions and widths are in good agreement with
the variational results obtained by Ho and Bhatia [12,13]
using the complex-coordinate rotation method.
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