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Photoionization cross sections of the Be atom are calculated using the hyperspherical close-
coupling method where a model potential is employed to approximate the screening of the 1s®
closed-shell core electrons. The cross sections obtained below the Be™(2p) threshold agree well
with the results of other calculations and with experiment. Total and partial photoionization cross
sections for photon energies between the Be'(2p) and Be*(3s) thresholds are also calculated.

PACS number(s): 32.80.Fb, 32.70.Cs, 31.50.+w, 32.80.Dz

I. INTRODUCTION

The hyperspherical close-coupling (HSCC) method has
been developed recently and shown to be quite accurate
and efficient in calculations of doubly excited states in
two-electron atomic systems, such as He and H™. Pho-
toionization of such systems, in the energy range where
doubly excited states interact strongly with the contin-
uum, have been calculated and studied [1-9]. In this pa-
per, we extend the HSCC method to calculate photoion-
ization from atomic Be. When the photon energy is not
sufficient to excite the inner 1s2? electrons, the Be atom
can be approximated as a system of two valence elec-
trons in the Coulomb field of the nucleus screened by the
frozen closed-shell electrons. In this work, this screened
Coulomb field is approximated by a simple model poten-
tial, whereby the Be atom is treated as a two-electron
system in the model potential.

Photoionization of valence electrons of Be has been
studied by various groups both experimentally [10] and
theoretically [11-15]. But all of them are concerned with
the energy range below the Bet(2p) threshold. Here we
will show that for energies below the 2p threshold the
photoionization cross sections calculated using the HSCC
method agree well with other theoretical results and with
experiment [10]. Moreover, we also extended the calcula-
tion to obtain photoionization cross sections between the
2p threshold and the 3s threshold. In this energy range,
all partial cross sections for three open channels are pre-
sented and the cross sections are shown to be dominated
by the resonances.

In the next section, a brief description of the theoretical
method used for the calculation is given. The results are
presented and discussed in Sec. III. A brief summary
is given in Sec. IV. Atomic units are used throughout
unless stated otherwise.

II. THEORETICAL METHOD
AND CALCULATIONS

We write the Schrédinger equation for the two elec-
trons in the screened Coulomb potential as
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= E¢(F1’ F2)’ (1)

where the screening of the nucleus by the inner core is
approximated by an effective charge Z(r) whose form is
chosen to be

Z(r) =2Zpn — Zc+ Ze(1 + aor)e™ 7, (2)

where Z,, is the nuclear charge and Z, is the total num-
ber of electrons in the inner core. (In the present case,
Zn =4,Z, = 2.) In the limit r — 0, Z(r) —» Z, while
Z(r) = (Z, — Z.) as r — oo. The value of the empirical
parameter ao is determined by fitting the excited state
energies of Be™ calculated using this model potential to
the experimental ones.

In hyperspherical coordinates, with the two-electron
wave function expressed by ¥(7i,72) = ¥(R,a,)/
(R%/?sina cos ), Eq. (1) becomes

( 1 82 H.q

_5W+5R_2_E) ¥(R,a,Q) = 0, (3)

where R = /72 + rZ is the hyperradius, o = tan™! (%)

is the hyperangle, and Q denotes collectively the four
angles (71, 72). The adiabatical Hamiltonian is given by

H.4(R;a,Q) = A*(a) + RC(a, 012), (4)
with
Az(a) = __Qi + .E_ + [2'2 — 1 (5)
N 8a?  cos?a  sin?a 4

_2Z(Rcosa) 2Z(Rsina)
cosa
2

+
V1 —=sin2acosfyp

where 6, is the angle between 7 and 75, and l: and l;
are the individual angular momentum operators of the

C(a, 912) =

sin a

(6)
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two electrons.

To solve the Schrodinger equation in the HSCC
method, the configuration space is divided into two re-
gions: an inner one (R < Rps) where the electron-
electron interaction is strong and an outer or asymptotic
region (R > Rjs) where one electron is far away from the
other and the electron-electron interaction is relatively
weak.

In the inner region, the hyperradius is partitioned into
many small sectors [Rg, Ry, ..., Rp]. For a given ith sec-
tor, R C [R;—1,R:], ¥(R,a, Q) is expressed in a close-
coupling expansion

Nen
U(R,a,Q) = Y Fu(R)¢u(R™;0,9Q) (Rio1 < R< Ry),

. ()

where R]* is chosen to be at the midpoint of the sec-
tor, and N, channels are included. Note that channel
functions ¢, are independent of R within the sector.

Substituting (7) into the Schrédinger equation (3), one
obtains the close-coupling equations for F),,

(‘% - 2E) Fu(R)+ Y Vi (R)F,(R) =0

(r=1,....Nmn), (8)

where the coupling term V,,, (R) between the channels p
and v is given by

Vi () = 22 (6 (R 0,92) | Haa (R o, )6, (R 0, 2))
(Ri—l <R< Rz) . (9)

The calculation in the inner region proceeds in exactly
the same manner as for the pure Coulombic systems, as
described in [1,2]. That is, the antisymmetrized chan-
nel functions ¢, are first calculated as eigenfunctions of
the adiabatic Hamiltonian H,4 and subsequently the cou-
plings V., (R) are calculated for each sector. Then start-
ing from the innermost sector ¢ = 1, the close-coupling
equations (8) are integrated from R; ; to R; to obtain
the radial functions F,(R) and the first-order derivatives
with respect to R, whose values at the end point R; are
to serve as the initial boundary condition for the integra-
tion in the next sector. The integration propagates from
inner sectors to outer ones, until the matching boundary
R = Rjy is reached.

In the asymptotic region (R > Rjs), the two-valence-
electron wave function is more adequately expressed as
products of wave functions of the inner valence elec-
tron bound in the screened potential and the continuum
Coulomb functions for the outer valence electron in the
independent electron coordinates 771,73,

Ncn
Lo, 1
P& (71, 7) = S @ (r) Y ()
=1

s
x[fE(r)0is — g7 (r>)Kip(E))

(B=1,..,Na), (10)
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where ®; is the radial function of the inner electron in
the screened Coulomb potential for channel ¢ character-
ized by the binding energy E; of Bet with i represented
by N and [, the inner electron’s principal and angular
momentum quantum number. Contrary to that of Het
or H, the binding energies E; of the same N for Bet(NN!)
states are no longer degenerate for different angular mo-
mentum [, due to the fact that the electron is not in a
pure Coulomb field. In Eq. (10), Ylf‘fz"(ﬂ) is the coupled
spherical harmonic function formed by angular momen-
tum [y, ! of the two electrons. The functions f; and g;
are, respectively, the energy normalized regular and ir-
regular radial Coulomb functions of a unit charge for the
outer electron if channel i is open (E > E;), or exponen-
tially increasing and decreasing functions if 7 is closed

The reaction matrix K is obtained when the numerical
solution and its derivative with respect to R in the inner
region are matched with the asymptotic solutions (10)
at the boundary R = Rjs. Since the inner and outer
solutions are expressed in two different coordinates, a
simple frame transformation has to be made in matching.

The whole procedure outlined above has to be car-
ried out separately for both the initial and final states
to obtain the initial and final state wave functions with
proper boundary conditions. Once the initial and final
state wave functions are available the dipole transition
matrix and thereby the photoionization cross sections of
different photon energies can be calculated readily.

One problem arising from using the model potential
in describing the Be atom is how to eliminate the “un-
physical” occupied orbitals which are also obtained from
the solution of the Schrodinger equation. In R-matrix
or other diagonalization methods it is done usually by
throwing away these occupied orbitals from the basis
functions. In the hyperspherical approach, there are “un-
physical” channels which are associated with the occu-
pied core states. In the present case, the lowest potential
curve in each symmetry is identified with a channel where
the core is in the 1s state. In the actual Be atom, the core
1s orbital is occupied and thus should be excluded from
the basis set for the valence electrons, but in the solution
of the two-electron problem in the model potential, it is
part of the complete set of basis functions. One can elim-
inate the core 1s orbital only at large R, where the ampli-
tude of the valence-electron state associated with the core
state should vanish. Thus we adopted a straightforward
scheme to eliminate the effect of the undesirable occupied
orbitals: In the inner region (R < Rjs), all channels are

TABLE I. Binding energies in a.u. of discrete states of
Be™' obtained using the model potential as compared with
the experimental results [16].

State Experiment Theory
2s 0.6691 0.66964
3s 0.2671 0.26776
4s 0.1430 0.14340
2p 0.5237 0.52430
3p 0.2294 0.22998
4p 0.1280 0.12833
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included when the close-coupling equations are solved;
at the matching distance R = Rjs, the boundary condi-
tion is imposed such that the amplitudes for the lower
unwanted channels vanish. Thus only the K matrices
for upper (physical) channels are obtained. It should be
noted that this scheme still does not rigorously exclude
the effect of core states in the diabatic channels. Never-
theless the numerical results show that this scheme works
well for the present calculation.

III. RESULTS AND DISCUSSIONS

In this calculation, the empirical parameter ag of the
model potential used is 2.3436, which gives less than 0.3%
error for the energies of the first few excited states of Be™,
as shown in Table I. For both the initial 1.S° state and
the final 1 P° states, 15 channels are included. Further-
more, 150 diabatic sectors with the matching distance
Rps = 11.875 a.u. are used in the calculation for the ini-
tial state. The binding energy obtained for the ground
state Be (2s?) 1§ with respect to the Be?* core is ~1.012
76 a.u. (the value would be —1.036 94 a.u. if the lowest
channel is completely eliminated for all R’s), which is
to be compared with the experimental value —1.0133 a.u.
[16]. For ! P° final state wave functions, 330 diabatic sec-
tors with Rps = 89.5 a.u. are used. Photoionization cross
sections in both the dipole length and the dipole acceler-
ation forms are calculated. The velocity form, which in-
volves derivative terms, is not used since in the diabatic-
by-sector method the hyperradial wave functions at the
junction of the two sectors are not continuous and the nu-
merical evaluation of the matrix elements becomes much
more tedious.

In Figs. 1 and 2, the 15¢ and ! P° adiabatic potential
curves of Be are shown. Because the asymptotic poten-
tials for the same N but different ! are no longer de-
generate, potential curves such as the 2ses and 2pep of
the 15¢ symmetry as well as the 2sep and 2pes, ed of the
1 P° symmetry now approach different asymptotic limits,
the binding energies of Be™(2s) and Bet(2p). We have
calculated photoionization cross sections for two photon
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FIG. 1. Adiabatic potentials for ! S states of Be, as func-
tions of hyperradius R. The horizontal bars indicate the
asymptotic limits of potentials.

0.00

-0.20 — — Be*GpY]
— Be’(3s)

-0.40 —

— Be'(2p)

-0.60 —

— Be'(2s)

-0.80 —

-1.00

Adiabatic Potential (a.u.)

120 ! 1 L 1 ! !
00 50 10.0 150 20.0 250 300 350

R (a.u.)

FIG. 2. Adiabatic potentials for ! P° states of Be, as func-
tions of hyperradius R. The horizontal bars indicate the
asymptotic limits of potentials.

energy ranges: (1) between the Be'(2p) and Be™(2s)
thresholds; (2) between the Be™ (3s) and Be™t(2p) thresh-
olds. The photoionization cross sections are displayed in
terms of the total energy of the two outer electrons. Thus
the corresponding photon energy is obtained by subtract-
ing the ground state energy from the total energy.

A. Photoionization below the Bet (2p) threshold

In Fig. 3 photoionization cross sections of Be for en-
ergies below the Bet(2p) threshold (-0.5237 a.u.) but
above the Bet(2s) threshold (—0.6691 a.u.) are shown,
for both the length (L) and acceleration (A) gauges. The
results of the two dipole gauges show reasonable agree-
ment except for energies between —0.595 and —0.555 a.u,
where the A form shows abnormally larger cross sections
than the L form. This might be attributed to the limita-
tions of the elimination scheme for the core states used
here. The L-form results agree reasonably well with those
of Moccia and Spizzo [14] and with the old experimental
measurement [10]. The present calculation can be looked
upon as an improvement of the earlier work of Greene
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FIG. 3. The calculated photoionization cross sections of
Be as functions of the total energy between the Bet(2s) and
Be™(2p) thresholds. The solid line is the length form; the
dotted line is the acceleration form.
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[12] where he also used hyperspherical coordinates in the
calculation. But his calculation coupled only a few hy-
perspherical adiabatic channels and the model potential
he used for describing the e~ + Be™ system is less accu-
rate.

In this photon energy range (between 9.35 eV and
13.32 eV), only the 2sep channel is open. Besides the di-
rect ionization to this continuum from the ground state,
there is also contribution from the autoionization of dou-
bly excited states associated with the two 2p channels
(see Fig. 2), which are populated when the photon en-
ergy is large enough. From the photoionization spectrum
(Fig. 3), one can clearly identify two series of resonances,
corresponding to the autoionization of the two Rydberg
series of doubly excited states. The broad resonances rep-
resent the 2pns series while the narrow sharp ones repre-
sent the 2pnd series. The intriguing feature in this case
is that autoionization widths of 2pns resonances are sig-
nificantly larger (more than ten times) than those of the
corresponding “+” series of He. This may be attributed
to the fact that these resonances decay to the 2ses contin-
uum with smaller photoelectron energies. Alternatively,
this is interpreted as resulting from the strong and broad
nonadiabatic coupling between the two adiabatic chan-
nels 2pes and 2sep (the lowest two potential curves in
Fig. 2), especially near the avoided crossing at R = 5.
As suggested by Greene [12], this strong coupling leads
to a strong mixing of the two channels with almost equal
amplitudes in the two-electron wave functions.

The two lowest curves in Fig.2 may be designated as
2sep and 2pes channels, respectively, based on the fact
that they approach 2s and 2p limits asymptotically. How-
ever, the adiabatic potential curves in the inner region
have characters similar to the + and — curves in He
where the + curve has an antinode in electron density
near the ridge (r; = r3), and the — curve has a node
near the ridge [13]. Note that the strong avoided cross-
ing is treated as a real crossing in He. Thus the curve
which retains the + character is the 2sep curve (the lower
one) at small R, and the 2pes curve at large R. In other
words, the 2pns series is to be identified with the + series
in helium, with 2s2p as the lowest state. The 2snp(n> 3)
series is to be identified with the — series. For beryllium,
however, the + and the — designations are not accurate,
nor are the 2sep and the 2pes designations. The eigen-
states are strong mixtures of either pair of designations.
This strong admixture explains why the autoionization
widths of 2pns resonances are much broader than the +
resonances in helium where the latter decay only to the
1sep continuum.

B. Photoionization between Bet(2p) and Bet(3s)
thresholds

In the energy range between the Be™(2p) and Be™(3s)
thresholds or photon energy range from 13.32 to 20.30
eV, numerous doubly excited states associated with the
Be'(3s,3p,3d) thresholds can be populated. Moreover,
these doubly excited states can decay to three open chan-
nels, leading to Be(2sep), (2pes), and (2ped) continuum
states.

1. Total photoionization cross section

Figure 4 shows the total photoionization cross sections
in this energy range. The length-form and acceleration-
form results are in reasonable agreement. From this fig-
ure, one observes many doubly excited resonance states
sitting on top of a continuum background. We have also
shown the energy positions (vertical bars) and total au-
toionization widths (horizontal bars) of the lowest few
doubly excited states calculated by Bachau et al. [17] in
the figure. It is seen that their results agree well with
those from the calculated photoionization spectra here.
A careful analysis of the spectra near each threshold was
not carried out such that very narrow resonances may be
missed in the higher energy region (total energy greater
than -0.28 a.u.) in Fig. 4.

A detailed analysis of the resonance states in this en-
ergy range is more complicated than the corresponding
spectra in helium. From Fig. 2, the potential curves as-
sociated with the Bet(n = 3) thresholds have numerous
avoided crossings. In He, these avoided crossings can be
treated diabatically such that a set of (K,T)“ quantum
numbers can be assigned [18] to each curve. The avoided
crossings, as shown in Fig. 2, are not purely diabatic for
Be. However, the first two resonances in Fig. 4 appear
to be associated with the curve which approaches the 3s
threshold of Be™ at large R. This curve, if taken adiabat-
ically, has the + character at small R. These + states de-
cay readily and exhibit large autoionization widths. The
third resonance, which is at about —0.30 a.u., is very nar-
row, and is likely to be associated with the — curve at
small R. In other words, it is associated with the third
lowest curve at small R (see Fig. 2) among the five curves
that converge to the n=3 limit of Be*. We must empha-
size, however, because of the avoided crossings, each state
cannot be assigned solely to be associated with any par-
ticular adiabatic or diabatic curve. A systematic study
of the spectra and the nature of each resonance in this
region can be obtained only after a careful analysis of the
wave functions and the corresponding parameters in the
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FIG. 4. The calculated total photoionization cross sections
of Be as functions of the total energy between the Be™ (2p) and
Be™(3s) thresholds. The solid line is from the length form;
the dotted line is from the acceleration form. The vertical
(horizontal) bars indicate the energy positions (total autoion-
ization width) of doubly excited states calculated by Bachau
et al. [17].
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multichannel quantum defect theory [15]. Since no exper-
imental data are in existence at present for this energy
region, such an analysis is not carried out here.

2. Partial cross sections

The breakdown of the total cross sections into three
partial cross sections 02sep, T2pes, and oapeq is shown in
Fig. 5. It is clear that the background cross section of
O2s¢p is significantly larger than the other two. This is
expected from the independent electron picture, because
the direct ionization from the ground state (2s2) to (2sep)
can be thought of as a dipole-allowed single-electron tran-
sition, while photoionization to the other two continuum
channels involves two-electron transitions. We also note
that the resonance profiles for each resonance, particu-
larly the higher ones, change drastically among the three
different channels.

IV. CONCLUSIONS

Using the model potential approach in the HSCC
method, we have calculated photoionization cross sec-
tions from the ground state of Be. Our results agree
reasonably well with existing theoretical and experimen-
tal results for energies between the Be™ (2p) and Be™(2s)
thresholds. Results for higher energies, between the
Bet(3s) and Be™t(2p) thresholds, are also presented. Due
to the strong couplings among adiabatic channels, the
adiabatic approximation (or diabatic representation) no
longer provides a good representation of the doubly ex-
cited states for Be. The quantum numbers K, T, and A
used for describing doubly excited states in helium still
show relevance in discussing doubly excited states in Be,
but they cannot be treated as almost “pure” quantum
numbers as in He. From the hyperspherical viewpoint,
the K, T, and A quantum numbers are still useful for de-
scribing properties of doubly excited states in the small-R
region, which are then reflected in properties such as au-
toionization widths [19] and photoabsorption cross sec-
tions. On the other hand, the energy levels are deter-
mined to a large extent, especially the Rydberg states,
by the potential curves at large R, such that the designa-
tion of states for Rydberg levels in terms of independent
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FIG. 5. The calculated partial cross sections of photoion-
ization from Be for energy between the Be*(2p) and Bet(3s)
thresholds: (a) 02sep; (b) O2pes; (€) T2peda-
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particle notation is appropriate. For a complete descrip-
tion of the spectra of Be, calculations should be carried
out which account for both regions of the configuration
space adequately. The HSCC method provides such a
means for carrying out such calculations.
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