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The dependence of the mean lifetimes of metastable molecular ions on the vibrational and
rotational quantum numbers is determined empirically. From the mean lifetimes calculated using
the phase-shift method for the *He®*He?* and 2°Ne?°Ar?* metastable molecular ions, we show
that the mean lifetimes of rotational states decrease with angular momentum ! approximately as

o e—al(l+1)

, and the mean lifetimes of vibrational states decrease with the vibrational quantum

number v approximately as 7, cx e P”. These empirical results are justified by using the Wentzel-
Kramers-Brillouin approximation to estimate the analytic form of the scaling laws.

PACS number(s): 33.70.Fd, 34.50.Gb, 33.15.—e

In recent years there has been an increasing interest
in the theoretical and experimental studies of metastable
states of molecules and molecular ions. The potential
curves of these states have a local minimum at small in-
ternuclear separation, Rp, which is higher than the po-
tential energy at the dissociation limit, thus they can dis-
sociate by tunneling through the potential barrier. The
tunneling rates of the different vibrational states are ex-
tremely sensitive to the shape of the potential curve V(R)
and the energy of the vibrational state E,, as can be seen
from the WKB formula [1]

T l=\=f, e 2 V2 [; dR \/V(R)-E. (1)
where a and b are the classical turning points, f, is the
vibrational frequency, and y is the reduced mass of the
molecule.

Tunneling decay rates have been calculated using the
WKB approximation, see, for example, [2-5]. Quantum
mechanical calculations of the resonances’ energies and
widths have been performed only more recently. For ex-
ample, Babb and Du used the amplitude method to cal-
culate the mean lifetimes of 3He*He?* [6], and Chen et
al. [7] used the phase-shift method to calculate the mean
lifetimes of 2°Ne*®Ar?*+. These quantum mechanical cal-
culations of the decay rates are rather time consuming
because the states have very narrow widths [7].

Estimates of the mean lifetimes of some metastable
molecular states have been inferred from experiments.
For example, Belkacem et al. [8] reported a mean life-
time longer than 5 pusec for the 3He*He?* molecular ion.
Recently, direct measurements of the mean lifetime of
20Ne*®Ar2+ have been reported by Ben-Itzhak et al. [9].
According to the calculations of Chen et al. [7] this mea-
sured value is close to the mean lifetime of the v = 12
vibrational level of the ground electronic state. Recent
direct measurements of the dissociation of 3He*He2* also
indicated that this molecular ion might be in highly ex-
cited rotational states [10].

From our experience the search of the rotational and
vibrational states which have proper mean lifetimes cor-
responding to the measured ones is rather time consum-
ing if quantum mechanical methods are used. In this
Brief Report we present the empirical formulas which
give the dependence of the mean lifetimes on the vibra-
tional and rotational quantum numbers (atomic units are
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used throughout this paper). High precision mean life-
times have been determined using the phase-shift method
as described in our earlier work [7]. It will be shown that
these mean lifetimes scale as

Ty o e B (2)
for the different vibrational states with the same [, and
as

7 o e~ o+1) (3)

for the rotational states with the same v, where 8 and «
are constants. These scaling laws were obtained initially
empirically from the calculated values. In the following
we used the WKB approximation to “justify” these rela-
tions.

The two molecular ions to be examined are 3He*He2?*
and 2°Ne*®Ar?*, where the ground state potential curves
have been calculated by Ackermann and Hogreve [3] and
by Koch et al. [11], respectively. Both potential-energy
curves for I = 0, shown as dotted curves in Fig. 1, have
been used in our previous mean lifetime calculations for
the different vibrational-rotational states. For states with
angular momentum [, a centrifugal term was added, i.e.,
Vi(R) = Vo(R) + I(I + 1)/2uR2, where the Vo(R) is the
l = 0 potential-energy curve shown in Fig. 1.

To obtain the empirical formula, we carried out the
WKB approximation by fitting the potential energy near
the barrier with an inverted harmonic oscillator poten-
tial, namely,

Vinodet(R) ~ U — a; (R — Rp)? (4)

where U; and a; are fitted parameters for each value of
angular momentum !, and R is the location of the max-
imum of the barrier. As an example, the fitted poten-
tials for | = 0 for the two systems, shown in solid lines
in Fig. 1, are a reasonable approximation of the poten-
tial energy near the barrier maximum. However, far from
the maximum the potential becomes asymmetric and the
parabola given in Eq. (4) fails to fit the potential at large
R values, as can be seen from Fig. 1(b). As our main in-
terest was the general dependence of the mean lifetime
of states close to the maximum of the potential barrier,
where the fit is good, on the quantum numbers v and
l, we have chosen the symmetric potential-energy bar-
rier because it simplifies the WKB calculations so that
the dependence of the mean lifetime on v and ! can be
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followed analytically.
Explicitly, the WKB phase integral for the v,l state
yields

b
/ dR /Vi(R) — Eu
a b
=/ dR /U, — ai(R — Ry)? — Ey,

m U — Ey
=T - 5
g )

where the turning points for the model potential are

equal to Ry £+ /(U; — E,1)/a; . Substituting Eq. (5) for

the integral in Eq. (1) gives the mean lifetime

rop = £ €T VR O, (6)

In Eq. (6), if the vibrational energy levels are approx-
imated by the harmonic oscillator formula, i.e., E,; =
wy (v+ %), then
2 T oxe” P, )

N

,/2 and w; = /ki/pp (ki is found

where 8 = )

by fitting a harmonic oscillator potential around Rp). In
Eq. (7), we have neglected the dependence of the vibra-
tional frequency f, on the vibrational quantum number.
The validity of Eq. (7) is checked against the actual cal-
culated values in Fig. 2 for the mean lifetimes of different
vibrational states of 3He*He2?* and 2°Ne*CAr2*. The re-
sults of using Eq. (7), with fitted parameters, are shown
as solid lines. The curves represent the actually calcu-
lated mean lifetimes rather well except for the higher
vibrational states of 2°Ne%®Ar2*. The mean lifetimes
of highly excited vibrational states increasingly deviate
from the model because their energy is not well approxi-
mated by the harmonic oscillator formula. Correction to
the energy from the nonlinear (v + 3)? term contributes
more than 20% of the energy for states with v > 10.
Even such a deviation can cause a significant shift of the
mean lifetimes away from Eq. (7). As another check, we
found that the slope of the exponentials derived from
the best fit to the phase-shift values shown in Fig. 2
yields By;; = 10.9 & 0.4 for 3He*He?* which is in reason-
able agreement with the B,,0de1 = 12.43 value predicted
by the simple model. Similar agreement was found for
20Ne4CAr?t, ie., Brit = 13.4 £ 0.2 while 8,,04e1 = 11.0.
Next we consider the dependence of the mean lifetimes
on the rotational angular-momentum quantum number.
The effective potential for states with angular momen-
tum [ is given by Vi(R) = Vo(R) + (1 + 1)/2uR?, where
Vo(R) is the potential-energy curve for [ = 0 (see Fig. 1).
This potential-energy curve is approximated around the
maximum of the barrier by a parabolic barrier of the form
given in Eq. (4). The fitting parameters U; and a; can be
written as a function of the fitting parameters Uy and ao
for the Vo(R) potential (i.e., the | = 0 case) as follows:

T Wy

I(l+1) 1
Vi =Up — 2
1(R) =Up —ao z” + uRE (1+ )
=Up — ag z? )
(1+1) T z
ATl 92 43 =
+ 2;1.R§ [1 ZRb + (Rb)

—4 (-1%)3 + 0(4)], (8)
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where z = R — Ry and the centrifugal potential was ex-
panded for /R, < 1. Keeping terms up to (R%)z one
gets

_ 0+1) 1 BI(L+1)
Vi(R) = Uo + 2uR? + 3% (1 2pao Ry ¢

3L+ 1)
ay <1 el Rg) R=U-aaz? (9)
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FIG. 1. The metastable potential-energy curves for the
ground states of (a) *He'He?* from Ref. [3] and (b)
2®Ne?®Ar®** from Ref. [11], -+ -« -- . The parabolic model
potential barrier fitted for / =0: — — — — — — — — — .
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FIG. 2. The dependence of the mean lifetimes of the [l = 0
states of *He*He®t and 2°Ne*°Ar?* on the vibrational quan-
tum number v. (Amplitude method from Ref. [6]; WKB
calculations for *He*He?* from Ref. [2].)

where z; = x — $ is the distance from the shifted barrier

1(1+1)

Bwac kS The relation-

. _ 1
maximum, and ¢ = 1_::(::;',3
ship between the fit parameters of a state with angular
momentum ! and the [ = 0 state are then given to first

order in {(I + 1) by
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FIG. 3. The dependence of a; on I(l + 1), symbols

from the fit of Uy — a1 (R — Rb)2 to the 3He?He2t
potential-energy curve for different rotational states, i.e.,
Vi(R) = Vo(R) + I(l + 1)/2uR? where Vo(R) is the potential
curve given in Fig. 1.

(l+1)
U ~Up + W »
and
3l(1+1) )
a; ~ ag — TR;: . (10)

By fitting U; — a; z? to the actual potential curve

Vo(R) + lz(f‘—"‘;} for angular momentum [, around the top

of the barrier, we found that a; indeed depends linearly
on I(l + 1) (see Fig. 3). For the 3He*He2* system, the
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FIG. 4. The dependence of the mean lifetimes of some
vibrational states of (a) *He?He®" and (b) 2°Ne?®Ar** on
(l+1).
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slope predicted using Eq. (10), 2x 1073, is in accord with
the slope derived from the fit, 2.3 x 1075.

The energy levels for the rovibrational states v,l are
given approximately by E,; = E,o+I[(l+1)/2uR2, where
E,o is the energy of the vibrational level v for I = 0 and
the second term is the energy of a rigid rotor with angular
momentum [. Using a similar first order expansion in
I(l + 1) one can easily show that the turning points of

the parabolic potential barrier, +b;, which are solutions
J

1 1
Ly mvEs B [ 14 M e

2pb3 REag

_ 2uR%ag
Tol = fvl € b
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of the condition U; — a; b? = E,;, are given by

bfzbg(1+3l(l+1) t+1 l(l2+1) >,
2uRiao 2ub%R2aq  2ubiRZao

(11)
where by = +1/(Us — Ey0)/ao are the turning points for
I = 0. Substituting the values of a; and b; from Eq. (10)
and Eq. (11), respectively, into Eq. (6) yields the follow-
ing expression for the mean lifetime of the v,! state:

_ 31(141
1 durfer ) (12)

2ub2 REag ]

Expanding the last square root in the exponential and keeping only terms to first order in /(I + 1) yields

1(1+1)

1(14+1)

Tol = fv[

which can be rewritten as (neglecting the dependence of
fvi on v and [)

Tor o e~ 1) (14)
where

i 1 1 3(U0 - Evo)
vV 2[140,0 (Rg RIL: 20.0R§ )
The relation in Eq. (14) is the scaling law for the mean
lifetime of a given vibrational state v with the angular-
momentum quantum number [. Notice that this model
suggests similar exponential dependence of 7 on (I + 1)
for different vibrational states of the same metastable
potential-energy curve because typically 3(22—0_;‘:%"‘)—) <
(Rig — ng) [see Eq. (15)].

The mean lifetimes of v = 0, 1, and 2 vibrational states
of the metastable 3He*He?* molecular ion as a function
of I(l + 1), are shown in Fig. 4(a). It is clear that the
mean lifetimes follow approximately the scaling law of
Eq. (14). Furthermore, the slopes are nearly the same.
Specifically, the values of a evaluated from the fit to the
mean lifetimes calculated using the phase-shift method
are ayg; = (3.77 £0.07) x 1072, (3.54 + 0.05) x 1072,
and (3.2440.05) x 1072 for v = 0, 1, and 2, respectively.
These are to be compared to the values obtained from
Eq. (15), Qmoder = 4.02 x 1072,4.14 x 1072, and 4.26 x
1072, respectively. The slow decrease of a with increasing
v from the fitting is, however, in contradiction with the
slow increase predicted by Eq. (15). This may be due to
the neglect of the dependence of v and ! in f,; within our
model.

Similar comparison is made in Fig. 4(b) for the de-
pendence of the mean lifetimes of the rotational excited

ac~ (15)

1 VB0 (Vo Fuo) [+ gl

31(1+1) ]

2uRE(Ug—Ey0) ' 4uRiag

(13)

[
states for v = 11 of the 2°Ne*°Ar2* molecular ion.
The dependence on I(I + 1) again is well represented
by Eq. (14) and the value of a obtained from the fit,
(2.75 & 0.03) x 103, compares well with 4.39 x 1073
from Eq. (15). The difference is much larger than for
3He*He?*, but such discrepancy can be understood since
we have shown already that the present simple model
does not apply to higher vibrational states where the
anharmonicity becomes large. In fact, the scaling law
breaks down also for high-I states, as can be seen in
Fig. 4(b). For the high-l and/or high-v states, the as-
sumptions used in the derivation of the scaling laws given
in Eq. (2) and Eq. (3) do not apply.

To conclude, we have shown that the mean lifetimes of
metastable molecular states which dissociate by tunnel-
ing through the potential-energy barrier exhibit an ex-
ponential decrease with increasing vibrational quantum
number v, and with increasing I(l + 1) for states with
angular momentum /. Based on the WKB model and
a number of approximations on the potential near the
barrier, we have shown how these relations can be de-
rived analytically. These simple scaling laws are shown
to break down for large values of v and [, where the ener-
gies of these states cannot be obtained using the simple
harmonic oscillator and rigid rotator approximations.

We wish to thank Professor O.L. Weaver, Professor
K.D. Carnes, and Dr. Vidhya Krishnamurthi for many
useful discussions. This work was supported by the Di-
vision of Chemical Sciences, Office of Basic Energy Sci-
ences, Office of Energy Research, U.S. Department of
Energy.

[1] E. Merzbacher, Quantum Mechanics (John Wiley &
Sons, New York, 1961).

[2] C.A. Nicolaides, Chem. Phys. Lett. 161, 547 (1989).

[3] J. Ackermann and H. Hogreve, J. Phys. B 25, 4069

(1992).

[4] J.N.L. Connor and A.D. Smith, Mol. Phys. 43, 397
(1981).

[5] R.J. Le Roy and Wing-Ki Liu, J. Chem. Phys. 69, 3622
(1978).

[6] J.F. Babb and M.L. Du, Chem. Phys. Lett. 167, 273
(1990).

[7] Z. Chen, I. Ben-Itzhak, C.D Lin, W. Koch, G. Frenking,
I. Gertner, and B. Rosner, Phys. Rev. A 49, 3472 (1994).
[8] A. Belkacem, E.P. Kanter, R.E. Mitchell, Z. Vager, and
B.J. Zabransky, Phys. Rev. Lett. 63, 2555 (1989).
[9] I. Ben-Itzhak, I. Gertner, and B. Rosner, Phys. Rev. A
47, 289 (1993).
[10] I. Ben-Itzhak, Z. Chen, C.D Lin, I. Gertner, O. Heber,
and B. Rosner, Bull. Am. Soc. 39, 1183 (1994).
[11] W. Koch, G. Frenking, and A. Gobbi, Chem. Phys. Lett.
203, 205 (1993).



